
 

INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING  

Int. J. Optim. Civil Eng., 2013; 3(1): 131-149 

 
 

 

FIXED-WEIGHT EIGENVALUE OPTIMIZATION OF TRUSS 

STRUCTURES BY SWARM INTELLIGENT ALGORITHMS 
 

 

M. Shahrouzi
1*, †

 and A.Yousefi
2
 

1,2
 Department of Engineering, Kharazmi University, Tehran, Iran 

 

 

ABSTRACT 
 

Meta-heuristics have already received considerable attention in various engineering 

optimization fields. As one of the most rewarding tasks, eigenvalue optimization of truss 

structures is concerned in this study. In the proposed problem formulation the 

fundamental eigenvalue is to be maximized for a constant structural weight. The optimum 

is searched using Particle Swarm Optimization, PSO and its variant PSOPC with Passive 

Congregation as a recent meta-heuristic. In order to make further improvement an 

additional hybrid PSO with genetic algorithm is also proposed as PSOGA with the idea of 

taking benefit of various movement types in the search space. A number of benchmark 

examples are then treated by the algorithms. Consequently, PSOGA stood superior to the 

others in effectiveness giving the best results while PSOPC had more efficiency and the 

least fit ones belonged to the Standard PSO. 
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1. INTRODUCTION 
 

Optimal structural design has been an active filed of research from 1904 up to now [1-4]. 

Nowadays application of optimal structural design is being extended to dynamic problems 

[5-16]. Structural designs and responses under dynamic loads highly depend on modal 

shapes and frequencies of the structure; that is solution of eigenvalue problem for optimal 

stiffness and/or mass matrices. 
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Such an optimization problem is addressed by many investigators including pioneering 

work of Bellagamba et.al. [5-14]. Kaveh and Talatahari recently developed Charged System 

Search [15]. Kaveh and Zolghadr further compared results of its application with those 

reported by other existing methods for skeletal structures [16]. An interesting review of 

methods applied to truss weight minimization under eigenvalue constraints is presented by 

Grandhi at 1993 [17]. 

Two main classes of problem formulation can be distinguished in optimal design with 

eigenvalue variation. The most common case is the structural weight minimization under 

constraints on single or multiple eigenvalues; generally numbered starting from lower-

energy modes of vibration. For this class of problems, some challenging points have already 

been reported [18]. The first one is switching between different modes when components’ 

sizing or shape of the structure is being altered during the optimization. In the other hand, 

repeated eigenvalues exist in some types of structures like symmetric three-dimensional 

trusses. Tong et.al theoretically proved that a certain eigenvalue will not change if the 

structure undergoes uniform variation of mass or stiffness matrices [18]. They also studied 

solution existence of such eigenvalue problems stating that it is related to the fundamental 

natural frequency in truss structures. 

The second formulation concerns the dual problem; that is searching for optimal 

(maximum) frequency of certain mode(s) for a fixed amount of structural material or 

weight.It is also addressed by some investigators [19]. 

The present work concerns the second class of formulation which bypasses many of the 

aforemaintioned challenges. Then Particle Swarm Optimization, PSO, as a vastly used 

meta-heuristic in both discrete and continuous global optimization is utilized for this 

problem [20-21]. PSO results on a number of benchmark problems are then evaluated and 

compared with one of its recent modified variants with Passive Congregation; i.e., PSOPC 

method [22].  A novel application of a hybrid genetic and swarm optimization called 

PSOGA [23] is also presented for this problem and compared with the other two methods. 

Theoretical discussion and numerical evaluation over the treated examples will declare the 

performance superiority among the three algorithms as follows.  

 

 

2. PROBLEM FORMULATION 
 

In many practical problems, the structural response to dynamic loading is mainly governed 

by the first frequency and vibration mode [17]. Hence, the first eigenvalue, 1 , is considered 

here to be maximized via the following problem formulation: 
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Whereas design variables include vector of jX as the j
th

 member cross-section area 

limited to prescribed lower and upper bounds
UB

j

LB

j XX , , respectively.  For every designed 

truss the corresponding fundamental eigenvalue 1  is the lowest root of Eq.(4) that addresses 

the lowest modal energy. M And K stand for the mass and stiffness matrices, respectively. 

