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ABSTRACT 
 

Tuned mass dampers (TMDs) systems are one of the vibration controlled devices used to 
reduce the response of buildings subject to lateral loadings such as wind and earthquake 
loadings. Although TMDs system has received much attention from researchers due to their 
simplicity, the optimization of properties and placement of TMDs is a challenging task. 
Most research studies consider optimization of TMDs properties. However, the placement of 
TMDs in a building is also important.  This paper considers optimum placement as well as 
properties of TMDs. Genetic algorithms (GAs) is used to optimize the location and 
properties of TMDs.  Because the location of TMDs at a particular floor of a building is a 
discrete number, it is represented by binary coded genetic algorithm (BCGA), whereas the 
properties of TMDS are best suited to be represented by using real coded genetic algorithm 
(RCGA). The combination of these optimization tools represents a hybrid coded genetic 
algorithm (HCGA) that optimizes discrete and real values of design variables in one 
arrangement. It is shown that the optimization tool presented in this paper is stable and has 
the ability to explore an unknown domain of interest of the design variables, especially in 
the case of real coding parts. The simulation of the optimized TMDs subject to earthquake 
ground accelerations shows that the present approaches are comparable and/or outperform 
the available methods.  
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1. INTRODUCTION 
 

In order to reduce the response of buildings due to lateral loads many devices have been 
proposed. One of the methods is by using tuned mass dampers (TMDs). TMDs are a kind of 
vibration absorbers which is relatively easy to be implemented. By adding a small additional 
mass, where the stiffness and damping are designed in a proper way, the vibration of 
building can be reduced. The use of vibration absorber dates to the 1900s when Frahms 
applied a US patent.  Frahm model is applied to a main spring- mass without damping that is 
attached with a small spring-mass without damping in order to reduce displacement of the 
main mass under harmonic loading (Soong and Dargush [1]). The idea of Frahm is extended 
to structures as a general application of TMDs, where all properties including damping are 
included in the application. Nowadays many buildings utilize TMDs (Holmes [2], Soong 
and Dargush [1], Villaverde [3]) such as in John Hancock Tower (Boston, USA), Citicorp 
Centre (New York, USA), Sydney Tower (Sydney, Australia), Chiba Tower (Chiba, Japan), 
Fukuoka Tower (Fukuoka, Japan), Crystal Tower (Osaka, Japan), Deutsche Bundespost 
cooling tower (Nürnberg, Germany), Canadian National Tower (Toronto, Canada) and 
Taipei 101 (Taipei, Taiwan). 

In order the TMDs work properly, the properties of TMDs have to be designed so that the 
response of buildings can be reduced. Several papers have proposed many methods to 
design TMDs.  Most of the proposed methods in TMDs design consider the main structure 
as SDOF structure in which a closed form formula is derived. The inclusion of damping in 
the main system has been considered in Warburton and Ayorinde [4] and Thompson [5]. In 
Warburton [6] various types of excitations have been considered and the optimum 
parameters have been tabulated for various simple systems. In another report, Asami et al. 
[7] considered an optimum design of TMDs for a system under random excitation. Rana and 
Soong [8] extended Warburton results and tabulated the results for various parametric 
structures. Chang [9] and Chang and Qu [10] extended the Warburton method for random 
loading. Note that most of the research only considers SDOF structure as the model. 
Optimization of TMD for multi degree of freedom (MDOF) systems, such as buildings, but 
are modeled as SDOF systems has been discussed in Kaynia et al. [11], Villaverde [3], 
Villaverde and Koyama [12], Sadek et al. [13]. Because the structures are modeled as SDOF 
systems the TMDs will tune to a single mode system only. 

