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ABSTRACT 
 

In the present study, the reliability assessment of performance-based optimally seismic 

designed reinforced concrete (RC) and steel moment frames is investigated. In order to 

achieve this task, an efficient methodology is proposed by integrating Monte Carlo 

simulation (MCS) and neural networks (NN). Two NN models including radial basis 

function (RBF) and back propagation (BP) models are examined in this study. In the 

proposed methodology, MCS is used to estimate the total exceedence probability associated 

with immediate occupancy (IO), life safety (LS) and collapse prevention (CP) performance 

levels. To reduce the computational burden of MCS process, the required nonlinear 

responses of the generated structures are predicted by RBF and BP models. The numerical 

results imply the superiority of BP to RBF in prediction of structural responses associated 

with performance levels. Finally, the obtained results demonstrate the high efficiency of the 

proposed methodology for reliability assessment of RC and steel frame structures. 
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1. INTRODUCTION 
 

Performance-based design (PBD) [1-3] of structures subject to sever ground motions is an 

efficient design process and many researchers and engineers have proposed various 

methodologies, which incorporated PBD concepts and criteria, to improve structural 

performance. In essence, PBD process is based on the principle that a structure should meet 

performance levels according to a set of specified reliabilities over its service life. The PBD 
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approach aims to present structural configurations with a predictable and reliable 

performance level which highly depends on structural seismic responses and capacity that 

both of these parameters are inherently uncertain. In addition, material properties and 

characteristics associated with ground motions are also uncertain parameters. Theory and 

methods for structural reliability assessment have been developed substantially in the last 

few years and they are actually useful tools for evaluating rationally the safety of structures 

against the existing uncertainties. Thus, the reliability theory and PBD approach should be 

simultaneously utilized to design reliable structures for earthquake loadings. 

During the last years, some computational strategies have been proposed for seismic 

reliability assessment of reinforced concrete (RC) and steel structures. Several researchers 

[4–6] have followed different methods and strategies in developing fragility curves for RC 

structures. Moller et. al. [7–8] proposed a methodology with variable uncertainties for 

seismic vulnerability of RC frames. In this approach, seismic vulnerability was defined as 

the conditional probability of exceeding different limit states within a performance 

requirement, given by a hazard level. They used neural network techniques to evaluate the 

required structural responses. In the most recent work, Khatibinia et. al. [9] proposed a 

meta-model to reduce the computational cost in seismic reliability assessment of existing 

RC structures considering soil-structure interaction (SSI) effects. Their proposed meta-

model was designed by combining weighted least squares support vector machine (WLS-

SVM) and a wavelet kernel function. Their study showed that SSI has the significant 

influence on the seismic reliability assessment of structures. In the case of steel structures, 

Lagaros et. al. [10] proposed NN-based strategies for solving reliability-robust design 

optimization problems. They used standard BP model for predicting structural responses 

during the optimization process.   

Nonlinear structural analysis by finite element method (FEM) is a time consuming 

process. Consequently, the required computational cost will be expensive when the 

nonlinear structural responses are required for seismic reliability assessment of the structure 

using MSC. The MCS method requires a large number of structural analyses in order to 

obtain an acceptable confidence within probabilities of the order close to 10
-4

 –10
-6

. For 

such results, the number of analyses that will achieve a 95% likelihood for actual probability 

must be between 1.6×10
6
 and 1.6×10

9
 [11]. One of the best candidates to reduce the 

computational burden of evaluating nonlinear structural responses required for performing 

seismic reliability assessment is soft computing-based approximation tools: neural network 

(NN) and support vector machines (SVM). A comprehensive review of NNs and SVMs 

applied for reliability assessment of structural systems has been presented in [9].  

In the present study, the bat algorithm (BA) [12] are employed to find performance-based 

seismic optimum deign of two RC frames and two steel frames. The BA is a newly 

developed meta-heuristic optimization algorithm based on the echolocation behavior of 

bats. The capability of echolocation of bats is fascinating, as these bats can find their prey 

and discriminate different types of insects even in complete darkness. The superiority of BA 

to some popular meta-heuristic algorithms such as genetic algorithm (GA) and particle 

swarm optimization (PSO) for solving engineering optimization problems have been 

demonstrated [13] and thus in this paper BA is utilized to implement optimization process. 

In order to assess reliability of the optimally seismic designed structures for existing 
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uncertainties a combination of MCS method and NN models is employed. Radial basis 

function (RBF) and back propagation (BP) neural networks, as two popular networks, are 

employed to predict the seismic responses of the frame structures in the framework of MCS. 

The numerical results indicate that the BP model in conjunction with MCS method provides 

a powerful computational tool for reliability assessment of RC and steel frames. 

