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ABSTRACT 
 

This paper investigates the optimized parameters of Tuned Mass Dampers (TMDs) for high-

rise structures considering Soil Structure Interaction (SSI) effects. Three optimization 

methods, namely the ant colony optimization (ACO) technique together with artificial bee 

colony (ABC) and shuffled complex evolution (SCE) methods are utilized for the 

optimization of TMD Mass, damping coefficient and spring stiffness as the design variables. 

The objective is to decrease the maximum displacement of structure. The 40 story structure 

with three soil types is employed to design TMD for six types of far field earthquakes. The 

results are then utilized to obtain relations for the optimized TMD parameters with SSI 

effects. The relations are then applied to design TMD for the same structure with another 

five types of far field oscillations, and reasonable results are achieved. For further 

investigations, the obtained relations are utilized to design TMD for a new structure, and the 

reduction values are obtained for five types of earthquakes, which show acceptable results. 

This study improves the understanding of earthquake oscillations, and helps the designers to 

achieve the optimized TMD for high-rise buildings. 
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In recent years, the construction of new high-rise buildings are facilitated and developed in 

many countries due to the lighter and stronger materials. Since these structures are usually 

subjected to the earthquake vibrations, the study of tall buildings vibration mitigation and 

various absorbers has attracted the interest of many researchers. The tuned mass damper 

(TMD) is one of the simplest and the most reliable control devices among the numerous 

passive control methods. The main idea of employing a TMD is to produce a supplementary 

system that can absorb energy from the main system. The TMD technology uses a mass-spring 

system which oscillates with the structure, and an additional damper that connects two 

relatively moving points when the building oscillates. In this way, a large amount of the 

structural vibrating energy is transferred to the TMD and then dissipated by the damping as the 

primary structure is subjected to external disturbances, like earthquake and wind oscillations. 

 This system absorbs the vibrations automatically, and in this way the safety of the structure 

are greatly improved and the protected system can endure excessive vibrations and loading 

episodes, which can result in damage and even in failure of structural elements and equipment 

in the absence of TMD. 

 Many researchers have studied the applicability of TMDs for structures subjected to 

seismic excitation such as Villaverde and Koyoama [1], Rana and Soong [2], Lin et al. [3] and 

Wang et al. [4]. 

 In order to develop the efficiency of control strategy, it is important to find the optimum 

mechanical parameters (i.e. the optimum tuning frequency, damping and mass ratio) of TMD. 

Several design formulas for the optimum parameters of a TMD, for different types of 

oscillations, have been proposed. Brock [5] and Den Hartog [6] explained the estimation of the 

optimum parameters of the TMD for an undamped structure subjected to harmonic external 

excitation. Since then, many optimum design methods of TMD have been developed to control 

the structural vibrations induced by various types of excitation sources, such as Crandall and 

Mark [7], and Rana and Soong [2]. On the basis of Den Hartog’s method, Warburton and 

Ayorinde [8] obtained the optimized parameters of the TMD for an undamped structure under 

harmonic support excitation, where the acceleration amplitude is set to be constant for all input 

frequencies, and also for other kinds of harmonic excitations. Later, Sadek et al. [9] presented 

some formulations for computing the optimal parameters of TMD device based on the equal 

damping of the first two modes of system. 

 However, the optimum parameters of TMD are determined through parametric studies, or 

by their proposed optimum design methods. Moreover, the external disturbances considered in 

these studies are usually limited to white noise and harmonic forces over a frequency range. 

Actually, random signals such as earthquake excitations; are considered in few works, such as 

references [9,10]. 

 In fact, many structures are built on soft soil where the soil–structure interaction (SSI) 

effect may be significant. It is well known that the SSI effects would significantly modify the 

dynamic characteristics of structures such as natural frequencies, damping ratios and mode 

shapes [11]. Xu and Kwok [12] investigated the wind-induced motion of two tall structures 

mounted with TMD, considering the effect of soil compliancy under the footing. They 

believed that soil compliancy will affect structural responses as well as the TMD effectiveness. 

Wu et al. [13] focused on the TMD seismic performance for structures of shallow foundations. 

They performed numerical investigations for a specific TMD–structure (with height of 45 m) 
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system built on soils with various shear wave velocities. Recently, Liu et al. [14] developed a 

mathematical model for time domain analysis of wind induced oscillations of a tall building 

with TMD considering soil effects. 