Although it is possible to find a closed form solution of the damper for MDOF structures, 
the complexity of parameters involved in the structures preclude its practicality. Therefore, 
the practical approach is to build a design procedure through the numerical optimization 
process. Hadi and Arfiadi [14] developed an optimization procedure to optimize TMDs for 
MDOF structures by using binary coded genetic algorithm (BCGA). In this case physical 
properties of the structures are used directly without necessarily converting the structures 
into a single mode model. Therefore, the vibration mode to be tuned does not necessarily to 
be known beforehand. Other optimization methods have also been proposed such as 
developed by Lee et al. [15] that employing frequency domain approach; Li and Xiong [16] 
for the extension to multi TMDs and  by Wang et al. [17] for the limitation of the TMD 
response using two stage optimizations. 
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Most optimization problems consider the optimal properties of TMDs only. In some 
cases placement of TMDs are also important. This paper presents the procedure to optimize 
the location and properties of TMDs in one optimization program. 

 
 

2. OPTIMIZATION TECHNIQUE USING GENETIC ALGORITHMS 
 

Genetic algorithm (GA) is a stochastic algorithm that mimics natural phenomena as 
operators in the processing. The idea behind the mechanics of GA is to resemble the 
adaptive process in nature based on Darwinian’s survival of the fittest mechanisms. GA has 
been used to obtain the optimum design of the function and has shown its superiority in 
obtaining nearly global optimum solution of the complex problems. Originated by Holland  
in 1960s (Goldberg [18] Holland [19], Michalewicz [20]). GA has been used to obtain 
optimum value in many areas. In GA the solution is considered as a population of 
candidates. These candidates experience evolutionary process based on survival of the fittest 
mechanisms. The candidates of solutions change their chromosomal content to produce 
offspring through crossover and mutation processes such that they strive to survive into the 
next generation. Naturally, a better individual will survive and be selected into the next 
generation, which is reflected by its fitness. Some less fit individuals will die and be 
replaced by most fit ones. Although some less fit individuals will also pass into the next 
generation, on average the fitness of the current generation is better than the fitness of the 
previous generations.  The fitness is a representation of the objective function of the real 
problems to be solved. Since the measure of the optimality is defined by the fitness of 
individuals, GA does not need the gradient information to optimize the cost function. This 
condition makes GA suitable to be used for hard and complex optimization problems, and is 
capable of obtaining global optimum solution in a simple way.  

In the initial development of GA, individual as design variable is represented by using a 
string containing 0 and 1. A string can be converted to an integer number which later can be 
converted further to a real number. The length of the string represents the decimal precision 
for a particular lower and upper bound of defined numbers. Therefore, the length of string 
bounds the range of real numbers. Because of this, the approximate design, i.e., the upper 
and lower bounds of design variable, should be supplied by designers.  

The limitation of using BCGA is that the length of the string should be estimated 
beforehand. In that case the approximate design value of the optimized variable should be 
supplied by the designer. For the problem where the minimum and maximum values of 
design variables are known or can be predicted, BCGA is the appropriate choice. The 
problem of discrete location like how to place the damper at a particular storey of high rise 
building is better represented by binary coding. However, many design variables may not be 
best represented by integer number. Although BCGA has the capability to represent real 
values with some techniques, the length of the string limits its capability to explore the 
unknown domain (Arfiadi and Hadi [21]).  The properties of some design variables in 
general are real numbers. Therefore real coded genetic algorithm (RCGA) is best suited to 
obtain real variables. In RCGA individuals as candidates of design variables are represented 
by real numbers. RCGA has been applied in many areas of optimization including aerospace 
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design, biotechnology, industrial engineering, microware, water resources management and 
control (Herrera et al. [22]). 

 
 

3. MDOF STRUCTURES WITH TMD 
 

Consider a multi-degree-of-freedom (MDOF) structure with TMD attached at a particular 
floor. The structure is assumed as a shear building with the mass lumped at each floor level. 
The equation of motions can be written as 

 

 gs x
ssssss eXKXCXM 

 
(1) 

where 

 
]...[ 21 dN mmmmdiagsM
 

(2a) 

 
'
d

'
os CCC                                 (2b) 

 

 '
d

'
os KKK   (2c) 

 
 T

N21 ]...[ dxxxxsX
 

(2d) 

 
 T

N21 ]...[ dmmmm se
 

(2e) 

where sM , sC , sK  are mass, damping and stiffness matrices of the structure, 

respectively;  sX  is relative displacement with respect to ground,
 gx  is  acceleration of the 

ground due to earthquake, se  is  influence of the earthquake on the structure.  The super dot 

represents derivative with respect to time. In Eq. (2a) mi = the mass of the ith floor (i=1,2,.., 

