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ABSTRACT 
 

Chaos is embedded to the he Charged System Search (CSS) to solve practical optimization 

problems. To improve the ability of global search, different chaotic maps are introduced and 

three chaotic-CSS methods are developed. A comparison of these variants and the standard 

CSS demonstrates the superiority and suitability of the selected variants for practical civil 

optimization problems.  
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1. INTRODUCTION 
 

The Charged System Search (CSS), introduced by Kaveh and Talatahari [1], is a meta-

heuristic optimization technique. This algorithm utilizes governing laws of electrostatics in 

physics and the governing laws of motion from the Newtonian mechanics [2]. This 

algorithm is growing and its application is extending to various optimization problems such 

as discrete optimum design of truss structures [2], design of skeletal structures [3], grillage 

system design [4], optimization of geodesic domes [5] and configuration ‎optimization [6] 

etc. The results of the CSS show a better performance of the CSS comparing to those of the 

other heuristics [5]. 

Similar to many other meta-heuristics, the CSS needs to use some random generators. 

Recently, the idea of using chaotic systems instead of random processes has been noticed in 
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optimization algorithms where the role of randomness can be played by a chaotic dynamics. 

Experimental studies show the benefits of using chaotic signals instead of random signals 

[7,8]. For examples, chaos is added to genetic algorithms [9], harmony search [10], 

simulated annealing [11], accelerated particle swarm optimization [12], imperialist 

competitive algorithm [13], firefly algorithm [14] and charged system search [8]. 

This paper develops Chaos embedded CSS (CCSS) methods for solving practical 

optimization problems. In these algorithms, we use different chaotic systems to replace the 

parameters of the CSS. Thus different methods that use chaotic maps as efficient 

alternatives to pseudorandom sequences have been proposed.  

The remaining of this paper is organized as follows. Review of the standard CSS is 

presented in Section 2. In Sections 3 and 4 different CCSS methods as well as the utilized 

chaotic maps are proposed, respectively. In Section 5, the suggested methods are evaluated 

through practical optimization problems, and the results are compared to designate the most 

efficient approach. Finally, the conclusion is drawn in Section 6 based on the reported 

comparison analyses. 

 

 

2. STANDARD CHARGED SYSTEM SEARCH ALGORITHM 
 

The Charged System Search (CSS) algorithm is based on the Coulomb and Gauss laws from 

electrical physics and the governing laws of motion from the Newtonian mechanics. This 

algorithm can be considered as a multi-agent approach, where each agent is a Charged 

Particle (CP). Each CP is considered as a charged sphere with radius a, having a uniform 

volume charge density and is equal to 
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where fitbest and fitworst are the best and the worst fitness of all the particles; fit(i) 

represents the fitness of the agent i, and N is the total number of CPs. The initial positions of 

CPs are determined randomly in the search space using 
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where 
(o)

, jix  determines the initial value of the ith variable for the jth CP; xi,min and xi,max are 

the minimum and the maximum allowable values for the ith variable; randij is a random 

number in the interval [0,1]. The initial velocities of charged particles are taken as: 
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CPs can impose electric forces on the others, and its magnitude for the CP located inside 
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the sphere is proportional to the separation distance between the CPs, and for a CP located 

outside the sphere is inversely proportional to the square of the separation distance between 

the particles. The kind of the forces can be attractive or repelling determined by using a 

force parameter arij defined as 
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where arij determines the type of the force, in which +1 represents the attractive force and 

−1 denotes the repelling force, and kt is a parameter to control the effect of the kind of the 

force. In general the attractive force collects the agents in a part of search space and the 

repelling force strives to disperse the agents. The resultant force is redefined as  
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where Fj is the resultant force acting on the jth CP; rij is the separation distance between two 

charged particles defined as  
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Here Xi and Xj are the positions of the ith and jth CPs, respectively; Xbest is the position of 

the best current CP, and   is a small positive number to avoid singularity. The pij 

determines the probability of moving each CP toward the others as 

 



















                                       otherwise             0

)()(
)()(

)(
      1 ifitjfitrand

ifitjfit

fitbestifit

pij  (7) 

 

The resultant forces and the laws of the motion determine the new location of the CPs. 

At this stage, each CP moves towards its new position under the action of the resultant 
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forces and its previous velocity as 
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where ka is the acceleration coefficient; kv is the velocity coefficient to control the influence 

of the previous velocity; and randj1 and randj2 are two random numbers uniformly 

distributed in the range (0,1). If each CP moves out of the search space, its position is 

corrected using the harmony search-based handling approach [1]. In addition, to save the 

best results, a memory, known as the Charged Memory, is utilized. The flowchart of the 

standard CSS is presented in Figure 1. 