 However, the proposed elastic half-space model without considering material damping for 

soil which was not satisfied for seismic application was questionable. Moreover, the past 

studies on TMD used for seismic applications in structures, have not considered the effects of 

the altered properties of the structure due to SSI, on the performance of the damper. 

 Although numerous works are performed concerning SSI effects, few investigations are 

carried out on the time response of high-rise buildings due to earthquake excitations. In fact, 

the earthquake time response of tall buildings has usually been calculated employing fixed 

base models or single degree of freedom (SDOF) system. These analyzes cannot reasonably 

predict the structural responses. Moreover, the optimal parameters of TMD are extremely 

related to the soil type. Therefore, the time domain analysis of structures consisting SSI effects 

is an advantageous process for the better understanding of earthquake oscillations and TMD 

devices. Furthermore, few works have considered and employed heuristic algorithms, while 

the heuristic techniques such as Ant Colony Optimization (ACO) method, can be effectively 

employed for the optimized design of TMDs.  

 In this paper, a mathematical model is developed for calculating the earthquake response of 

a high-rise building with TMD. The model is employed to obtain the time response of 40 story 

building using TMD. The ant colony optimization (ACO) method together with artificial bee 

colony (ABC) and shuffled complex evolution (SCE) techniques are applied on the model to 

obtain the best TMD parameters. The parameters are calculated with and without soil structure 

interaction (SSI) effects. The effects of different parameters such as mass, damping coefficient, 

spring stiffness, natural frequency and damping ratio are investigated. 

 

 

2. MODELING OF HIGH-RISE STRUCTURES 
 

Figure 1 shows a N-story structure with a TMD and SSI effects. Mass and Moment of inertia 

for each floor are indicated as Mi and Ii , and those of foundation are shown as M0 and I0 , 

respectively. The stiffness and damping between floors are assumed as Ki and Ci , respectively. 

MTMD , KTMD and CTMD are the related parameters for TMD. Damping of the swaying and 

rocking dashpots are represented as Cs and Cr , and the stiffness of corresponding springs are 

indicated as Ks and Kr , respectively. Time histories of displacement and rotation of foundation 

are respectively defined as X0 and θ0, and displacement of each story is shown as Xi. 

 Using Lagrange’s equation, the equation of motion for a building shown in Figure 1 can be 

represented as follows [15]: 

 

  gumtxktxctxm  1][)}(]{[)}(]{[)}(]{[ *  (1) 

 

where [m], [c] and [k] denote mass, damping and stiffness of the oscillating system, 

respectively. [m
*
] indicates acceleration mass matrix for earthquake and gu  is the earthquake 

acceleration. Considering SSI effects, the N-story structure is a N+3 degree-of-freedom 
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oscillatory system. For such building, the mass matrix is obtained by employing Lagrange’s 

equation in the following form [14, 15]: 
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Figure 1. Shear building configuration 
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 Using Lagrange’s equation, the stiffness matrix is achieved as follows [14, 15]: 
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In which: 
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 Similarly, the damping matrix can be stated in the following form: 
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where: 
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 Finally, the acceleration mass is obtained as follows: 
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 Ignoring the SSI effects, rows and columns N+2 and N+3 are neglected, and the mentioned 

matrices are reduced to (N+1)×(N+1) dimensional matrices. 

 According to Rayleigh proportional damping, the damping matrix of N-story structure can 

be represented as follows: 

 

 NNNNNN kAmAc   ][][][ 10  (11) 

 

in which A0 and A1 are Rayleigh damping coefficients. 

 The displacement vector {x(t)} including both displacement and rotation of floors and 

foundation as well as TMD motion can be represented as follows: 

 

 T
TMDN ttXtXtXtXtXtx )}()()()(...)()({)}({ 0021   (12) 

 

 The parameters Cs , Cr , Ks and Kr can be obtained from soil properties (i.e. poisson’s ratio 

vs , density ρs , shear wave velocity Vs and shear modulus Gs) and radius of foundation R0 [14]. 

In this paper, Tabas and Kobe earthquakes acceleration spectra are applied to the structure, 

and time response of TMD and building are calculated based on Newmark integration 

method [16]. 

