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ABSTRACT 
 

The prevalent strategy in the topology optimization phase is to select a subset of members 

existing in an excessively connected truss, called Ground Structure, such that the overall 

weight or cost is minimized. Although finding a good topology significantly reduces the 

overall cost, excessive growth of the size of topology space combined with existence of 

varied types of design variables challenges applicability of evolutionary algorithms tailored 

for simultaneous optimization of topology, shape and size (TSS) in more complicated cases 

which are of great practical interest. In practice, large-scale truss structures are often 

modular, formed by joining periodically repeated units. This article organizes a novel 

simulation approach for this class of truss structures where the main drawbacks of the 

ground structure-based simulation approach are greatly moderated. The two approaches are 

independently employed for simultaneous TSS optimization of a modular truss example and 

the size of topology space as well as the required computation budget to generate an 

acceptable candidate design is compared. Result comparison reveals by employing the novel 

approach, problem complexity grows linearly with respect to the number of modules which 

allows for expanding application of TSS optimizers to complex modular trusses. Use of 

relative coordinates is also warranted for shape optimization which concludes to a more 

efficient optimization process. 
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1. INTRODUCTION 
 

Truss optimization can be performed at three distinct levels: Specifying the optimal cross 

sections of members (size optimization), coordinates of nodes (shape or configuration 

optimization) or the existing nodes and their connection plot (Topology optimization) [1]. 

The common strategy in topology optimization phase is to select a subset of members 

existing in an excessively connected truss, called “Ground Structure” [2], such that the 

objective function is minimized. Based on loading condition and the selected ground 

structure, some nodes, called basic nodes [3] may not be removed. Other nodes, known as 

non-basic nodes, can be absent (passive) or present (active) in a candidate design. The same 

terminology is also used for a present or absent member. If a sample design is stable and 

includes all basic nodes, it will be considered acceptable, otherwise discarded or heavily 

penalized. Since all sampled topologies are subset of the selected ground structure, the 

fitness of the final design relies on reasonable configuration of this structure. Sometimes, 

the so-called all-to-all scheme is exploited in which all nodes in the ground structure are 

connected to each other. This scheme may seem preferable as it provides more topologically 

distinct designs, yet, it excludes any engineering knowledge on the problem at hand, 

resulting in excessive growth of acceptable albeit inefficient designs. 

Application of meta-heuristic algorithms for truss optimization has gained much interest 

during the recent decade [1]. In comparison with deterministic approaches, they require a 

larger number of structural analyses, which is now possible regarding rapid development of 

computers. On the other hand, meta-heuristics perform a guided random sampling which 

allows in principle to explore a larger fraction of the search space than in the case of 

deterministic optimization [1]. They also recombine data of different individuals to guide 

the search. This enables handling nonlinear, multimodal and discontinuous truss problems, 

where deterministic approaches are prone to trap in undesirable local minima. In contrast to 

previous approaches that can only eliminate a member [2], meta-heuristics may reactivate a 

removed member or node during the optimization process. 

Most previous studies on truss optimization by meta-heuristics, even those published 

recently, perform optimization at the size level only. For example, size optimization by 

Harmony Search Algorithm [4], Artificial Bee Colony [5], Big Bang–Big Crunch algorithm 

[6] Charged System Search [7, 8], Chaotic Imperialist Competitive Algorithm [9], Particle 

Swarm Optimization [10] and also some hybridized algorithms [11-14]. This also holds for 

the majority of truss optimizers recently reviewed by Lamberti and Pappalettere [1]. 

Hasançebi et al [15] compared performance of seven stochastic meta-heuristics for size 

optimization of truss structures and concluded Evolution Strategies (ESs) and Simulated 

Annealing (SA) are more reliable than other methods. 

A more sophisticated scheme considers the joint effect of shape and size [16-20] or 

topology and size [21, 22]. Nevertheless, published papers on simultaneous topology, shape 

and size (TSS) optimization of truss structures, albeit the most potent and effective scheme 

[23], are comparatively scarse. This can be attributed to existance of varried types of design 

vartiables: Boolean, continuous and discrete variables should be reasonably employed for 

topology, shape and size optimization respectively [24]. Additionally, the number of design 

variables excessively grows for more intricate structures which challenges application of 
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meta-heuristic optimizers. 