)(XW ; I.e. the total structural weight is limited to a constant bound 
BW  and computed 

for every truss as: 

 

 jjlXXW )(

 

(5) 

 

The constraints (3) and (4) are satisfied implicitly via programming the algorithm routine 

in this study. In order to handle the 1
st
 equality constraint on structural weight a penalty 

approach is employed here which transforms the problem formulation into unconstrained 

form as: 

Ck
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where C denotes the constraint violation and pk   stands for a penalty constant factor: 
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3. PARTICLE SWARM OPTIMIZATION 
 

Swarm intelligence can be considered a base for many recent meta-heuristic and heuristic 

algorithms which deal with continuous or mixed discrete-continuous optimization problems 

[21]. As a primarily nature-inspired algorithm in this class, standard particle swarm 

optimization was introduced by Kennedy and Eberhart [20]. It mimics the principles used by 

birds’ flock, synchronizing with each other during their move toward their goal. In PSO, a 

virtual bird is called a particle which makes every its movement as a vector-sum of the 

following three vectors called inertial, cognitive and social terms: 
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And thus moves to its new position (new solution vector) 
1K

iX  at the iteration 1k  as: 
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(9) 

The first velocity term in Eq.8 is oriented toward previous direction of movement; so 

called inertial term. The second direction is toward the best position of that i
th

 particle,
Pb

iX ; 

i.e. cognitive term while the term orientation is toward the global best position already 
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found by overall action of the entire swarm particles,
Gb

X ; known as the social term. This 

formula indicates that each particle in PSO should keep in memory its two last movements 

and best of them.  wC  is an inertial factor to control the influence of the previous velocity. 

In this study, wC is linearly decreased from 0.9 to 0.5 during the search. sc CC , Stand for 

fixed magnifying coefficients scaled by random numbers sc rr , in range [0, 1] for inertial, 

cognitive and social terms, respectively. 

 

 

4. ENHANCED SWARM ALGORITHMS 
 

In 2004 He et.al introduced a new version of PSO [22]. They reviewed active and passive 

aggregation as well as passive and social congregation types of natural swarm behaviors and 

consequently introduced Particle Swarm Optimization with Passive Congregation, PSOPC 

with the following modified velocity relation: 
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(10) 

 

In which a 4
th

 term is added to Eq.8 including direction of the vector iR and its 

corresponding bandwidth pC and randomizer pr . According to this presented passive 

congregation strategy each particle in the current swarm is affected by a random chosen 

design vector of the same swarm known as iR . He et.al stated that such a modification can 

be regarded a stochastic operator introducing perturbation into the search process [22]. 

However, since iR does not contain any information out of the existing variables in the 

swarm. Hence, it may be considered a weak kind of exploitative operators. 

In order to add more effectiveness to the standard PSO key features of Genetic 

Algorithms is concerned. GA has already been employed in several fields of engineering 

problem since it is first introduced by Holland [24]. Here, we introduce another 

modification to enhance standard PSO as follows: 
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In this method known as PSOGA the 4
th

 term indicates direction vector from the current 

position toward a new particle; 
k

GAX which itself is obtained using the following subroutine: 

- Copy all the current particles of the k
th

 swarm iteration into an auxiliary memory 

taken as the 1
st
 genetic population 

- Perform crossover with probability of Pc and then mutation with probability of Pm on 

the current population 

- Perform tournament selection on fitness evaluated chromosomes of the population in 

the current generation and save the fittest one 
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- Repeat the last 2 steps for NGA number of GA generations, and then announce the 

elitist chromosome among all of them as the particle 
k

GAX  

Such a sub-algorithm employs direct coding so that every variable in a particle is 

analogous to a gene value in the corresponding chromosome [25]. In this regard, 1-point 

crossover and simple mutation by such an encoding scheme works quite well for the 

eigenvalue problem of the present study as will be shown in the next section. 

The proposed PSOGA algorithm take benefit of both vector-sum jumps of swarm 

algorithms as in Eq.8 and powerful exploitation and exploration of genetic jumps over the 

search space. Therefore it is expected to enhance global search capability of the mentioned 

swarm algorithms; the matter is later confirmed by numerical tests, as well. 

 

 

5. ALGORITHM PERFORMANCE MEASURES 
 

Performance comparison between different optimization algorithms have been a challenging 

task in various engineering problems. Common terms to study in this issue are efficiency 

and effectiveness of the optimization method. Effectiveness means how close to the global 

optima the algorithms can get and escape from local optima. While the efficiency of an 

algorithm is related to how rapid it can converge. History curve of the best-so-far or elitist 

fitness found during iterations of the search is a common tool for this purpose. 