 

 

3. ANT COLONY OPTIMIZATION (ACO) METHOD 
 

In order to obtain the best parameters for TMD, the ant colony optimization (ACO) is 

employed. This algorithm firstly proposed by Dorigo and Gambardella [17] is based on the 

behavior of ants finding the shortest paths from a food source to their nest only by sensing the 

intensity of pheromone deposited by other ants. It is observed that they usually select the path 

with higher pheromone. This mechanism makes the shorter paths more desirable as it takes 

shorter time to march on them.  
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 This behavior is simulated by three rules in ACO algorithm, which was originally applied 

on combinatorial problems with discrete variables such as Traveling Salesman or Quadratic 

Assignment. Recently, this method is employed by Kaveh and Talataheri [18, 19] to optimize 

truss structures with discrete variables. For engineering problems and where the design 

variables are usually continuous, the method of discretization is an acceptable approach [20]. 

Once the continuous variables are divided into separated domains, the problem can be treated 

as a problem with discrete variables. 

 Regarding the discretization procedure, the design variables are presented by i and their 

divided search domains are shown by j. The sections of total solution are chosen in a 

constructive approach named as “state transition rule”: 
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where τ(i,j)  shows the amount of pheromone related to the jth element of variable i, and η(i,j) 

is the heuristic function defined according to the investigated problem. In this rule, q is a 

random number, and q0 is a parameter set by the user (0≤ q, q0≤1). If q>q0, the next step is 

selected according to proportional distribution of probability function, like the roulette wheels, 

assigned as follows: 
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 The significant factor of q0 defines the range of randomness against determination of state 

transition rule. It is clear that the higher amount of q0 directs the algorithm towards 

deterministic decisions, while the lower amounts generates more randomness. 

 To avoid stagnation of the algorithm and similar to evaporation of pheromone in real world, 

the amount of pheromone level is changed after finishing each evaluation by applying “the 

local updating rule”: 

 

 ),(.),().1(),( jijiji    (15) 

 

where ρ denotes the local evaporation coefficient. The best performance is obtained when 

0),(   ji  [17]. 

 The third rule known as “the global updating rule” acts as a positive feedback and 

accumulates more pheromone around the best solution obtained so far: 
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where ∆τ is the inverse of the objective function and α is the global evaporation coefficient 

[17]. 

 This process of evaluation and updating is repeated with n ants until the termination 

condition, which is usually the maximum number of cycles, is satisfied. Similar to other 

heuristic optimization techniques, it is important to tune the algorithm to achieve sensible 

results. For the tackled problem in this paper, the values presented in Table 1 are found 

acceptable. In addition, without damaging the overall effectiveness of ACO [17], the heuristic 

function is neglected due to intricacies in its definition procedure. 

 In this paper, the objective is to minimize the maximum displacement of the whole 

structure. 

 

 

4. ARTIFICIAL BEE COLONY (ABC) METHOD 
 

Natural behavior of bees and their collective activities in their hives has been fascinating 

researchers for centuries. Artificial Bee Colony (ABC) algorithm, the method employed in 

this paper, was presented by Karaboga [21] to optimize numeric benchmark functions. It 

was then extended by Karaboga and Basturk and showed to outperform other recognized 

heuristic methods such as GA [22]. 

In this model, the honey bees are categorized as employed, onlooker and scout. An 

employed bee is a forager associated with a certain food source which she is currently 

exploiting. An onlooker bee is an unemployed bee at the hive which tries to find a new food 

source using the information provided by employed bees. A scout, ignoring the other’s 

information, searches around the hive randomly.  

In ABC, the solution candidates are modeled as food sources and their corresponding 

objective functions as the quality (nectar amount) of the food source. For the first step, the 

artificial employed bees are randomly scattered in the search domain producing SN initial 

solutions. After this initialization, the main loop of the algorithm described hereafter is 

repeated for a predetermined number of cycles or until a termination criterion is satisfied. 

Firstly, all employed bees attempt to find new solutions in the neighbor of the solution 

(food source) they memorized at the previous cycle. If the quality (the amount of objective 

function) is higher at this new solution, then she forgets the former and memorizes the new 

one. In ABC, a particular mechanism is devised for this purpose: 

 

 )( kjijijijij xxxv    (17) 

 

where  Dj ,,2,1   and  SNk ,,2,1   are randomly chosen indices, and vij represents 

the new solution (new food source position). It should be noted that ik  . The parameter ij 

is also a random number in the domain [-1, 1]. 