 

 

2. OPTIMAL SEISMIC DESIGN 
 

Many studies have shown that structures designed by modern seismic code procedures are 

expected to undergo large cyclic deformations in the inelastic range when subjected to 

severe earthquake ground motions. Nevertheless, most seismic design codes are still based 

on elastic methods using equivalent static lateral design forces. This procedure can result in 

unpredictable and poor response during severe ground motions with inelastic activity 

unevenly distributed among structural members. To solve this problem, performance-based 

design (PBD) procedure was developed. PBD procedures allow engineers to determine 

explicitly performance of structures for a special seismic hazard level. PBD enables 

designers to design structures having predictable and reliable performance against seismic 

loadings. The designs obtained by PBD approach should meet performance objectives. A 

performance objective is defined as a given level of performance for a specific hazard level. 

To define a performance objective, at first the level of structural performance should be 

selected and then the corresponding seismic hazard level should be determined. In the 

present work, immediate occupancy (IO), life safety (LS) and collapse prevention (CP) 

performance levels are considered according to FEMA-356 [1]. Each objective corresponds 

to a given probability of being exceed during 50 years. A usual assumption [14] is that the 

IO, LS and CP performance levels correspond respectively to a 20%, 10% and 2% 

probability of exceedance in 50 year period. In this study, the mentioned hazard levels are 

considered. 

 

2.1 Nonlinear pushover analysis 

The estimation of demands can be accomplished using a variety of available procedures. 

Using the nonlinear static procedure, the inelastic behavior of the structure as a whole can 

be captured by a static pushover curve. The pushover curve gives an accurate description of 

the structural behavior, compared to the dynamic analysis, at least for a structure that has a 

low number of participating modes. The advantage in utilizing a pushover analysis relies in 

the fact that it can be used in most practical cases. On the other hand, dynamic inelastic time 

history analyses are often difficult to implement. The practical objective of inelastic seismic 

analysis procedures is to predict the expected behavior of the structure in future earthquake 

shaking. This has become increasingly important with the emergence of performance-based 

engineering (PBE) as a technique for seismic evaluation and design [15]. Among the various 

methods of static nonlinear pushover analyses, the displacement coefficient method [1] is 

adopted to evaluate the seismic demands on building frameworks under equivalent static 

earthquake loading. In this method the structure is pushed with a specific distribution of the 

lateral loads until the target displacement is reached. The target displacement can be 
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obtained from the FEMA-356 as follows: 
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where C0 relates the spectral displacement to the likely building roof displacement; C1 

relates the expected maximum inelastic displacements to the displacements calculated for 

linear elastic response; C2 represents the effect of the hysteresis shape on the maximum 

displacement response and C3 accounts for P-D effects. Te is the effective fundamental 

period of the building in the direction under consideration; Sa is the response spectrum 

acceleration corresponding to the Te.  

In this work, the OPENSEES [16] platform is utilized to conduct the pushover analyses. 

 

2.2 Problem formulation 

In a sizing structural optimization problem, the aim is usually to minimize the weight or cost 

of the structure under some behavioural constraints. For a frame structure consisting of ne 

members that are collected in n design groups, if the variables associated with each design 

group are selected from a given database of sections, a discrete optimization problem can be 

formulated as follows: 
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where xj is an integer value expressing the sequence numbers of sections assigned to jth 

group; f represents the objective function of the frame; )(Xgi
 is the ith behavioral 

constraint; ng is the number of constraints. 

Objective function for a RC frame, 
Rf , is usually taken as the cost of structure and can be 

defined as follows [17]: 
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where nb is the number of beams; bb,i , hb,i , Li and AS,b,i are the ith beam width, depth, length 

and area of the steel reinforcement, respectively; nc is the number of columns; bc,j , hc,j , Hj 

and AS,c,j are the jth column width, depth, length and area of the steel reinforcement, 

respectively; CC, CS and CF are the unit cost of concrete, steel and framework, respectively. 

As mentioned in [17], in the present work the following unit costs are also considered: 

CC=105 $/m
3
, CS=7065 $/ m

3
, CF=92 $/ m

2
. 

In the case of a steel frame, the weight of structure is usually considered as the objective 
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function, 
Sf , and it can be defined as follows [18]: 
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where ρi and Ai are weight of unit volume and cross-sectional area of the ith group section, 

respectively; nm is the number of elements collected in the ith group; Lj is the length of the 

jth element in the ith group.   

In this study, the constraints of the optimization problem are handled using the concept 

of exterior penalty functions method (EPFM) [19]. In this case, the pseudo unconstrained 

objective function is expressed as follows: 
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where Φ  and rp are the pseudo objective function and positive penalty parameter, 

respectively. 

In this work, two types of constraints are checked during the optimization process. The first 

type includes the checks of each structural element for gravity loads. In this case, the 

following load combination is considered:  

 

 
LDG Q.Q.Q 61211   (6) 

 

where QD and QL are dead and live loads, respectively. 