N), md = the mass of the damper, '
oC  in eq. (2b) is (N+1) (N+1) damping matrix as a 

contribution of oC , oC  = NN  damping matrix of structure without TMD as a function of  

ci , where ci = the damping of the ith floor (i=1,2,.., N),  '
oK  in Eq.(2c) is (N+1) (N+1) 

stiffness matrix as a contribution of oK , oK = NN  damping matrix of a structure without 

TMD as a function of  k i = the stiffness of the ith storey (i=1,2,.., N). 

TMDs contribution to the stiffness matrix, '
dK , which is obtained from  
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where k d = the stiffness of the damper, with destination vector to locate the damper stiffness 
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as follows 

  1N  djdID  (4) 

 
where jd is the floor number  at the location of TMD, and (N+1) denotes degrees of 
freedom’s number  for the TMD. Note that jd is not necessary to be the top floor.  By using 
this representation, the assembly process may follow the assembly process in the stiffness 
matrix method.  The same thing can be done for the contribution of the damping if TMDs by 
changing Kd and kd  in Eq. (2) by Cd and cd, respectively. Similarly oC  and oK  are 

assembled to obtain '
oC  and '

oK with the appropriate destination vector. 

The equation of motions can be converted into a state space equation: 
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with the output equation  

 ZCz z  (7) 
 
It is to be noted that displacements, velocity, absolute acceleration or their combination 

may be included to the output vector z.  
The objective of the problem is to minimize z, which can be reflected by H2 norm of the 

system. It can be seen that the problem of passive control in this framework introduces a 
new interest in the design output, i.e., the regulated output can be chosen in a flexible 
manner as the response quantities that we want to minimize. Therefore, the designer has the 
flexibility to choose the response to be minimized in the performance index.  In this paper 
relative displacement of a structure relative to ground is taken as the regulated output.  

The H2 norm objective function in this paper can be cast as follows: obtain TMD location 
(jd) and properties (cd and kd) in Eq. (5) with the regulated output according to Eq. (7) such 
that to minimize H2 norm which can be obtained as (Doyle et al. [23], Lublin et al. [24]) 
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Matrices cL  and oL can be obtained by using Lyapunov equations: 
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4. DAMPER OPTIMIZATION 
 

To optimize the TMD properties, Hadi and Arfiadi [14] utilized binary coded genetic 
algorithm (BCGA). In BCGA, individuals or variables are represented by string containing 0 
and 1. Since BCGA was used the range of the properties of the TMD should be supplied by 
designers. This may be considered as drawback of using BCGA. When the designers do not 
have experience concerning the range of the design values, the procedure may fail to obtain 
the optimum values. The application of BCGA in optimization of size and placement of 
linear viscous dampers has been used also by Ashahina et al. [25] to two and three 
dimensional structures. The use of distributed GA (DGA), where the population of binary 
GA is divided into several populations, is used by Mohebbi and Ghanbarpour [26] in order 
to optimize multi TMDs. Arfiadi [27] used BCGA to obtain optimum placement of damper, 
where the properties of dampers have been decided from the manufacture.  

In this paper, optimum placement and properties of TMD is carried out at the same time 
by using hybrid coded genetic algorithm (HCGA). The TMD location as a discrete point is 
best suited to be optimized by using BCGA, while the damper properties as real variables 
are optimized by using RCGA. The optimization is run in a single program as hybrid 
optimization for hybrid design variables. 

For the optimum placement of damper, the location of the damper is represented by 
binary string containing 0 and 1 as discrete variable.  For particular individual the 
representation is depicted in Figure 1. A string is converted to integer by using (Michalewicz 
[20]): 

 

j
r

oj
ji ht 2 

  
(10) 

 
where hj = string-j from right (0 or 1), r = length of string – 1 as shown in Figure 2.  Because 
this is a discrete problem, it is not necessary to convert the integer into a real number. 