After that, the onlooker bees should select the solution around which they explore for 

new food sources. This is performed probabilistically i.e. a mechanism like roulette wheel is 

employed. With the help of a uniform random number generator, the solutions for further 

exploration can be easily determined: 
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Additionally, updating food sources is done with the same greedy process by comparing 

the new solutions produced by onlookers and the corresponding current solutions. It is 

notable that different approaches have been proposed for assigning fitness to solutions. 

Basturk and Karaboga[23] has utilized a familiar form described below which is adopted in 

this paper as well: 
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where fi is the objective function of solution xi . 

If a solution can not be improved by employed or onlooker bees after certain iterations 

called limit, then the solution is abandoned and the bee becomes a scout, which searches 

randomly for a new solution within the search space. It should be reminded that at each 

cycle, only one artificial bee is allowed to become scout and perform the search as follows: 

 

 )(
minmaxmin
jjjj

i xxxx    (20) 

 

where φ is a random number in domain [0, 1]. Obviously, variables of all dimensions are 

replaced with new randomly-generated values. 

 

 

5. SHUFFLED COMPLEX EVOLUTION (SCE) METHOD 
 

The shuffled complex evolution (SCE) method is another effective and robust algorithm 

finds a global minimum of a function with several variables. It was introduced and 

developed by Duan et al. [24, 25] and Sorooshian et al. [26]. 

A general description of the steps of the SCE method is explained as follows. 

(1) Sample generation -- random sampling of s points in the feasible parameter domain 

and calculating the objective function for each point. If there is no prior information on the 

approximate position of the global optimum, a uniform probability distribution is used to 

generate a sample. 

(2) Point ranking -- sorting the s points in order of rising objective value in such a way 

that the first point shows the least objective value and the last one signifies the greatest 

objective value. 

(3) Complex partitioning -- partitioning the s points into p complexes, each contains m 

points. The complexes are divided such that the first complex includes p(k - 1) + 1 ranked 

points, the second complex includes p(k - 1) + 2 ranked points, and so on, where k = 1,2, 
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 . . . ., m. 

(4) Complex development -- developing each complex according to the competitive 

complex evolution (CCE) algorithm. This algorithm operates based on the Nelder and Mead 

[27] Simplex downhill search scheme. 

(5) Complex shuffling -- combining the points in the developed complexes into a single 

sample population; sorting the sample population in order of rising objective value; and 

shuffling (i.e. re-partitioning) the sample population into p complexes considering the 

procedure described in Step (3). 

(6) Convergence checking -- stop if any of the defined convergence criteria is satisfied; 

continue otherwise. 

(7) Checking the reduction in the number of complexes--if the minimum number of 

complexes essential for the population, Pmin, is smaller than p, remove the complex with the 

lowest ranked points; set p = p - 1 and s = pm; return to Step 4. If Pmin = p then return to 

Step 4. 

The primary random sampling of parameter domain provides the potential for finding the 

global optimum without being biased by pre-specified starting points. The partitioning of 

the population into communities assists a freer and broader exploration of the feasible space 

in various directions. The shuffling of communities improves the survivability by sharing of 

the information (about the search space) achieved separately by each community. 

 

 

6. ILLUSTRATIVE EXAMPLE 
 

The methodology outlined previously is employed to calculate the structural response of a 

40-story building with TMD. Table 1 shows the structure parameters [14]. The stiffness Ki 

linearly decreases as Zi increases. TMD is installed on the top of building for the better 

damping of vibrations. 

 
Table 1: Structure parameters [14] 

No. of stories 40 

Story height (Zi) 4 m 

Story mass (Mi) 9.8×10
5 
kg 

Story moment of inertia (Ii) 1.31×10
8 
kgm

2 

Story stiffness (Ki) 

K1=2.13×10
9
 N/m 

K40=9.98×10
8
 N/m 

K40≤ Ki≤ K1 

Foundation radius (R0) 20 m 

Foundation mass (M0) 1.96×10
6 
kg 

Foundation moment of inertia (I0) 1.96×10
8 
kgm

2
 

 

In this study, three types of ground states, namely soft, medium and dense soil are 

examined. A structure with a fixed base is also investigated. The soil and foundation 

properties are presented in Table 2. 