When comparing two different algorithms on the same problem, it can be simply concluded 

that the one achieving the highest final fitness for certain number of iterations is more 

effective, provided that the history curves have the same initial fitness or population. In this 

paper a curve fitting strategy is employed to obtain an efficiency measure. Consider the 

elitist fitness history vs. search iteration number numerically derived during optimization 

and is to be fitted into an analytical function. 
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Figure 1.Comparison of polynomial and exponential curve-fitting for a sample convergence 

history 
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Figure 1 shows results of fitting such a curve once to a quadratic polynomial and then to an 

exponential function. As can be realized, the latter form has better agreement with fitness 

history end- and mid-points. Using a number of trial runs it was found that a sample PSO 

convergence for this problem can be fitted to a function of the form: 
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Figure 2.Variation of fitted-function curvature for two fitness histories showing different 

convergence rates 

 

Figure 2 shows sample fitness histories generated by two different algorithms in bold 

lines and their corresponding fitted curves in dash-lines. The more the factor b is obtained, 

the quicker the convergence is. Such a factor is thus used here-in-after as a measure of 

convergence rate or algorithm efficiency. According to Equation 12 a  scales the difference 

between elite fitness in the first and last iterations. Therefore it accounts for optimization 

effectiveness when the algorithms are started from the same population and its elitist fitness. 

Another important issue is how to measure if the algorithm can provide proper diversity 

in its search agents up to the final convergence [25]. Lack of diversity in optimization may 

result in premature convergence to local optima or making difficulties in constraint handling 

which is a common challenge in structural problems. The present work employs some 

strategies to trace such a feature including mean value observation over swarm particles for 

parameters like fitness and objective function besides to definition of a variation measure as 

follows. Let   be the difference between the lowest and the highest fundamental 

eigenvalue among the entire swarm in any iteration. Diversity of the swarm population will 

diminish as   tends to zero and vice versa so it can be considered a measure of diversity in 

this study. 
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6. NUMERICAL INVESTIGATION 
 

The aforementioned versions of swarm intelligent algorithms for the natural frequency 

maximization problem are tested here with some illustrative examples from literature. Every 

example has been solved for a number of trials to tune these parameters while only sample 

results are reported for the sake of conciseness. For the sake of true comparison, control 

parameters and the first randomly initiated population are kept the same between search 

algorithms in each example. In the present work, variation of the member cross-sections 

during the search is the source of stiffness matrix change that will consequently result in 

eigenvalue modification. The cross-section areas are varied by the algorithms continuously 

between
LB

jX  and
UB

jX  ; given for each case. A reference value, W0, is also defined in each 

case as the total structural weight when every truss member is assigned its heaviest cross-

section:
UB

jX . In every example the problem is solved with fixed-weight constraint of 

0WW B  for two distinct cases of %301  and %752  .  

 

Example 1: 10-bar truss 

A 10-bar truss as depicted in Figure 3 is considered for this example as a sizing optimization 

benchmark [26]. Material density is taken 0.1 lb/in
2
 and modulus of elasticity is ksi10000 .  

 
Figure 3.The 10-bar truss model and loading in example 

 

General and extra control parameters of PSOPC and PSOGA are given in Table1 and 

Table 2, respectively. Lower and upper bounds for member cross-sections are 

taken
21.0 inX UB

j  and
20.50 inX UB

j  resulting in the reference weight of lbW  209820  . In 

this example, extra behavioral constraint is applied as member-stresses are limited to 

ksi25  and the allowable nodal displacements are in0.2  under the demonstrated 

loading condition with P of kips100 . 
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Table 1: General optimization control parameters for 10-bar truss in example-1 

Population 

Size wC  cC  sC  Num.Iterations
PSO

 

10 0.9 – 0.5 2 2 1000 

 
Table 2: Extra parameters for PSOPC and PSOGA for 10-bar truss in example-1 

pC  
Crossover 

Type 
Crossover Probability 

Mutation 

Probability 
NGA 

1.5 1-point 0.85 0.15 2 

 

 
(a) 

 
(b) 

Figure 4. Mean structural weight of example-1 for (a) %30 and (b) %75
 
 

 

Figure 4 shows the average structural weight variation over population of the swarm 
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particles as the search progress. It can be noticed that for both   values, all the three 

algorithms gradually tend to satisfy the equality constraint; 0WW  , however, PSOPC has 

more fluctuations around it.  

 

History of the best achieved or elitist fitness and corresponding fundamental eigenvalue 

for %30 and %75  are depicted in Figures 5 and 6, respectively. It can be realized 

that for both cases PSOPC has achieved higher eigenvalues and is thus more effective than 

PSO. However, both PSO and PSOPC have been trapped in local optima in some   values 

resulting in lower fundamental eigenvalues than PSOGA. Note that regardless of the 

algorithm type, resulted history curves of the elitist fitness are smoother than those of the 

maximal fundamental eigenvalue in the presence of the constant weight constraint due to 

Equation 2. 