Genetic Algorithms (GAs) have been successfully utilized in TSS optimization of truss 

structures [3, 24, 25]. In addition to GAs, Ant Colony [23], Particle Swarm [26], Simulated 

Annealing [27] and differential Evolution [28] have shown promising results for some TSS 

truss optimization problems. However, some researchers believe the huge gap between 

intricacy of available benchmarks and practical problems highly limits applicability of such 

algorithms in practice [29]. For the simplest scenario, size optimization, intricate test 

problems consisting of hundreds or even thousands of members are available in the 

literature [11, 15, 30] which may fairly simulate complicated practical cases. However, for 

the most effective scenario, simultaneous TSS optimization, this challenge is conspicuously 

visible as available benchmarks are comparatively simple. For example, the 2D symmetric 

39-bar problem introduced a decade ago [3] is possibly the most challenging and interesting 

benchmark for TSS optimization [23, 26, 28]. Regarding the rapid development of 

computation resources, lack of more complicated albeit practically interesting test problems 

is noticeable. The following reasons can account for limited applicability of TSS optimizers 

for more intricate structures: 

i) The number of distinct topologies subset of the ground structure turns inordinately 

large for more complicated structures. Additionally, a slight modification in topology may 

lead to considerable variation in the state of constraint satisfaction, which intensifies this 

problem. 

ii) TSS optimization typically demands simultaneous handling of three distinct types of 

variables. Reasonably Boolean for topology, continuous for shape and discrete for size 

optimization [24]. 

iii) Sampling a new topology relies on perturbation of current topology and checking its 

acceptability. If the number of members is smaller than a minimum (for example 2m-3 for a 

2D externally determinate truss where m stands for the number of members) or if the basic 

nodes are passive in the sampled topology, it is rejected; otherwise analyzed for stability. 

Checking stability, in turn, requires forming the reduced global stiffness matrix and 

calculating its condition number which consumes a considerable fraction of the CPU time 

required for a function evaluation. Nevertheless, it is rejected if unstable and a new 

candidate solution is sampled. For an intricate ground structure that has only a few extra 

members, these unsuccessful trials may consume the prominent fraction of computation 

budget. 

In practice, large-scale truss structures are modular, which are formed by joining 

periodically repeated substructures, called modules [31]. Some familiar examples are truss 

bridge [30], power line truss [16], skeletal wind turbine tower [32] or horizontal jibs of 

tower cranes. The modules may even repeat in two directions, like in the 960-member 

double layer grid truss [33] or the double layer dome [34]. 

Modularity of the structure simplifies analysis and design of the structure. Modules can 

be prefabricated and assembled on site, preferably without the necessity for heavy 
equipment, which significantly reduces the overall cost [31]. Since the mid-1990s, however, 

the construction technique has changed as the computer-aided technology has advanced and 

custom fabrication became more efficient [31]. As a result, at times counter-intuitively, the 

economic advantage of modularity becomes negligible [31]. 
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In the literature term „„modularity‟‟ is generally used in a topological sense where in fact 

each „„module‟‟ may have different geometry or requires geometrical adjustment [31]. In the 

present study, a more general case is considered where topology of modules may also differ 

to some extent. Such advanced customization, albeit increasing the computation cost, 

enhanced optimization efficacy and perceivably concludes to a lighter design. 

Intuitively, the number of modules plays a significant role in topology optimization phase 

which should be specified by the optimizer, since this critical parameter is seldom known a 

priori. In section 3, it will be demonstrated that applicability of the ground structure method 

for TSS optimization of these structures, albeit possible, is inefficient even for moderate 

number of units, which may account for exclusion of topology optimization of these 

structures in previous studies and possibly in practice. This motivates introduction of 

computationally efficient procedures without which it could be impossible for a designer to 

explore all design possibilities for structures within this class. Alternatively, a new 

simulation method is developed, analyzed and compared to the ground structure approach 

from several perspectives. 

 

 

2. THE BRIDGE EXAMPLE 
 

A bridge example is investigated in this section to explore the impact of the enumerated 

challenges. This test problem is more complicated than most available benchmarks for 

shape and size optimization. The bridge, consisting of 20 equally spaced panels, is subjected 

to a uniformly distributed load downwards (Fig. 1a). This truss was investigated by 

Hasançebi [30] to specify the optimum member areas (size) and y coordinates of upper 

nodes (shape). Two cases for this ground structure were studied: the Pratt model, where a 

single design variable is allotted for vertical position of all upper nodes and the Parker 

model, where vertical position of upper nodes may change independently. The extra 

customization introduced by the Parker model resulted in more than 38% saving in the 

overall weight. In this section, more customization is introduced to this problem by 

expanding the shape optimization phase and including an effective topology optimization 

phase. Impact of the enumerated factors is scrutinized when the ground structure and the 

unit-based structure options are employed. 