Table 3 represents the first 3 natural and damped frequencies of the structure, 
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considering and ignoring SSI effects. 

 

Table 2: Parameters of the soil and foundation [14] 

Soil Type 

Swaying 

damping 

Cs (Ns/m) 

Rocking 

damping 

Cr (Nsm) 

Swaying 

stiffness 

Ks (N/m) 

Rocking 

stiffness 

Kr (N/m) 

Soft Soil 2.19×10
8
 2.26×10

10
 1.91×10

9
 7.53×10

11
 

Medium Soil 6.90×10
8
 7.02×10

10
 1.80×10

10
 7.02×10

12
 

Dense Soil 1.32×10
9
 1.15×10

11
 5.75×10

10
 1.91×10

13
 

 
Table 3: Natural and damped frequencies of the structure 

Soil Type ω ω1 (rad/s) ω2 (rad/s) ω3 (rad/s) 

1 Soft Soil 
With Damping -0.02i±1.08 -0.24i±4.45 -0.62i±7.42 

Without Damping 1.09 4.44 7.40 

2 
Medium 

Soil 

With Damping -0.02i±1.54 -0.21i±4.57 -0.58i±7.55 

Without Damping 1.54 4.58 7.58 

3 
Dense 

Soil 

With Damping -0.02i±1.60 -0.21i±4.58 -0.58i±7.57 

Without Damping 1.61 4.59 7.59 

4 
Fixed 

Base 

With Damping -0.03i±1.64 -0.21i±4.59 -0.58i±7.58 

Without Damping 1.65 4.60 7.60 

 

The TMD design variables are set in such a way that all the first 3 frequencies of the 

structure are covered, and damping ratio (ξ) is always less than unity. In this way, the 

maximum mass ratio is about 3.5% of the first modal mass, i.e. 50×10
3
≤MTMD≤1000×10

3
 

(kg), the TMD spring stiffness is set as 0.3×10
6
≤KTMD≤60×10

6
 (N/m) and the TMD damping 

is tuned to 0.1×10
3
≤CTMD≤2000×10

3
 (Ns/m). In this way, the mass ratio is about 3.5% of the 

first modal mass. 

As mentioned before, six types of far field earthquakes, namely Cape Mendocino, 

Coalinga, Imperial Valley (two earthquakes), Landers, and Loma Prieta earthquake data are 

employed to obtain the optimized mass ratio (μ), frequency ratio (f) and damping ratio (ξ) 

for TMD device, which are defined as follows: 

 

 
s
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where Ms relates to the first modal mass of structure based on the unit modal participation 

factor, and ωs shows the first frequency of fix based structure.  
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The 3 outlined optimization methods are applied to the problem to find the best values 

for mass, spring stiffness and damping quantity of TMD device. The results are presented in 

Table 4 for 6 types of earthquakes. According to this table, the ACO results evidently 

outperform the SCE and ABC results, while the ABC and ACO results are close together in 

most cases. 

 
Table 4: Reduction percentages for 6 earthquakes using 3 optimization methods 

earthquake Soil type 
maxu  

(without 

TMD) 

%Reduction 

ACO ABC SCE 

Cape 

Mendocino 

soft soil 0.3079 9.3862 9.3862 8.5008 

medium soil 0.4299 28.8439 28.0996 25.2617 

dense soil 0.3675 6.6395 9.9048 10.8571 

fixed base 0.3829 14.9647 13.9984 12.7448 

Coalinga 

soft soil 0.1489 42.1088 41.8402 38.0792 

medium soil 0.1637 33.4148 33.0483 29.7404 

dense soil 0.1624 34.6675 34.6675 32.2118 

fixed base 0.1684 36.5202 36.5202 35.7482 

Imperial Valley 

(I) 

soft soil 1.6350 27.8777 21.657 19.847 

medium soil 1.6291 38.1253 24.400 24.271 

dense soil 1.8179 42.2300 44.353 42.032 

fixed base 1.6372 34.5651 31.132 31.230 

Imperial Valley 

(II) 

soft soil 0.3582 46.1753 45.9799 42.3534 

medium soil 0.1980 33.8889 24.4444 21.4141 

dense soil 0.1717 29.5865 24.1701 23.4129 

fixed base 0.1690 28.1657 27.2189 25.6213 

Landers 

soft soil 1.3423 2.5404 11.0855 13.4396 

medium soil 0.6106 14.1828 14.1009 11.2349 

dense soil 0.5363 8.2976 8.2230 7.8273 

fixed base 0.4875 8.8205 2.4000 5.4359 

Loma Prieta 

soft soil 0.2464 16.9237 16.8831 16.7922 

medium soil 0.3988 58.5005 58.4002 56.0171 

dense soil 0.3080 49.2532 36.5584 35.9416 

fixed base 0.2506 40.5427 32.1229 30.1676 

 