 

 

Figure 1. Representation of individual in BCGA 
 

 

Figure 2. Transformation to integer 
 
The individuals will experience mutation and crossover. Two parents selected for 

crossover resulted in new offspring as shown in Figure 3. The selection of the individuals 
for the crossover is done by using roulette wheel based procedure. 
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Figure 3. One point crossover for BCGA 
 
An individual selected for mutation, the bit string is changed from to 0 and 1 depending 

on its initial bit string as shown in Figure 4. 
 

 

Figure 4. Mutation for BCGA 
 
For optimization of TMD properties, RCGA with real numbers are used directly. For 

example for an initial individual that has four design variables, four random numbers are 
generated as depicted in Figure 5. 

 

 

Figure 5. Individual with four design variables in RCGA 
 
Although there are many mutation and crossover procedures available, the crossover and 

mutation used in this paper are taken as follows. 
For the individuals G1 and G2 taken for crossover, the resulting offspring '

1G and 
'
2G follow what is so called balanced crossover (Herrera et al. [28]) as follows (Figure 6) : 

 

   121
'
1 GGGaG   (11a) 

 

   212
'
2 GGGaG   (11b) 

 

where a = random numbers between 0 and 1. It can be seen that for RCGA by using this 
crossover method the domain of interest for the optimization is not necessary to be known a 
priori, as the crossover has the ability to explore the unknown domain (Arfiadi and Hadi 
[21]). This is the capability of RCGA to explore the unknown domain of interest as opposed 
to BCGA. As can be seen below in the example, the designer might guess initial values for 
the design variables very arbitrarily without affecting the final design.  

 

 

Figure 6. A balanced crossover for RCGA 
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For the mutation, the resulting design variable after simple mutation is (Figure 7): 
 

  N
'
j21

'
p RRRR G

 
(12a) 

 

 j
'
j RaR 

 
(12b) 

 

where>1, and a = random number between 0 and 1. 
 

 

Figure 7. A simple mutation 
 
Note that in the GA used in this paper elitist strategy was utilized, where the best fit 

individuals always survive and pass into the next generation (Grefenstette [29]). In addition 
in each generation, some new born random individuals are always inserted in the population 
replacing random old individuals (Arfiadi and Hadi [21]). The flowchart for the HCGA is 
depicted in Figure 8. 

 
Figure 8. Flowchart of HCGA to be used in this paper 
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5. APPLICATION   
 

Consider a 10 storey building as shown in Figure 9. Building is assumed to be a shear 
building, where the properties are shown in Table 1. A stiffness proportional damping is 
assumed for the structure with the damping ratio of the fundamental mode equals to 2 %. 
The TMD is used to reduce vibration of the structure. The location and properties of TMD 
are optimized using HCGA. The location of TMD is represented by BCGA while the 
properties are suitable to be represented by RCGA. A combination of them in one run 
formed HCGA. The mass of TMD is taken as 115 t which is about 2 % of the total mass of 
building. 

Table 1. Structural data 

Floor Mass (t) Stiffness (kN/m) 

10 489.3 367187.5 

9 535.3 367187.5 

8 535.3 367187.5 

7 548.8 1048724.2 

6 562.3 1048724.2 

5 562.3 1048724.2 

4 562.3 1048724.2 

3 567.6 1410587.5 

2 572.9 1410587.5 

1 572.9 1410587.5 

 
The properties of HCGA is taken as follows: 
maximum generation = 400, population size = 30, probability of crossover = 0.45, 

probability of mutation = 0.1, the new born individual inserted in each generation = 5% of 
the total population.  

The objective is to determine the optimum value of the stiffness kd and the damping cd of 
the damper that minimizes the H2 norm transfer function from the external disturbance to the 
regulated output. Relative displacements of the structure with respect to the ground are taken 
as regulated outputs such that  

 

  Z0Iz 11101010   (13) 
 

where I = identity matrix and 0 = matrix containing zeros.  
 
Because GA tries to maximize the fitness, the performance index used in the program is 

modified as: 
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 2Hnorm

1
 wCJ

 
(14) 

 
where Cw = constant  to scale the objective function. In this example Cw = 10.  As the 
exploration in RCGA is unlimited to a particular boundary, it is possible that after mutation 
and crossover, the stiffness and damping of TMD have negative values. To reduce HCGA in 
exploring the unwanted domain, the resulting objective function is penalized by assigning 
the performance index to a smallest value that can be accepted by the program, when the 
resulting properties of the dampers have negative values. 