Each structural element of RC and steel frames should satisfy the constraints specified 

respectively by ACI 318-08 [20] and LRFD-AISC [21] codes for the non-seismic load 

combination.  

If the first type constraints are not satisfied then the candidate design is rejected, else a 

nonlinear pushover analysis is performed in order to estimate the maximum inter-story drift 

ratios at various performance levels. In nonlinear static pushover analysis, the lateral load 

distribution in the height of the frame is defined as follows [1]: 
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where Ps = lateral load applied at story s; Vb = base shear; Hs, Hm = height from the base of 

the building to stories s and m, respectively; Gs, Gm = seismic weight for story levels s and 

m, respectively; k = 2 and this means that the lateral load pattern is parabolic. 

The following component gravity force is considered for combination with the seismic 

loads [1]: 
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In this study, the lateral inter-story drift ratios are considered as the acceptance criteria.  The 

inter-story drift ratio constraints at various performance levels can be expressed as: 

 

 nsilXg
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where l

i  and l

all  are respectively the ith story drift and its allowable value associated with 

lth performance level; ns is the number of stories. 

In order to find performance-based seismic optimum deign of frames BA is employed. 

The basic concepts of BA are defined as follows. 

 

2.3 Bat algorithm 

The BA meta-heuristic is inspired from the echolocation behaviour of microbats [22]. The 

echolocation characteristics of microbats in BA are idealized as the following three rules [13]. 

The first rule is that all bats use echolocation to sense distance, and they also know the 

difference between prey and background barriers in some magical way. As the second rule, 

bats randomly fly with velocity Vi at position Xi with a fixed frequency fmin, varying 

wavelength and loudness 0Ω to search for prey. They can adjust the frequency of their emitted 

pulses and adjust the rate of pulse emission r[0,1], depending on the proximity of their 

target. The third rule says that although the loudness can vary in many ways, it is assumed that 

the loudness varies from a large and positive 0Ω to a minimum constant value
minΩ .  

The position and velocity of each bat should be updated in the design space. As 

optimization of RC and steel frames using the section databases is a discrete optimization 

problem, the following equations are employed for updating position and velocity of ith bat: 
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where  fmin and  fmax are the lower and upper bounds imposed for the frequency range of bats. 

In this study, fmin=0.0 and fmax=1.5 are used; ui[0,1] is a vector containing uniformly 

distribution random numbers; *X is the current global best solution; 

A local search is implemented on a randomly selected bat from the current population as: 

 

 )( round 11   k

j

kk ΩXX   (13) 

 

where j is a uniform random number in the range of [-1, 1] selected for each design variable  

of the selected bat. 1kΩ is the average loudness of all the bats at the current iteration.  

The loudness
iΩ and the rate ri of pulse emission have to be updated accordingly as the 
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iterations proceed. As the loudness usually decreases once a bat has found its prey, while the 

rate of pulse emission increases, the loudness can be chosen as any value of convenience. In 

this work, 10 Ω and 0min Ω  also, r
0
 = 0 and rmax = 1. 
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where α and γ are constants. In this study, α = 0.5, and γ = 0.5. 

 

 

3. SEISMIC RELIABILITY ASSESSMENT 
 

Deterministic structural optimization without considering the uncertainties in structural 

capacity and seismic demands results in an unreliable design and cannot balance both cost 

and safety. The structural seismic responses can be affected by many uncertain variables. 

Material properties and earthquake loading are considered as intervening uncertain variables 

in this study. Therefore, the main aim of the present paper is to assess the seismic reliability 

of optimally seismic designed RC and steel frames considering the mentioned sources of 

uncertainties. To achieve this purpose, nonlinear pushover analysis of the structures is 

implemented to obtain the structural seismic responses. The limit state functions associated 

with each performance level are calculated using the structural seismic responses. Then, the 

non-performance probability corresponding to each performance level is evaluated. MCS is 

a powerful tool, simple to implement and capable of solving a broad range of reliability 

problems. However, its use for evaluation of very low probabilities of failure implies a great 

number of structural analyses which can become excessively time consuming especially 

when the nonlinear analysis is involved. To reduce the computational burden of the MCS-

based reliability assessment process, RBF and BP NN models are employed to predict the 

required nonlinear responses of the structures at IO, LS and CP performance levels. The 

proposed methodology provides the possibility of reproducing structural behavior for 

performance evaluation at a trivial computational cost. In order to obtain seismic reliability 

assessment using the proposed methodology, random samples are generated and used to 

train and test the RBF and BP NN models. Random combinations of intervening variables 

and the corresponding desired structural seismic responses are respectively considered as 

input and outputs of the NN models.  