 

 

 

Figure 1. The flowchart of the standard CSS [2] 
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3. CHAOS EMBEDDED CHARGED SYSTEM SEARCH ALGORITHM 
 

The standard CSS utilizes the fixed parameters during subsequent iterations while adjusted 

limit parameters may affect the performance of the algorithm and reduce/increase its 

convergence speed. kt, ka and kv are three fixed predefined parameters for the CSS. Though 

these values are the key factors to control the balance of the exploration and exploitation of 

the algorithm, however there are two problems in using of them; first, when these are 

multiplied to random numbers, the resultant values will have randomized nature and 

therefore, their changes are limited to effects of the related random numbers during the 

subsequent iterations. Second, there is no deterministic approach for determining suitable 

values for these parameters. As a result, due to the importance of these parameters on the 

performance of the algorithm in one hand, and having no definite and reliable approach to 

determine these parameters on the other hand; their coefficients may be selected chaotically 

by using chaotic maps [8]. 

In this paper, sequences generated from chaotic systems substitute the random 

parameters utilized in the CSS algorithm, to improve the global convergence and to prevent 

being trapped in a local solution. Chaos is a deterministic, random-like process found in 

nonlinear, dynamical system, which is non-period, non-converging and bounded. The nature 

of chaos looks to be random and unpredictable, possessing an element of regularity. 

Mathematically, chaos is randomness of a simple deterministic dynamical system, and 

chaotic system may be considered as the sources of randomness [15, 16]. The new Chaos 

embedded CSS algorithms, denoted by CCSS, can be classified and described as follows: 

 

3.1. CCSS-1 

In this algorithm the kind of the forces (attracting or repelling) is determined by using 

chaotic maps, defined as 
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where cmij is a chaotic variable according to the selected map. Also, the probability of 

moving each CP toward the others is determined as 
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3.2. CCSS-2 

The coefficients of the force and velocity terms in Eq. (8) are modified by the selected 
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chaotic maps and position update equation is modified as 
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3.2. CCSS-3 

CCSS1 and CCSS2 are combined, that is the kind of the forces and the moving probability 

function are determined by using Eqs. (10) and (11) while the new position of CPs is 

obtained by Eq. (12). 

 

 

4. UTILIZED CHAOTIC MAPS 
 

There are developed different chaotic maps. The selected chaotic maps for the experiments 

of this study are listed in the following subsections. 

 

4.1. Logistic map 

This map, whose equation appears in nonlinear dynamics of biological population, 

highlights the chaotic behavior [17] 
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In this equation, xk is the kth chaotic number, with k denoting the iteration number. 

Obviously, )1,0(kcm  under the conditions that the initial )1,0(ocm  and 

}0.1,75.0,5.0,25.0,0.0{ocm . In the experiments a = 4 is used. 

 

4.2. Tent map 

Tent map [18], the following form, resembles the logistic map. It generates chaotic 

sequences in (0,1) assuming  
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4.3. Sinusoidal map 

This map [17] is represented by 
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For a = 2.3 and   it has the following simplified form 

 

)sin(1 kk cmcm    (16) 

 

It generates chaotic sequence in (0, 1). 

 

4.4. Liebovtech map 

As the last example of chaotic maps, Liebovitch map [19], consisting of three piecewise 

linear segments on non-overlapping subintervals on the interval (0,1). This map is defined 

by the following equations 
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where d1, d2(0,1) with d1 < d2 and 
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5. PRACTICAL OPTIMIZATION PROBLEMS 
 

In order to compare the variants of the new method, some well-known practical 

optimization problems are considered from literature. Fifty different runs for each setting 

with completely different initial conditions are used. Then, the statistical measures such as 

mean objective values and their standard deviations are utilized to measure the performance 

of the algorithm, rather than relying simply on a few runs. The simulations for map limits of 

ka as (0,0.5) results in a better performance while for the other generated maps, no changes 

are observed. For all examples, the size of the problem is set to 30 CPs, obtained using some 

extensive sensitivity studies of the population size. With a fixed number of CPs at each run, 

the examples are optimized within 250 iterations for these examples. This means that the 

number of function evaluations is set to 7,500. The explanations of practical optimization 

problems as well as the obtained results are presented in the following sub-sections. 
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5.1. Design of an I-shaped beam 

The goal is to minimize the vertical deflection of an I-beam as shown in Figure 2. This 

example is modified from the original problem reported in Ref. [20]. It simultaneously 

satisfies the cross-section area and stress constraints under the given loads. 