The location of the damper is represented by a binary string that can represent between 1 
and 10, while initial values of kd and cd can be taken arbitrary. To optimize TMD, four runs 
were carried out. In every run different starting (initial) values of kd and cd were taken as 
shown in Table 2. After 400 generations, the evolving best fitness individual in each run is 
depicted in Figure 10. 

Table 2. Initial kd and cd in each run 

Run Lower bound Upper bound 

1 0 100 

2 90 100 

3 12 20 

4 0 10000 
 

md

kd

cd

md

kd

cd

md

kd

cd

md

kd

cd

 

Figure 9. A 10 storey building 
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Figure 10. Evolving best fitness individual in each run 

 
The resulting of optimization by using HCGA are: cd  = 175.033 kN-s/m,  kd = 4540.369 

kN/m, and location of TMD is  at the 10th floor.   
It can be seen from the simulation that although different starting values of damper 

properties were used, HCGA was able to obtain the same results. This shows also that the 
HCGA used in this paper is a stable optimization tool. In addition although the initial 
domain of optimum value is located very far from the domain of interest, the real coded GA 
is able to explore such an unknown domain. This can be seen for runs 1 to 3 that start with 
the initial design variables which are far from the design variables. Although the initial 
domain of interest is outside of the domain of design variables, HCGA converge to almost 
the same results. This may not be achieved if we use BCGA, as it has to be supported by the 
initial guess that has to be in the range of the domain of interest of design variables as shown 
in Hadi and Arfiadi [14]. 

In order to assess the stability of the HCGA, a simulation was carried out when the 
damper location is set at floor 10.  RCGA similar to Arfiadi and Hadi [21] was then used to 
obtain the optimum value of the properties of TMD. In this optimization the fitness scale Cw 
is taken as unity, while the initial guess of TMD properties are taken as the same as in the 
previous simulation. The evolving best fitness is shown in Figure 11. The results of 
simulation after 400 generations results in the same TMD properties, although the history of 
best fitness is slightly different. 
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Figure 11. Evolving best fitness when TMD is located at the 10th floor Cw = 1 
 
To see the effectiveness of TMD in reducing vibration due to earthquake, the structure is 

simulated subjected to El Centro 1940 NS, Kobe 1995, Hachinohe 1968 and Northridge 
1994 ground accelerations. The results of simulation are shown in Figures 12 to 15 for the 
time history responses subject to El Centro 1940 NS, Kobe 1995, Hachinohe 1968 and 
Northridge 1994 ground accelerations, respectively, while the peak displacements in each 
floor can be seen in Figures 16 to 19. 
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Figure 12. Time history response of top floor due to El Centro earthquake 
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Figure 13. Time history response of top floor due to Kobe earthquake 
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Figure 14. Time history response of top floor due to Hachinohe earthquake 
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Figure 15. Time history response of top floor due to Northridge earthquake 

 

 

Figure 16. Peak displacement due to El Centro earthquake 
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Figure 17. Peak displacement due to Kobe earthquake 

 

Figure 18. Peak displacement due to Hachinohe earthquake 
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Figure 19. Peak displacement due to Northridge earthquake 
  
 

6. COMPARISON WITH OTHER METHODS 
 

The comparison result with Den Hartog [30], Warbuton [6]  and Sadek et al. [13] were 
calculated. In Den Hartog and Warburton methods, the structure is converted to a single 
degree of freedom system then damper parameters are computed.   