 

3.1 Input and output vectors 

For structural elements of RC frames, Kent–Scott–Park model [23] is used as the confined 

and unconfined concrete constitutive model. The concrete of cover and core in cross-section 

of the columns is considered as unconfined and confined, respectively. As shown in Figure 

1(a) fc, fu, ε0 and εu are the constitutive parameters of this model representing respectively 

concrete peak strength in compression, residual strength, strain at peak strength, and 

ultimate compressive strain. Constitutive behavior of the reinforcing steel shown in Figure 
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1(b) is based on using the one-dimensional plasticity model with linear hardening. The 

material parameters of E, fy and H which are respectively Young’s modulus, yield strength, 

and hardening modulus define the plasticity model. In this study, the above constitutive 

parameters fc, E and fy are considered as the random parameters. For structural elements of 

steel frames, the constitutive behavior of Figure 1(b) is employed considering E and fy as the 

random parameters. Beams and columns of the RC and steel moment frames are modeled 

using force-based nonlinear beam-column element on the OPENSEES platform that 

considers the spread of plasticity along the element’s length. 

 

 

(a) (b) 
Figure 1. Material constitutive behavior (a) concrete, (b) steel 

 

In this study, response spectrum acceleration Sa associated with the mentioned triple 

hazard levels are considered as the random parameters termed here as IO

aS , LS

aS and CP

aS . 

Therefore, the random variables vector for RC and Steel frames which are employed as the 

input vector of the NN models can be represented as follows: 
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where
RNN,I and

SNN,I are input vectors of NN models for RC and steel frames, respectively. 

It should be noted that in a structure including n design groups, a set of random 

constitutive parameters is considered for each design group. In this case, constitutive 

parameters fc, E and fy are vectors defined as follows: 
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For seismic reliability assessment, maximum inter-story drift ratios at IO, LS and CP 

performance levels are selected as the structural seismic responses. Thus, for both RC and 

steel frames the output vector of the NN models, ONN, is as follows: 

 

 TCP

max

LS

max

IO

maxNN }{ O  (21) 

 

3.2 Monte carlo simulation 

A reliability problem is normally formulated using a limit state function. Limit state 

function for each performance level is defined using capacity and demand as follows: 

 

 (Z))( LIM RRZG   (22) 

 

where G is a limit state function; Z is the vector of random variables defined for RC and 

steel frames by Eqs. (16) to (20); 
LIMR is the limiting value for a seismic response R(Z).  

In similar studies such as [7-9] the limiting capacities 
LIMR were also considered random. 

In the present study, these parameters for RC and steel frames are considered deterministic. 

As in the present work only the maximum inter-story drift ratios at the performance levels 

are selected as the structural seismic responses, the limit state functions considered for the 

three performance levels are as follows: 

 

 Immediate Occupancy:   (Z))( IO
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where IO

LIM , LS

LIM and CP

LIM are the limiting values for maximum inter-story drift seismic 

responses at the IO, LS and CP performance levels, respectively.  

The non-performance probability, Pf, is defined as a function of the limit state functions 

corresponding to a given performance level. Estimation of the non-performance probability 

in the time-invariant domain requires the evaluation of the multiple integral over the failure 

domain, G(Z) < 0, as follows [9]: 
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where )(ZFZ
is the joint probability density function of Z.  

The total exceedence probability,
EPf , for each performance level is defined as a series 

system when one of the limit state functions fails: 
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where 
ln  is the number of the limit state functions for each performance level.  

As in the present work only one limit state function is defined for each performance 

level, Eq. (27) can be rewritten as follows: 

 

   CP LS, IO,   ,   0)( ,  lZGPPf llE
 (28) 

 

Computation of total exceedence probability, 
lEPf  ,
, requires integration of a multi-normal 

distribution function [9]. This integral can be estimated by the MCS method. In this study, 

the MCS method is utilized simultaneously for all limit state functions of the performance 

levels. The MCS method allows the determination of an estimate of
lEPf  ,
, given by 
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where N is the number of independent samples generated based on the probability 

distribution for each random variable for implementation MCS. 

Implementation of the MCS requires a large number of structural nonlinear pushover 

analyses. The MCS is a time consuming process because of high computational cost of 

pushover analysis. To reduce the computational burden of MCS, the required structural 

seismic responses are predicted by NN models. 

 

 

4. NEURAL NETWORKS 
 

The principal advantage of a properly trained NN is that it requires a trivial computational 

burden to produce an approximate solution. Such approximations appear to be valuable in 

situations where the actual response computations are intensive in terms of computing time 

and a quick estimation is required. For such problems a NN model is trained utilizing 

information generated from a number of properly selected analyses. The data from these 

analyses are processed in order to obtain the necessary input and target pairs, which are 

subsequently used to train the network [24]. In the present paper, two well known and 

popular NN models are employed: Radial basis function (RBF) and Back-propagation (BP). 