Minimize the vertical deflection f(x) = PL
3
/48EI when the length of the beam (L) and 

modulus of elasticity (E) are 5200 cm and 523104 kN/cm
2
, respectively. Thus, the objective 

function of the problem is considered to be as follows 
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subjected to a cross section area less than 300 cm
2
. 
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For the allowable bending stress of the beam taken as 56 kN/cm2, the stress constraint 

will be as 
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where the initial design space is specified by 

 

10 ≤ h ≤ 80,  

10 ≤ b ≤ 50,  

0.9 ≤ tw ≤ 5 , 

0.9 ≤ tf ≤ 5. (22) 

 

Figure 2. An I-shaped beam (P = 5600 kN and Q=550 kN) 
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The statistical results of the I-shaped beam problem obtained by the CSS and the variants of 

the CCSS algorithms are collected in Table 1. The all of the CCSS-1 methods improve the 

performance of the algorithm comparing to the standard CSS. The mean and worst values for 

the CCSS-1 somewhat are reduced while the standard deviations are improved considerably. 

The CCSS-2 and CCSS-3 algorithms with Sinusoidal and Tent maps have the better standard 

deviations. Almost all the best Statistical results (containing best result, best mean, best worst, 

and best standard deviations) are belonged to the CCSS-3 using Tent map among all of the 

algorithms. Although the differences between the best and mean results of the CCSS algorithms 

and the CSS are small, however the standard deviations as well as the reliability of the algorithm 

are improved considerably by utilizing the chaotic maps. 

Table 1. Statistical results of the I-shaped beam problem for the CCSS algorithms. 

Chaotic Map Best Mean Worst Std. Dev. 

ECSS 0.013086 0.013181 0.013622 1.31E-04 

CCSS-1     

Logistic map 0.013078 0.013121 0.013192 3.25E-05 

Tent map 0.013076 0.013103 0.013272 4.34E-05 

Sinusoidal map 0.013076 0.013105 0.013167 2.51E-05 

Liebovtech map 0.013082 0.013142 0.013235 4.68E-05 

CCSS-2     

Logistic map 0.013082 0.013126 0.013203 3.36E-05 

Tent map 0.013081 0.013107 0.013162 2.32E-05 

Sinusoidal map 0.013090 0.013126 0.013168 2.46E-05 

Liebovtech map 0.013079 0.013116 0.013225 3.51E-05 

CCSS-3     

Logistic map 0.013082 0.013128 0.013368 6.32E-05 

Tent map 0.013075 0.013095 0.013140 1.83E-05 

Sinusoidal map 0.013079 0.013109 0.013177 2.56E-05 

Liebovtech map 0.013077 0.013156 0.013376 8.48E-05 

 

 

5.2. Design of a Tubular column  

Figure 3 presents a uniform column of tubular section to carry a compressive load of P = 

2500 kgf at minimum cost [21]. The column is made of a material with a yield stress σy of 

500 kgf/cm
2
, a modulus of elasticity E of 0.85 × 106 kgf/cm

2
, and a density ρ equal to 0.0025 

kgf/cm
3
. The length L of the column is 250 cm. The stress included in the column should be 

less than the buckling stress (constraint g1) and the yield stress (constraint g2). The mean 

diameter of the column is restricted to a value between 2 and 14 cm (constraint g3 and g4), 

and columns with thickness outside the range 0.2 – 0.8 cm are not commercially available 

(constraint g5 and g6). The cost of the column includes the material and construction costs. 

This cost is taken as the objective function. The optimization model of this problem is given 
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as follows 

 

Minimize:  ddttdf 28.9),(   (23) 
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Figure 3. A tubular column 
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Table 2 presents the statistical results of the tubular column problem. Many statistical 

measures justify the superiority of the proposed methods in compression to the standard 

CSS. The low standard value of the proposed methods ensures the degree of consistency in 

producing the global optimal value. The results of the table show the superior of the CCSS-3 

and CCSS-2 method (with Tent and Sinusoidal maps) to the other CCSS approaches. The 

CCSS-3 can find the best minimum value and the CCSS-2 is capable of reaches the best 

average and standard deviation. 

 

 

Table 2. Statistical results of the tubular column problem for the CCSS algorithms. 
Chaotic Map Best Mean Worst Std. Dev. 

ECSS 26.62 27.35 29.35 2.35 

CCSS-1     

Logistic map 26.58 27.01 27.91 1.44 

Tent map 26.54 27.12 27.81 1.53 

Sinusoidal map 26.53 27.08 27.55 1.33 

Liebovtech map 26.54 27.28 28.12 1.43 

CCSS-2     

Logistic map 26.57 27.00 27.90 1.35 

Tent map 26.56 26.85 27.38 1.23 

Sinusoidal map 26.55 26.88 27.36 1.28 

Liebovtech map 26.58 26.95 27.66 1.36 

CCSS-3     

Logistic map 26.56 27.28 28.35 1.85 

Tent map 26.53 26.92 27.36 1.32 

Sinusoidal map 26.53 27.00 27.65 1.33 

Liebovtech map 26.57 27.30 28.33 1.92 

 

Figure 4. A reinforced concrete beam. 