 

2.1. Ground-structure approach 

When the ground structure concept is employed, a topology optimization phase can be 

included by adding some extra members to the ground structure (Fig. 1b). Now the ground 

structure has a small degree of indeterminacy, almost equal to the number of panels. The 

topology optimization phase can be further expanded by enabling the algorithm to modify 

the number of panels. This option is of great interest since this critical parameter is seldom 

known a priori. Sampling a new topology in the ground structure option relies on activating 

a few passive or deactivating a few active members or nodes and to the author‟s knowledge, 

only in [32] the number of units was explicitly considered as a design variable. If the ground 

structure option is to be employed, some extra members should be added to the ground 

structure so that some units could be eliminated.  
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Figure1. Optimization of truss bridge at different levels: a) A typical ground structure 

(half-model) for the bridge truss problem commonly used in previous studies which allows 

for shape and size optimization; b) Including a topology optimization phase is possible by 

adding a few extra members; c) Elimination of up to 5 panels is possible. For clarity, 

overlapping members are illustrated with curved line segments. 

 

Figure 1c illustrates a typical instance which provides such possibilities where either of 

the second, forth, sixth, eighth or tenth panel can be eliminated. Finally, the horizontal 

position of nodes can be modified, especially knowing that the bending moment linearly 

increases through the bridge span. Upper nodes may freely move along x and y directions, 

while for esthetic reasons, the horizontal position of lower nodes is kept identical to that of 

the corresponding upper nodes. This model presents a large amount of customization and as 

a consequence, a lighter final structure is predictable. Nevertheless, to authors‟ knowledge, 

such considerations are excluded in previous studies and possibly in practice, as the benefits 

of recently added options could hardly compromise with extra complexity imposed by 

excessive growth of topology space, even for moderate number of panels. Apart from that, 

including possibility of elimination of extra panels necessitates broadening the search ranges 

of coordinate variables pertaining to horizontal position of nodes so that distance between 

active nodes around a passive pair of nodes may take small values. This might lead to 

shapes that violate node adjacency requirement, which means for a reasonable shape, the 

constraints x20 > x18 > x16 > … > x2 should be satisfied provided that the corresponding nodes 

are active. Some candidate designs may violate this requirement when the search range of xi 

is enlarged. Unacceptable shapes can be discarded, but the ratio of acceptable shapes rapidly 
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diminishes when the number of units and the search ranges of corresponding variables are 

enlarged. 

For truss structures, the stress limitations of the members are imposed according to the 

provisions of ASD-AISC [18] as follows: 

 

2.2. Unit-based structure approach 

The unit-based structure approach utilizes a different strategy to represent the problem and 

to generate a candidate solution which takes place in three steps. Here, these steps are 

explained for the bridge truss example, although this method can freely be generalized to 

other modular truss or even frame structures  

 

2.2.1 Step 1: Topology 

At the first step, the most distinctive parameter, the number of units or modules (K), is 

specified. A reasonable unit for the bridge problem is illustrated in  Figure 2a which is 

composed of 5 members. Figure 2b illustrates the case for K=6. One member of each unit 

can be eliminated without disturbing kinematical stability of the bridge and hence, the 

number of acceptable substructures, called modules is C(6,0)+C(6,1)=6, where C(n,k) 

means “n choose k” (Fig. 2c). Consequently, modules may contrast even from topological 

point of view, even though the basic unit is identical for all modules. The structure topology 

is then formed by joining these modules (Fig. 2d). In this method, modules are formed one 

after another, i.e. a module for the first unit is formed. If unstable, it is rejected and a new 

candidate module is tried. This process continues until an acceptable module is found for 

this unit. After that, the process of finding an acceptable module for the second unit is 

initiated. 

 

2.2.2 Step 2: Shape 

The shaping stage consists of determining vertical (yi) and horizontal (xi) positions of upper 

nodes. As modules are joined along x direction, relative coordinates are utilized to specify 

horizontal position of each node with respect to the nearest node on the left side. These 

relative coordinates may take any arbitrary positive value without violating node adjacency 

requirement. At current mode, no constraint is imposed on the overall length of the bridge. 