 

4.1 RBF model 

RBF neural networks due to their fast training, generality and simplicity are popular. They 

are two layers feed forward networks. The hidden layer consists of RBF neurons with 

Gaussian activation functions. The outputs of RBF neurons have significant responses to the 

inputs only over a range of values called the receptive field. The radius of the receptive field 

allows the sensitivity of the RBF neurons to be adjusted. During the training, the receptive 
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field radius of RBF neurons is such determined as the neurons could cover the input space 

properly. The output layer neurons produce the linear weighted summation of hidden layer 

neurons responses. To train the hidden layer of RBF networks no training is accomplished 

and the transpose of training input matrix is taken as the layer weight matrix [25]. 

 

 TRBF

1 ΛW   (31) 

 

where, RBF

1W and TΛ are input layer weight and training input matrices, respectively. 

In order to adjust output layer weights, a supervised training algorithm is employed. The 

output layer weight matrix is calculated from the following equation: 

 

 TΔW RBF 1

2

  (32) 

 

where T is target matrix, Δ  is the outputs of the hidden layer and RBFW2
 is the output layer 

weight matrix. 

 

4.2 BP model 

Standard BP [26] is a gradient descent optimization algorithm, which adjusts the weights in 

the steepest descent direction according to the following equation: 

 

 kkkk GηWW 
BPBP

1  (33) 

 

where BP
kW and Gk are the weight and the current gradient matrices, respectively and kη is 

learning rate. 

Levenberg-Marquardt (LM) [27] algorithm was designed to approach second-order 

training speed without having to compute the Hessian matrix. In the LM algorithm the 

weights updating is achieved as follows: 

 

 EJμIJJWW kk
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where J is the Jacobian matrix that contains first derivatives of the network errors with 

respect to the weights; E is a vector of network errors; μ is a correction factor.  

One of the techniques used to prevent overfitting is regularization [26] in which the 

performance function of the network is modified by adding a term that consists of the mean 

of the sum of squares of the network weights as: 
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where γ and nw are the performance ratio and number of network weights, respectively; m is 

the size of Ei. 
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4.3 Prediction of seismic responses 

NN models are trained to predict the structural seismic responses for implementation of 

MCS spending a reasonable amount of time. The input and output vectors of the NN models 

are represented for RC frames by Eqs. (16) and (21) and for steel frames by Eqs. (17) and 

(21), respectively. The topology of NN models trained to predict the responses of RC and 

steel frames are shown in Figures (2) and (3), respectively.  

To evaluate the prediction accuracy of the trained NN models in testing mode, the 

absolute percentage error (APE) between the nts number of predicted and the actual 

responses and also mean absolute percentage error (MAPE) are computed as follows: 
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Figure 2. Topology of NN models for prediction of seismic responses of RC frames 

 

 
Figure 3. Topology of NN models for prediction of seismic responses of steel frames 
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5. NUMERICAL RESULTS 
 

The numerical results of the present study are presented for RC and steel ordinery moment 

frames in this sections. The required computer programs for performing optimization 

processes are coded in MATLAB [28]. In addition, a personal Pentium IV 3.0 GHz is used 

for computer implementation. 

For deterministic performance-based seismic design optimization of RC and steel 

moment frames the allowable values of inter-story drift in low-rise frame, for IO, LS and CP 

performance levels are taken according to HAZUS [29] provisions. These values in mid and 

high rise frames should be multiplied to 2/3 and 0.5, respectively. 

In order to generate dataset for training NN models for RC and steel frames, Latin 

Hypercube Design (LHD) sampling [30] is employed. 

 

5.1 RC frames 

In order to illustrate the computational advantages of the proposed methodology in the case 

of RC frames, a three-bay, six-story and a four-bay, nine-story 2-D RC frames are 

considered. The geometry and element groups of the frames are shown in Figure 4. 

 

  

(a) (b) 

Figure 4. Geometry and element groups for (a) three-bay, six-story and (b) four-bay, nine-story 

RC frames 
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Uniform gravity loads are considered on beams as a dead load DL = 25 kN/m and a live 

load LL = 10.0 kN/m. A semi-infinite set of member sizes and reinforcement arrangement 

for beams and columns is reduced by constructing databases in practical range. The 

databases information is sectional dimensions and number of reinforcing bars for the beams 

and columns as show in Tables 1 and 2, respectively. 

 
Table 1: Cross section database for beams 

Beam NO. Width (cm) Depth (cm) 
Number of bars (D22) 

Top Bottom 

1 30 45 2 2 

2 30 45 3 2 

          

496 45 90 9 8 

497 45 90 9 9 

 
Table 2: Cross section database for columns 

Column NO. Width (cm) Depth (cm) Number of bars (D25) 

1 30 30 4 

2 35 35 6 

        

43 90 90 38 

44 90 90 40 

 

Median response spectra for three hazard levels [31] employed for RC frames are shown 

in Figure 5. 