 

5.3. Design of a reinforced concrete beam 

A simplified optimization of the total cost of a reinforced concrete beam, shown in Figure 4, 

was presented by Amir and Hasegawa [22]. The beam is assumed to be simply supported 
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with a span of 30 ft subjected to a live load of 2.0 klbf and a dead load of 1.0 klbf including 

the weight of the beam. The concrete compressive strength (c) is 5 ksi, the yield stress of 

the reinforcing steel (y) is 50 ksi. The cost of concrete is 0.02 $/in
2
/linear ft and the cost of 

steel is 1.0 $/in
2
/linear ft. It is required to determine the area of the reinforcement As, the 

width of the beam b, and the depth of the beam h, such that the total cost of structure is 

minimized. Herein, the cross-sectional area of the reinforcing bar As is taken as a discrete 

type variable that must be chosen from the standard bar dimensions listed in [22]. The width 

of concrete beam b is assumed to be an integer variable. The variable h denoting the depth 

of the beam is a continuous variable. The effective depth is assumed to be 0.8x2.0. 

The structure should be proportioned to have a required strength based upon the ACI 

building code 318-77 as follows: 

 

Table 3. Statistical results of the reinforced concrete beam for the CCSS algorithms. 

Chaotic Map 
Best Mean Worst 

Std. 

Dev. 

ECSS 364.05 480.34 670.25 85.35 

CCSS-1     

Logistic map 363.4 440.58 560.23 50.21 

Tent map 361.20 435.36 552.32 48.36 

Sinusoidal map 361.01 432.32 545.56 46.32 

Liebovtech map 364.00 450.23 570.61 58.98 

CCSS-2     

Logistic map 363.56 439.89 561.35 52.36 

Tent map 362.14 435.23 548.63 47.68 

Sinusoidal map 363.35 438.36 550.36 48.63 

Liebovtech map 362.23 442.32 570.35 56.32 

CCSS-3     

Logistic map 362.62 440.35 570.32 55.32 

Tent map 360.52 425.32 522.35 45.62 

Sinusoidal map 361.56 435.23 520.35 42.32 

Liebovtech map 362.96 445.36 572.32 50.23 
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in which Mu, Md and Ml are the flexural strength, dead load and live load moments of the 

beam, respectively. In this case, Md = 1350 in.kip and Ml = 2700 in.kip. The depth to width 

ratio of the beam is restricted to be less than or equal to 4. This optimization problem can be 

expressed as 
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Minimize: bhAhbAf ss 6.09.2),,(   (31) 
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The variables bound are: As : {6.0, 6.16, 6.32, 6.6, 7.0, 7.11, 7.2, 7.8, 7.9, 8.0, 8.4} in
2
, b: 

{28, 29, 30, 31, …, 38, 39, 40} in, and 5 ≤ h ≤ 10 in. The constrained functions of g1 and g2 

are the same as derived by Amir and Hasegawa [22]. 

The results obtained for this example is presented in Table 3. The CCSS methods have 

shown better performance than the standard CSS method. The CCSS-3 performs better 

when the statistical analyses are compared. Similar to the previous example, The CCSS-3 

(with Tent and Sinusoidal maps) have the best results while CCSS-2 methods are placed in 

the second place. 

 

 

6. CONCLUSION 
 

Different chaotic-based CSS algorithms are developed where the random nature of chaotic 

maps are utilized to adapt the parameters of the CSS algorithm. Three CCSS algorithms 

contain: CSS-1 (the kind of the forces as well as the probability function are determined by 

using chaotic maps), CCSS-2 (The coefficients of the force and velocity are determined 

chaotically) and CCSS3 (all required parameters are determined chaotically). Three civil 

engineering problems are considered to investigate the methods numerically. Performances 

are assessed on the basis of the best fitness values and the statistics results of the new 

approaches from 50 runs with different seeds. The results show that: 

• Almost all the CCSS are more reliable compared to the standard CSS; this is because 

of decreasing standard deviations of the examples. 

• When all parameters are determined chaotically, most efficient algorithm (CCSS-3) is 

obtained. 

• Tent and Sinusoidal maps are known as the most useful maps to be used in the CCSS 

algorithms. 

• Difficult civil engineering problems can be solved by using CCSS without needing to 

find suitable parameters of the algorithm. 
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