The formula of Den Hartog [30] was based on the SDOF undamped structure with 
harmonic external load. According to Den Hartog the optimum tuning frequency (opt  = 
TMD/structure) can be expressed as: 

 





1

1
opt

 
(15) 

 

whereas the optimum damping ratio of the damper dopt  is formulated as  
 

 
)1(8

3





dopt  (16) 

  is the mass ratio of damper. 
To use the formula, the MDOF structure is then converted to SDOF structure following 

procedure in Soong and Dargush [1] by normalizing the mode shape at the location of TMD 
to be 1 unit.  From the computation the resulting first mode is: 
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 19405.08198.06457.05697.048.03788.02686.01818.00917.01 T  
 

The first modal mass: 

 111  MTM = 208.8 t 
The mass ratio: 

 0572.0
8.208

115
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md  

 
The optimum frequency ratio from Eq. (15): 
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From which we can obtain 

 3202.61  optd  rad/s 

and 

  6.45932  ddd mk kN/m 
 

From Eq. (16): 
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such that 
  14.2072  dddd mc kN-s/m. 

 
Another approach to be compared here is according to Warburton [6] where several 

design formulas have been derived for the optimum design of the absorber attached on 
SDOF undamped structures. To facilitate comparisons, the formula based on the white-noise 
excitation was taken. Based on this design, the optimum tuning frequency of the damper is 
formulated as: 

 
2/1

1

1 


 


opt

 
(17) 

and the optimum damping ratio of the damper is formulated as: 
 

 )/)((

)/(
dopt 2114
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




  (18) 

 
Similar to the previous approach the equivalent SDOF model was then determined and 

used to find the optimum parameters of TMD.  From Eqs. (17) and (18) we obtain: 
 

 9322.0opt   and 1172.0dopt  

from which we obtain: 
 1.4462dk  kN/m  and  91.167dc kN-s/m 
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In Sadek et al. [13] the optimization for MDOF structures are taken based on eqs.  
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(19) 
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In Eqs. (19) and (20) the mode shapes are modified such that to have a unit participation 
factor. In this case the mode shape becomes: 

 

 
 4428.1357.11828.19317.0822.06926.05466.03876.02623.01324.01 T

  
The first modal mass becomes: 
 

 111  MTM = 4181.9 t 
The mass ratio is: 

 0275.0
9.4181

115

1
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M

md  

The optimum value from Eq. (19): 
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where ij = amplitude of the ith mode vibration being considered for a unit participation 

factor computed at the location of the TMD (jth degree-of-freedom) =1.4428. 
From Eq. (20): 
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From which we obtain the stiffness and damping of TMD, respectively, as: 
 

 2.4713dk  kN/m  and 91.388dc kN-s/m 
 

The results of present approach, Den Hartog, Warburton and Sadek et al. are presented in 
Table 3. 

To gain the comparison, the peak displacement due to El Centro 1940 NS excitation is 
plotted in Figure 20. From these results it can be shown that the reduction in peak response 
of the present approach is almost similar to the one in Den Hartog and Waburton approach. 
Note also that the results of present approach out-perform of Sadek approach. However, 
compared to those methods, the method developed in this paper has the flexibility as it can 
optimize not only the properties but also the placement of TMD which might not be possible 
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in those methods. 
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Figure 20. Comparison of peak displacements 
 

Table 3. Optimum values of TMD parameters 

Parameters 
HCGA or RCGA 

(Present approach) 
Den Hartog 

[30] 
Warburton 

 [6] 
Sadek et al. 

[13] 

kd (kN/m) 4540.4 4593.6 4462.1 4713.2 

cd (kN-s/m) 175.0 207.14 167.91 388.91 

(rad/s) 6.283 6.3202 6.2291 6.4019 

 0.1211 0.1425 0.1172 0.2641 

 
 

7. CONCLUSIONS 
 

Hybrid coded genetic algorithm has been used to optimize placement and properties of 
TMD. The location of TMD is represented by binary coded genetic algorithm while 
properties of TMD are represented by real coded genetic algorithm. The hybrid coded 
genetic algorithm is capable of obtaining the TMD location and properties. Four runs have 
been conducted for the optimization. It can be seen that in each run the program end up with 
the optimum result, although the initial values of design variable are taken arbitrary. This 
shows that real coded genetic algorithms are suitable where the designer does not have an 
experience on how the expected optimum value of design variables.  It is to be noted that 
real coded GA will explore the unknown domain of interest which is very suitable for the 
optimization. The simulation results show that the TMD are able to reduce the structural 
vibration. If more reduction is expected active TMD may be used. 
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