 

 
Figure 5. Median response spectra for three hazard levels [31] 

 

In the RC frame examples deterministic parameters are as follows: ε0=0.002, fu=0.0, 

εu=0.005 and H=0.01. The properties, probability density function, mean value and standard 

deviation of each random parameter are given in Table 3.  
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Table 3: Properties of the random variables for RC frames 

Random Variable Probability density function Mean value Standard deviation 

fc Normal 28 MPa 0.1 fc 

E Normal 200 GPa 0.1E 

fy Normal 240 MPa 0.1 fy 
IO

aS  Lognormal 
IO

aS  (Figure 5) 0.15 IO

aS  

LS

aS  Lognormal 
LS

aS  (Figure 5) 0.15 LS

aS  

CP

aS  Lognormal 
CP

aS  (Figure 5) 0.15 CP

aS  

 

 5.1.1  Three-bay, six-story RC frame 

The six-story RC frame is designed for optimal cost using BA meta-heuristic. In the 

optimization process a population of 30 bats is considered and the maximum number of 

generations is limited to 1000. During the optimization process the lateral inter-story drifts 

are checked at various performance levels as the design constraints. As this structure is a 

mid-rise frame, the allowable values of inter-story drift at IO, LS and CP levels are 0.66%, 

2% and 5.33%, respectively. The results of optimization are given in Table 4.     

 
Table 4: Results of optimization for three-bay, six-story RC frame 

Element Sectional dimensions Reinforcements 

Type Group Width (cm) Depth (cm) Top Bottom 

Beam 

B1 35 60 3-D22 3-D22 

B2 35 55 4-D22 4-D22 

B3 30 55 4-D22 3-D22 

Column 

C1 50 50 12-D25 

C2 50 50 12-D25 

C3 45 45 12-D25 

C4 40 40 8-D25 

Frame cost (fR) 33364 $ 

 

Inter-story drift profiles of the optimum design are shown in Figure 6.  

 

 
Figure 6. Inter-story drift profiles of the optimum six-story RC frame at performance levels 
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The vertical dashed lines denote drift limits for performance levels. It can observe that 

optimum solution is feasible and the constraint of IO level dominates the design. 

In order to assess the seismic reliability of the optimum six-story RC frame, a database of 

random parameters should be generated. In this case, 8000 random vectors, i.e. INN,R, are 

selected and the resulted structures are analyzed using nonlinear pushover analysis and the 

maximum inter-story drifts, i.e. ONN, are saved. The generated data is divided into training 

and testing sets including 7500 and 500 samples, respectively. RBF and BP models are 

trained and the results reveal that the computational performance of BP is very better than 

that of the RBF model. Thus, only the results of BP model are presented in this example. 

Various numbers of hidden layer neurons are examined for BP model and the best accuracy 

is achieved using 15 ones. Figure 7 shows the APE of the predicted IO

max , LS

max and CP

max . 

 

 

(a) 

 

(b) 

 

(c) 

Figure 7. APE of the predicted IO

max , LS

max and CP

max by BP for the optimum six-story RC frame 
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The MAPEs of the predicted IO

max , LS

max and CP

max are respectively equal to 1.9319%, 1.8902% 

and 4.3626%. These results demonstrate the good accuracy of the trained BP for predicting 

the seismic responses of the structure. The trained BP model is effectively employed to 

implement MCS. In this case, 10
7
 vectors of INN,R are generated and their corresponding ONN 

are predicted by the trained BP model. The values of PfE are calculated using Eqs. (29) and 

(32) for various performance levels. These values are shown in Figure 8 for various numbers 

of samples. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 8. Total exceedence probability of limit state functions for the optimum six-story RC 

frame at (a) IO, (b) LS and (c) CP performance levels 

 

These results indicate that the optimum six-story RC frame is highly vulnerable against 

the existing uncertainties at IO and LS performance levels. The results of Figure 8 reveal 
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that for all performance levels, the difference between PfE values obtained by 5×10
4
 and 10

7
 

samples is trivial. It is clear that for seek of efficiency in terms of computational cost the 

application of 5×10
4
 samples is the best choice. 

 

5.1.2 Four-bay, nine-story RC frame 

The BA is used to find performance-based optimal seismic design of the nine-story RC 

frame. The number of bats and the maximum number of generations during optimization 

process are 30 and 10000, respectively. This structure is considered as a high-rise frame and 

the allowable inter-story drift at IO, LS and CP levels are 0.5%, 1.5% and 4%, respectively. 

Optimization results are given in Table 5. 