 

 
(a)  

 
(b) 

Figure 5. (a) The elitist fitness and (b) fundamental eigenvalue for %30  in example-1 
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(a) 

 
(b) 

Figure 6. (a)The elitist fitness and (b) fundamental eigenvalue for %75  in example-1 

 

In view of the mean fitness over the swarm particles in Figure 7, PSO over-rides PSOPC 

as the search progress but the most rewarding effectiveness still belongs to PSOGA. 

 

It is notable in Figure 8 that PSOPC shows almost steady fluctuation of   as a variation 

measure while in PSO it rapidly converges to zero. The matter confirms that the PSO 

rapidly tends to premature convergence while PSOPC suffers from relatively slow 

convergence rate. According to Figure 8, such a difference is magnified and more declared 

for %752  . In the other hand, for both  cases the of PSOGA exhibits a convergent 

trend but its fluctuation does not diminish as rapid as PSO. The matter confirms capability 

of PSOGA in taking benefit of suitable exploitative and explorative operators resulting in 

proper diversity of the population during the search. 
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(a) 

 

 
(b) 

Figure 7. The mean fitness among swarm particles for (a) %30  and (b) %75  in 

example-1 

 

Table 3: Performance index comparison of the treated algorithms for different  cases in 

example-1 

Problem 

Case 
Method a310

 
b

 

1  

PSO 7.3 0.013 

PSOPC 7.9 0.149 

PSOGA 8.6 0.067 

2  

PSO 3.1 0.096 

PSOPC 3.6 0.348 

PSOGA 4.0 0.186 

 

Considering Table 3, it is found for both   cases that PSOPC has the most b values and 

convergence speed while PSOGA leads to the most a /effectiveness measures. The matter 
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numerically confirms the above discussion. 

 

 
(a) 

 

 
(b) 

Figure 8.Trace of  index for (a)  =30% and (b)  =75% in example-1 

 

Example 2: 72-bar truss 

In order to test the algorithms for three-dimensional case, a well-known 72-bar electrical 

transfer tower truss is considered as the 2
nd

 example. The employed material for truss has a 

density of 2770kg/m
3
 and elasticity modulus of 6.98×10

10
Pa. In this example the four upper 

nodes are assigned an additional non-structural mass of 2770kg as depicted in Figure 9. 

The cross-section area of any truss member can be assigned a floating-point value 

between 
2645.0 cm   and

2000.30 cm , thus the reference weight is kgfW 7.187000   in this 

example. The problem formulation (6) is then applied to maximize the fundamental 

frequency of this truss under fixed weight constraint; 0WW  for two distinct 

cases: %301   and %752  . General control parameters are taken the same as example-

1 unless the number of total iterations which is reduced to 200. Extra parameters are given 

in Table 4. 
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Figure 9.The 72-bar truss of example-2 (SI units) 

 

Table 4: Extra control parameters for algorithms in 72-bar truss example 

pC  
Crossover 

Type 

Crossover 

Probability 

Mutation 

Probability 
NGA 

0.1 1-point 0.85 0.15 2 

 

Figure 10 compares capability of the algorithms in handling the fixed-weight constraint. 

in this 3-dimensional example. The matter occurred more slowly for %301   than the 

previous example; meanwhile PSOPC is better than PSOGA which itself is superior to PSO. 

For the case of %752  , however, all the algorithms have converged to the fixed weight in 

similar manner.  

 

  
(a) (b) 

Figure 10. Mean structural weight of example-2 for (a)  =30% and (b)  =75% 
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(a) (b) 

Figure 11. Trace of  index for (a)  =30% and (b)  =75% in example-2 

 

According to Figure 11, the diversity measure  of PSOGA and PSOPC is higher than 

PSO for %301   and the matter is more highlighted for the case of %752  . Such a 

case dependent and algorithm dependent difference in diversity can also be observed in 

view of the resulted fitness histories in Figure 12. 