 

2.2.3 Step 3: Size 

Member areas are specified from the given set. This step is similar to the corresponding step 

in the ground structure approach. For the simple ES-based optimizer provided in the 

appendix, it is carried out by mutation of the size parameters of the recombinant. If the 

given set of available sections is discrete, the resultant value is rounded to the nearest larger 

value. 

For evaluation purposes, shape variables corresponding horizontal positions of nodes are 

multiplied by a constant, α, so that the overall length of the truss becomes L (Fig. 2e). 
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Figure 2. Steps to generate a candidate solution when the unit-based structure is 

employed. From top to bottom: a) The first step is to determine the number of units; b) The 

number of units is specified (K=6); c) The module pertaining to each unit is determined 

independently. For the selected unit, at most one member of each unit may be eliminated; d) 

the candidate topology is formed by joining these modules; e) shape variables are 

determined 

 

 

3. UNIT-BASED METHOD VERSUS THE GROUND STRUCTURE 

APPROACH  
  

In comparison with the conventional approach of the ground structure, the unit-based 

approach enjoys three principle privileges: 

 

3.1. Size of topology space 

The number of acceptable topologies that may be sampled during the optimization process 

is a critical factor affecting complexity of topology optimization phase. A descriptive 

experimentation is performed to compare this number for the bridge truss example when i) 

the conventional method of the ground structure and ii) the unit-based structure is 

employed. The objective is to determine the optimum number of panels (units) and to 

deactivate inefficient members. The selected ground structure for the first approach is 

identical to what was illustrated in  Figure 1c. The overall number of topologies is 2
m
 where 
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m is the number of members in the ground structure. To calculate the number of acceptable 

topologies, experimental simulation is performed according to which a sufficient number of 

topologies subset of the ground structure is sampled where each member is considered 

active with a probability of 0.5. The ratio of acceptable topologies to all sampled topologies 

is calculated and used to estimate the overall number of acceptable topologies. When the 

unit-based structure is employed, 6 distinct acceptable sub-topologies (modules) can be 

selected for each unit and hence, the number of topologies when K units (K+1 panels) are 

selected is 6
K
, and the overall number of acceptable topologies is 6

Kmin
+6

Kmin+1
+…+6

Kmax
. 

Figure 3 illustrates the number of acceptable topologies as a function of the maximum 

number of panels. For either case it is assumed that the minimum number of panels is equal 

to half of the maximum number. 
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Figure3. The number of acceptable topologies as a function of the maximum number of 

panels when using the ground structure and the unit-based structure approaches 
 

The plots clearly demonstrate the huge gap between the growth rates of topology space 

when using these approaches. When the maximum number of panels is 10, which is a 

moderate number, the ratio of the number of acceptable topologies when the ground 

structure approach is employed to this number when the unit-based structure approach is 

used becomes more than 6×10
11

. The plots also demonstrate that the logarithm of the 

number of acceptable topologies grows linearly with respect to the maximum number of 

units and the gap between two plots rapidly increases. 

 

3.2. Required effort to generate an acceptable topology 

In topology optimization phase, sampling a new topology is performed by mutation and 

recombination of current solutions. Quite often the majority of sampled topologies are 

unacceptable, especially when the degree of indeterminacy of the ground structure is small. 

These unacceptable topologies are either discarded or severely penalized, but are not 

counted in function evaluations as they do not undergo FE analysis. Nevertheless, this 

procedure may drastically slow down optimization process since forming the reduced 

stiffness matrix and computing its condition number consumes a partial time of an 

evaluation. When the unit-based structure is employed, the stability of the candidate 

topology is verified by verifying some conditions in modules instead of analyzing the 
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stiffness matrix. The advantages of this procedure are two-fold: first, the consumed time is 

lessened as modules are formed independently and second, for simple base units, the 

acceptability of a module relies on existence of sufficient members. For the bridge problem, 

for instance, the candidate topology is acceptable if each module has at least 4 out of 5 

members and hence, checking acceptability of the candidate topology requires neither 

forming the stiffness matrix nor calculating its condition number. In the first iteration, all 

probability mass function of all acceptable topologies should be similar. The method 

employed here considers each member of a unit active with a probability of 0.5 and rejects 

the unstable topologies. 