 
Table 5: Results of optimization for four-bay nine-story RC frame 

Element Sectional dimensions Reinforcements 

Type Group Width (cm) Depth (cm) Top Bottom 

Beam 

B1 40 60 5-D22 4-D22 

B2 40 60 3-D22 3-D22 

B3 30 50 4-D22 4-D22 

Column 

C1 60 60 16-D25 

C2 60 60 16-D25 

C3 55 55 14-D25 

C4 55 55 14-D25 

C5 50 50 12-D25 

C6 45 45 10-D25 

C7 45 45 10-D25 

C8 45 45 10-D25 

C9 45 45 10-D25 

Frame cost (fR) 70315 $ 

 

Inter-story drift profiles of the optimum design at various performance levels are shown 

in Figure 9.  

 

 
Figure 9. Inter-story drift profiles of the optimum nine-story RC frame at performance levels 
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The vertical dashed lines denote drift limits for performance levels. The results imply 

feasibility of optimum solution. It is observed again that the constraint associated with IO 

level dominates the design. 

For assessing the seismic reliability of the optimum nine-story RC frame, a database of 

random vectors INN,R and their corresponding ONN including 12000 samples is generated and 

11500 ones are used for training and 500 ones are employed for testing the NN models. As 

well as the first example, RBF and BP models are trained and the results demonstrate the 

superiority of BP to the RBF model. Therefore, in this example only the results based on 

application of BP model are presented. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 10. Total exceedence probability of limit state functions for the optimum nine-story RC 

frame at (a) IO, (b) LS and (c) CP performance levels 
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The numerical results indicate that the best results of BP model are obtained when 15 

neurons are set in the hidden layer. The MAPEs of the predicted IO

max , LS

max and CP

max are 

respectively equal to 2.2304%, 2.2393% and 4.5951%. These results demonstrate the good 

accuracy of the trained BP model. To implement MCS, 10
7
 vectors of INN,R are generated 

and their corresponding ONN are predicted by the trained BP model. The values of PfE are 

calculated for various performance levels. These values are given in Figure 10. 

Total exceedence probability of limit state functions for the optimum nine-story RC 

frame at IO, LS and CP performance levels are 0.855, 0.346 and 0.004, respectively. These 

obtained results imply the high vulnerability of the optimum nine-story RC frame against 

the existing uncertainties at IO and LS performance levels. The results of Figure 10 reveal 

that for all performance levels, the difference between PfE values obtained by 5×10
4
 and 10

7
 

samples is trivial. 
 

5.2 Steel frames 

Two steel frame examples are presented to illustrate the computational performance of the 

proposed methodology. These examples include a two-bay, three-story and a three-bay, ten-

story 2-D steel frames as shown in Figure 11.  

  

(a) (b) 

Figure 11. Geometry and element groups for (a) two-bay, three-story and (b) three-bay, ten-story 

steel frames 
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Uniform gravity loads are considered on beams as a dead load DL = 25 kN/m and a live 

load LL = 10.0 kN/m. In the present study, design variables of steel frames are selected from 

W-shaped sections found in the AISC [21] design manual. 

The spectral acceleration i

aS  can be calculated for each design spectrum i as follows: 
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where T is the elastic fundamental period of the structure, which is computed here from 

structural modal analysis; i

sS  and iS1
 are the short-period and the first sec.-period response 

acceleration parameters, respectively; iT0
is the period at which the constant acceleration and 

constant velocity regions of the response spectrum intersect; Fa and Fv are the site 

coefficient determined respectively based on the site class and the values of the response 

acceleration parameters i

sS  and iS1
, according to Table 6 [32]. 

 
Table 6: Performance level site parameters for site class of D 

Performance Level Hazard Level Ss (g) S1 (g) Fa Fv 

IO 20% / 50-years 0.658 0.198 1.27 2.00 

LS 10% / 50-years 0.794 0.237 1.18 1.92 

CP 2%  / 50-years 1.150 0.346 1.04 1.70 

 

In the steel frame examples deterministic parameter is H=0.03. The properties, 

probability density function, mean value and standard deviation of each random parameter 

are given in Table 7. 

 
Table 7: Properties of the random variables for steel frames 

Random Variable Probability density function Mean value Standard deviation 

E Normal 210 GPa 0.1E 

fy Normal 240 MPa 0.1 fy 
IO

aS  Lognormal 
IO

aS  (Eq. (38)) 0.1 IO

aS  

LS

aS  Lognormal 
LS

aS  (Eq. (38)) 0.1 LS

aS  

CP

aS  Lognormal 
CP

aS  (Eq. (38)) 0.1 CP

aS  

 

5.2.1 Two-bay, three-story steel frame 

The three-story steel frame is designed for optimal weight using BA meta-heuristic. In the 



  S. Gholizadeh, V. Aligholizadeh 

 

22 22 

optimization process a population of 40 bats is considered and the maximum number of 

generations is limited to 300. During the optimization process the lateral inter-story drifts 

are checked at various performance levels as the design constraints. As this structure is a 

low-rise frame, the allowable values of inter-story drift at IO, LS and CP levels are 1.2%, 

3% and 8%, respectively. The results of optimization are given in Table 8.     