The convergence time history of the 3 algorithms, such as the one presented in Figure 2; 

reveals that the ACO method converges more rapidly and efficiently than the two other 

methods. This figure is plotted for 1000 evaluations of the problem. The optimization 

programs are performed on 2.8 GHz Core2Duo system with 4GB RAM, and the elapsed 

times are presented in Figure 3.  According to this figure, the consumed time for ACO and 

ABC methods are far less than the SCE method. However, the elapsed time for ACO is 

slightly less than the ABC algorithm. 
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Figure 2. Convergence time history of the 3 optimization methods for Cape Mendocino 

earthquake considering dense soil 
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Figure 3. Consumed time for the 3 optimization methods 

 

In accordance with the mentioned facts, it could be concluded that the ACO method is 

more efficient and reliable than the two other methods, therefore; it is selected as the best 

and basic method for the following parts of the research. 

 

 

7. CURVE FITTING 
 

Using the ACO method, two sets of optimized parameters (μ , f and ξ) for each soil type and 

earthquake are obtained. For the curve fitting, the following relation is considered for the 

mass ratio: 
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in which, Φ represents the normalized fundamental mode shape of the structure. The 

coefficients a1, n1, a2 and n2 are achieved by using the ACO technique to minimize the RMS 

(Root Mean Square) of errors. The optimized values are obtained as follows: a1= 3.2287, 

n1= 1.5103, a2= 3.4108, n2= 0.5768. 
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Figure 4. Optimized and fitted values for mass ratio 

 

Figure 4 represents the optimized and fitted values for the mass ratio. According to this 

figure, the structure constructed on the soil with greater stiffness and damping needs TMD 

with smaller MTMD. Considering Table 3, the soil with higher stiffness and damping brings 

higher natural and damped frequency, therefore; it can be concluded that the structure with 

higher frequency (constructed on the dense soil) requires TMD with lower mass ratio. 

 

The similar method is employed for obtaining the proper coefficients of frequency ratio 

including SSI effects, which is defined in the following form: 
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The parameters f1 and ϕ shows the frequency ratio and the first modal participation factor 

for the fix based structure, respectively; and β represents the damping of the structure [9]. 

Using the ACO method to minimize the RMS of errors, the coefficients b1, m1, b2 and m2 are 

obtained as follows: b1= 1.3857, m1= 0.5471, b2= 1.8053, m2= 0.5520 

The optimized and fitted values for the frequency ratio are presented in Figure 5. The 

results show that the structure constructed on the soil with greater stiffness and damping 

requires TMD with smaller stiffness and natural frequency. According to Table 3, it can be 

seen that the structure with higher frequency (constructed on the dense soil) requires TMD 

with lower natural frequency. 

In order to reach the appropriate coefficients of damping ratio considering soil effects, 

the similar method is applied on the best values of damping ratio obtained by ACO method. 

The proposed relation for damping ratio is defined in the following form: 
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in which: 
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The parameter ξ1 shows the damping ratio for the fix based structure [9]. The coefficients 

c1, p1, c2 and p2 are obtained using the ACO method to minimize the RMS of errors. The 

optimized values are achieved in the following form: c1= 0.5644, p1= 0.8578, c2= 3.2054, 

p2= 1.4543 

Figure 6 shows the optimized and fitted values of damping ratio. The results show that 

there is a close relationship between soil and optimized parameters of TMD.  
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Figure 5. Optimized and fitted values for the frequency ratio 
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Figure 6. Optimized and fitted values for damping ratio 

 

 

8. RESULTS AND DISCUSSIONS 
 

The methodology outlined previously and the obtained relations are employed to design 

TMD for the same structure with five different types of far field earthquakes, namely 

Superstition Hills, San Fernando, Northridge, Chi-Chi and El-Centro seismic oscillations. 