 

  
(a) (b) 

Figure 12. History of elitist fitness in example-2 for (a)  =30% and (b)  =75% 

 

Table 5 shows result of curve fitting to derive numerical performance indices. Like 

previous example, for both   cases again more convergence rates or b ’s belong to PSOPC 

and then to PSOGA. However, such an arrange for achieving higher final fitness or 

effectiveness is changed to PSOGA as the best algorithm and then PSOPC and PSO, 

regarding a  values. In overall view, values of a  and b  indices are also decreased with 

respect to the previous 2-dimensional example indicating more complexity of the current 3-

dimentional example. 
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Table 5: Performance index comparison of treated algorithms for different  cases in 

example-2 

Problem 

Case 
Method a310

 
b

 

1  

PSO 85 0.008 

PSOPC 86 0.017 

PSOGA 110 0.009 

2  

PSO 122 0.084 

PSOPC 141 0.075 

PSOGA 152 0.048 

 

  
(a) (b) 

Figure 13. Trace of maximum fundamental eigenvalue in example-2 for (a)  =30% and 

(b)  =75% 

 

  
(a) (b) 

Figure 14. Mean fitness of swarm population in example-2 for (a)  =30% and (b)  =75% 

 

In order to concern effect of penalty function in constraint handling tracing diversity is 

extended here to the observation of maximum achieved fundamental eigenvalue in Figure 

13. As can be seen, in case of %301   the algorithms are relatively weaker to find newer 

maximal frequencies than for %752   where PSOPC and specially PSOGA have shown 
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more desired and acceptable progress. According to Figure 14, this conclusion is further 

confirmed in tracing fluctuations in view of mean values for fitness over the swarm 

population during the search. 

 

Example 3: 25-bar truss 

A well-known 25-bar electrical transfer tower truss is considered for this example as 

depicted in Figure 15. Material density and modulus of elasticity are 0.1 lb/in
2
 

and ksi10000 , respectively. Lower and upper bounds for member cross-sections are taken 

Xj
lB

=0.001in
2 

and Xj
UB

=50.0in
2 

resulting in the reference weight of W0=16536lb. Control 

parameters are the same as previous example except Cpthat is taken 0.5 and the algorithms 

are run for 2000 iterations. 

Figure 16 shows capability of the employed method in constant-weight constraint 

handling. As can be realized PSOGA again has an acceptable capability while this time PSO 

has converged quicker than PSOPC. Such efficiency comparison is confirmed regarding b  

values in Table 6. 

 

 
Figure 15. The 25-bar truss of example-3 

 

  
(a) (b) 

Figure 16. Mean structural weight of example-3 for (a) %30 and (b) %75  
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Table 6: Performance index comparison of treated algorithms for different  cases in example-3 

Problem 

Case 
Method a

 
b

 

1  

PSO 102 0.006 

PSOPC 151 0.002 

PSOGA 158 0.003 

2  

PSO 85 0.014 

PSOPC 87 0.032 

PSOGA 95 0.029 

 

According to history of elitist fitness and fundamental eigenvalue in Figures 17, PSOGA 

again has the best rank in seeking global optimum while PSO has again led to premature 

convergence. 

 

  
(a) (b) 

Figure 15.Trace of maximum fundamental eigenvalue in example-3 for (a)  =30% and 

(b)  =75% 

 

This matter is numerically confirmed by a  values in Table 6 which is greatest for 

PSOGA and lowest for PSO. It can be also studied in view of population diversity index   

in Figure 18 that is rapidly tending zero for PSO while stays fluctuating for PSOPC and 

PSOGA. It is the reason to enable them escape from local optima toward global solution of 

the problem. 

 

  
(a) (b) 

Figure 16. Trace of  index for (a)  =30% and (b)  =75% in example-2 
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7. CONCLUSION 
 

In this paper fixed-weight structural eighenvalue optimization is studied utilizing several 

strategies to evaluate key issues in algorithms’ performance analysis and comparison. 

Consequent implementation of a curve-fitting strategy with the proposed exponential 

function led to definition of a convergence rate b  to evaluate efficiency and a scaling 

parameter a to determine effectiveness of the algorithms in addition to a diversity 

measure .  

According to the achieved results, it is observed that PSO with the least   and diversity 

have the most potential for being trapped in local optima. Applying passive congregation as 

in PSOPC has enhanced the algorithm efficiency resulted in more convergence rate than the 

other algorithms in the treated cases, however, it still showed potential of premature 

convergence. That is due to the fact that no new information is entered to the swarm by 

random re-use of current swarm positions during passive congregation. In the other hand, 

PSOGA takes merit of genotypic exploitation and mutation to provide the best diversity 

among the studied algorithms. Consequently, it has given optima with the highest quality 

resulting in greater values for a  index. In view of the average values for parameters like 

fitness or modal frequency, PSOGA has shown superior performance over PSO and PSOPC 

because it is neither too fast in convergence to lose required diversity nor too fluctuating 

about the mean to loose the recently found optimum. Therefore, PSOGA can be 

recommended for the proposed eigenvalue optimization problem due to its better 

effectiveness and higher quality of results. 
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