Figure 4 illustrates the number of tried topologies and the consumed CPU time to 

generate an acceptable topology as a function of the maximum number of panels. Again the 

minimum number of panels was supposed to be equal to the half of the maximum number of 

panels and sampling was performed uniformly over the acceptable feasible space. For the 

ground structure approach, a sampled topology is first checked for having basic nodes and 

existence of a minimum of active members. If confirmed, it undergoes calculating the 

condition number of the stiffness matrix to check kinematic stability. For unstable 

topologies, this number is theoretically infinitive, nonetheless, when it is numerically 

calculated, a large value may be concluded due to unavoidable rounding errors. 

Accordingly, large values of this number (for example larger than 10
10

) refers to unstable 

topologies. The condition number of the reduced stiffness matrix is also a good measure for 

sensitivity of the solution to errors in input data which is of great importance when robust 

optimization is desired. 
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(a) (b) 

Figure4. Required CPU Time (ms) and the number of tried topologies to generate an 

acceptable topology as a function of maximum number of units when the concepts of the 

ground structure (GS) and the Unit-based structure (UBS) are employed: a) logarithmic 

scale; b) linear scale. 

 

The test was run on a 4-core processor (4×2.66 GHz) PC with 2G RAM. The plots 

demonstrate that both the number of tried topologies and the required computation time 

grow exponentially when the ground structure approach is employed while they grow 
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linearly when the unit-based structure is employed. When the maximum number of panels is 

selected as 14, the required time to generate an acceptable topology becomes more than 1 

second, which implies that application of the ground structure approach is impractical. If the 

unit-base structure is employed, the corresponding time is only 7 ms. 

 

3.3. Size of topology space 

As relative coordinates is employed, the range of shape variables can be set to (0,u0] while 

the requirement for nodal adjacency is always fulfilled and adjacent nodes may approach as 

close as desired. Apart from that, knowing that variation in height of the bridge would be 

gradual, use of relative coordinates even for vertical poison of the upper nodes could be 

beneficial. To check this experimentally, the bridge example is optimized for shape and size 

while its topology is similar to what was presented in Figure 1a.  

 
Table 1. Data for simulation of the bridge truss problem 

Design Variables 

Shape (19) x3, y3, x5, y5, x7, y7, x9, y9, x11, y11, x13, y13, x15, y15, x17, y17, x19, y19, y21 

Size (48) ai , i=1,2,…,48 

Constraints 
Stress (σc)i ≤ 36 (248.2 MPa) ksi ; (σt)i ≤ 36 ksi (248.2 MPa), i=1,2,…,48 

Displacement ui ≤ 10 in (25.4 cm) 

Buckling |(σc)i| ≤ αEai/li
2
 , i=1,2,…,48 , α=4 

Search Range 

Shape 

Variables 

Absolute 

150(i-1)-200 ≤ xi in ≤ 150(i-1)+200 , i=3,5,…,19 

381 (i-1)-508 ≤ xi cm ≤ 381 (i-1)-508 , i=3,5,…,19 

50 in (127 cm) ≤ y3 ≤ 1000 (2540 cm) 

50 in (127 cm) ≤ yi ≤ 1500 in (3810 cm) , i=3,5,…,21 

Relative 

100 ≤ xi ≤ 900 , i=3,5,…,19 

50 in (127 cm) ≤ y3 ≤ 1000 in (2540 cm) ;  

-100 in (-254 cm) ≤ yi ≤ 300 in (762 cm) , i=5,7,…,21 

Size Variables 1 in
2 
(6.45 cm

2
) ≤ Ai ≤100 in

2 
(645.15 cm

2
) 

Loading 
 W=-200 lb/in (-35025 N/m) 

Mechanical Properties 

 Modulus of elasticity: E=29000 ksi (200 GPa) 

 Density of the material: ρ=0.3 lb/in
3 
(0.0814 N/cm

3
) 

 

Shape optimization includes determining vertical and horizontal position of upper nodes 

by a simple ES-based optimizer explained in appendix. The following options for 

representation of nodal coordinates are employed independently: 

I) Absolute coordinates for both vertical and horizontal position of the nodes. 
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II) Absolute coordinates for vertical but relative coordinates for horizontal position of 

the nodes. 

III) Relative coordinates for both vertical and horizontal position of the nodes. 