By estimation of μ1=3%, the real values of μ , f , ξ and therefore MTMD, KTMD and CTMD are 

calculated for each soil type. The designed TMD is then employed to decrease the 

displacement and acceleration of the structure. 

Figure 7 shows the displacement reduction percentages for the mentioned earthquakes. It 

can be seen that the proposed relations result in effective reductions for all earthquakes and 
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different soil types. According to this figure, the TMD is more efficient for dense soil types, 

therefore; ignoring the soil effects (assuming the structure as fix based model) would result 

in overestimated outcomes. 
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Figure 7. The displacement reduction percentage for 40 story structure 

 

Figure 8 illustrates that the designed TMD reasonably reduced the maximum 

acceleration of the structure. As it can be seen from these figures, the proposed relations are 

result in acceptable reductions in most cases. However, there are some exceptions because 

the main purpose of TMD design is the reduction of displacement solely. 

For further investigations, another 15 story structure is modeled and employed to design 

TMD for and calculate the structural response. The structure parameters are presented in 

Table 5 [28].  
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Figure 8. The acceleration reduction percentage for 40 story structure 
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Table 5: Structure parameters [28] 

No. of stories 15 

Story height (Zi) 3.5 m 

Story mass (Mi) 
Mi =3.456×10

5 
kg 

M1 =4.500×10
5 
kg 

Story moment of inertia (Ii) 0.146×10
8 
kgm

2 

Story stiffness (Ki) 
Ki = 3.40×10

8
 N/m 

K1=18.05×10
6
 N/m 

Foundation radius (R0) 11.5 m 

Foundation mass (M0) 0.655×10
6 
kg 

Foundation moment of inertia (I0) 0.220×10
8 
kgm

2
 

 

In this study, three types of ground states, namely soft, medium and dense soil are 

examined, using the new soil parameters. Table 6 represents the first 3 natural and damped 

frequencies of the structure, considering and ignoring SSI effects. 

The previous methodology and the obtained relations are employed to design TMD for 

the new structure with 3 types of earthquakes. Estimating that μ1=3%, the real values of μ, f , 

ξ and then MTMD, KTMD and CTMD are calculated for each soil type.  

The displacement reduction percentage for the mentioned earthquakes is presented in 

Figure 9. This figure reveals that the designed TMD by proposed relations can effectively 

reduce the maximum displacement of the structure.  

 
Table 6: Natural and damped frequencies of the structure 

Soil Type ω ω1 (rad/s) ω2 (rad/s) ω3 (rad/s) 

1 Soft Soil 
With Damping -0.004i±1.58 -0.08i±6.15 -0.08i±13.05 

Without Damping 1.58 6.15 13.05 

2 
Medium 

Soil 

With Damping -0.002i±1.64 -0.03i±6.82 -0.08i±13.05 

Without Damping 1.64 6.83 13.05 

3 
Dense 

Soil 

With Damping -0.002i±1.65 -0.02i±6.89 -0.08i±13.05 

Without Damping 1.65 6.89 13.05 

4 
Fixed 

Base 

With Damping -0.002i±1.66 -0.02i±6.92 -0.08i ±13.05 

Without Damping 1.66 6.93 13.06 

 

Further studies reveal that the maximum acceleration is reasonably decreased except in 

few cases, which is because the main purpose of TMD design is to reduce the displacement 

solely. However, the proposed relations are result in acceptable reductions in most cases. 

Further structure samples and earthquakes are to be investigated for the better estimation of 

TMD parameters. 
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Figure 9. The displacement reduction percentage for 16 story structure 

 

 

9. CONCLUSIONS 
 

In this paper, the ACO, ABC and SCE techniques are utilized to modify the former relations 

for the optimized TMD parameters considering soil effects. The 40 story structure with three 

soil types is employed to design TMD in order to decrease the maximum displacement of 

the building for six types of far field earthquakes. Using the time domain analysis based on 

Newmark method; the displacement, velocity and acceleration of different stories and TMD 

are obtained. The optimized mass, frequency and damping ratio are then formulated for 

different soil types; and employed for the design of TMD parameters for the 40 and 15 story 

buildings and five different earthquakes, and well results are achieved. This study leads the 

researchers to the better understanding and designing of TMDs for the mitigation of 

earthquake oscillations. 
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