If relative coordinates are used, the design variable specifies vertical/horizontal distance 

from the node on the left side in the same cord. Data required for simulation is presented in 

Table 1. For each case 50 independent runs were executed while population size and 

maximum number of iterations were set to 200 and 1000 respectively. Having analyzed 

output data, Expected Running Time (ERT) to reach a target structural weight was 

computed according to the following relation [35]: 

 

 ERT=FES/SR

 

(1) 

 

where SR denotes the fraction of runs that could reach the desired target weight and FES is 

the average number of evaluations of successful runs to reach that weight. The calculated 

values of ERT as a function of the target weight are plotted in Figure 5a. Figure 5b depicts 

the best solution found by each option and corresponding data is presented in Table 2. 

 
Table 2 Best solution found in case I, case II and case III. Coordinates and areas are presented in 

ft and in
2
 respectively 

 
 

 

5. SUMMARY AND CONCLUSIONS 

 
The huge gap between complexity of the test and practical problems for simultaneous 

optimization of topology, shape and size (TSS) challenges applicability of truss optimizers 

in more complicated situations. In practice, modular trusses are frequently observed in 

which a multitude of detectable yet simple modules comprise the main truss. This study 

provides a novel approach, called the unit-based methods, for simulation of this class of 

truss structures. To compare this method with the prevalent method of the ground structure, 

a truss bridge consisting of several panels was scrutinized. A reasonable ground structure 
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which allowed for generating candidate solutions with different number of panels was 

configured. It was demonstrated that the required computation effort, measured in the forms 

of the number of unacceptable sampled candidates and CPU time to generate an acceptable 

topology, when the ground structure option is employed, grows exponentially with respect 

to the number of panels which restrict applicability of this option even for moderate number 

of panels. On the contrary, these quantities grow linearly when the unit-based method is 

employed and besides, the size of topology space grows at much lower rate in comparison 

with the ground structure approach. Apart from that, use of relative coordinates was strongly 

advocated by empirical results from a simple ES-based optimizer. Comparison among plots 

of ERT and quality of the final solution confirmed benefits of relative coordinates for both 

horizontal and vertical nodal positions.  

The unit-based method can be employed by meta-heuristics to handle the problem 

complexity of TSS optimization for larger structures. This, in fact, can reduce the gap 

between the intricacy of truss structures in practice and those employed as benchmarks in 

literature. More complex test functions, within fixed computation resources, can compare 

applicability and practicality of truss optimizers more reliability, which is a step forward to 

extend application of stochastic optimization algorithms in engineering. 
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APPENDIX: ES-BASED OPTIMIZER (SHAPE AND SIZE) 
 

The employed truss optimizer is based on a standard (μ/μW, λ)-ES for continuous 

optimization. For detailed information on contemporary Evolution Strategies for continuous 

parameter optimization the readers are referred to [36]. The following algorithmic options 

were used: 

- μ=[λ/2] 

- An independent step size for each design (object variable) which is self-adapted. 

- Simultaneous Mutation of all variables by Interrupted Normal distribution.  

- Global weighted recombination for both design (object) and strategy variables.  

Infeasible individuals are penalized as follows:  
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The following is the pseudo code of a standard ES for unconstrained continuous 
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optimization. For each design variable, an independent step size is allotted which is self-

adapted: 

1: Specify λ and search ranges of design variables (L,U) 

2: Let μ=[λ/2], τ0=2(NVAR)
(-0.5)

,
 
τ=2(NVAR)

(-0.25)
, where NVAR refers to the number of design 

variables which is equal to overall number of shape and size variables.  

4: Sample the initial design, XR, randomly within the range. Let the initial step size vector, 

σR, be one-fourth of the corresponding search range  

5: While not a convergence criterion is satisfied 

6:       Repeat until λ candidate solutions are generated:  

7:               Generate σj by mutation of σR according to the following relation:  

         )1,0(exp,...,)1,0(exp,)1,0(exp)1,0(exp
0

NNNN
Rj

 


  

where  denotes element-wise multiplication and N(0,1) refers to a random 

number sampled from Standard Normal distribution.  

8:            Generate Xj by using σj as the vector of step sizes from interrupted Normal 

Distribution. If Xj Fulfills node adjacency requirement, accept it, otherwise try 

sampling a new candidate solution.  

9:    Calculate fj, the objective function value at Xj. 

11:      End Repeat 

12:  Sort individuals according to their fitness. Update σR and XR according to the 

following relations: 
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;      

where wk is the weight of the k
th

 parent (after sorting). Similar to the CMA-ES 

code, a logarithmic    scale is used for the weights [37]: 
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 13: End while 