 
Table 8. Results of optimization for two-bay three-story steel frame 

Design variables Optimal sections 

C1 W16×26 

C2 W18×40 

B1 W16×26 

Weight (fS) 2404.83 kg 

 

Inter-story drift profiles of the optimum design are shown in Figure 12 for performance 

levels. The vertical dashed lines denote drift limits for performance levels. It can be 

observed that optimum solution is feasible and the constraint associated with IO level 

dominates the design. 

 

 
Figure 12. Inter-story drift profiles of the optimum three-story steel frame at performance 

levels 

 

For performing seismic reliability analysis of the optimum three-story steel frame, a 

database including 10000 samples is generated. From the generated database 9000 and 1000 

samples are employed for training and testing the NN models, respectively. As well as the 

RC frame example, RBF and BP models are trained and the results demonstrate the 

superiority of BP to the RBF model. Thus, in this example only the results of BP model are 

presented. The numerical results indicate that the best results of BP model are obtained 

when 5 neurons are set in hidden layer. The MAPEs of the predicted IO

max , LS

max and CP

max are 

respectively equal to 0.0043%, 0.1734% and 0.0994%. These results demonstrate the 

excellent accuracy of the trained BP model. To implement MCS, 10
7
 vectors of INN,S are 

generated and their corresponding ONN are evaluated by the BP model. The values of PfE are 

calculated for various performance levels and it is observed that for LS and CP performance 
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levels PfE =0. The values of PfE are given in Figure 13 for IO performance level. 

 

 
Figure 13. Total exceedence probability of limit state functions for the optimum three-story 

steel frame at IO performance level 

 

It is clear that the optimum three-story steel frame is highly vulnerable against the 

existing uncertainties at IO level. The results of Figure 13 show that the difference between 

PfE values obtained by 5×10
4
 and 10

7
 samples is also trivial. 

 

5.2.2 Three-bay, ten-story steel frame 

The ten-story steel frame is designed for optimal weight using BA meta-heuristic. In the 

optimization process a population of 40 bats is considered and the maximum number of 

generations is limited to 500. The limits on the lateral inter-story drift at various 

performance levels are considered as the design constraints of this example. The results of 

optimization are given in Table 9. 

 
Table 9. Results of optimization for three-bay ten-story steel frame 

Design variables Optimal sections 

1 W21×55 

2 W21×48 

3 W24×55 

4 W21×44 

5 W21×44 

6 W24×55 

7 W30×99 

8 W24×55 

9 W21×55 

10 W27×94 

11 W21×55 

12 W30×90 

13 W16×36 

14 W16×26 

15 W16×26 

Weight (fS) 21033.91 kg 
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As well as the previous examples, in this example also the constraint associated with IO 

level dominates the design. 

A database including 10000 samples is generated and from the generated database 9000 

and 1000 samples are employed for training and testing the NN models, respectively. RBF 

and BP models are trained and due to better accuracy of BP with 5 hidden layer neurons, 

only the results of this model are discussed. The MAPEs of the predicted IO

max , 

LS

max and CP

max are respectively equal to 1.5033%, 1.6952% and 1.7395%. These results 

demonstrate good accuracy of the BP model. To implement MCS, 10
7
 vectors of INN,S are 

generated and the BP model is employed to predict their corresponding ONN. The values of 

PfE are calculated for various performance levels and it is observed that for LS and CP 

levels PfE =0. The values of PfE are given in Figure 14 for IO level. 

 

 
Figure 14. Total exceedence probability of limit state functions for the optimum ten-story steel 

frame at IO performance level 

 

It is clear that the optimum ten-story steel frame is highly vulnerable against the 

uncertainties at IO level. The results of Figure 14 show again that the difference between PfE 

values obtained by 5×10
4
 and 10

7
 samples is trivial. 

 

 

6. CONCLUSIONS 
 

The main aim of the present paper is to assess the seismic reliability of performance-based 

optimally seismic designed RC and steel moment frames by a combination of MCS and NN 

models. In order to achieve this purpose, two RC structures including six and nine story 

frames and two steel structures including three and ten story frames are optimized based on 

PBD criteria using BA meta-heuristic. During the optimization process the lateral inter-story 

drifts are checked at IO, LS and CP performance levels as the design constraints. For all 

examples, the constraint associated with IO level dominates the design. In order to assess 

the seismic reliability of the optimum structures, a database is generated in the case of each 

example. The generated data is divided into training and testing sets. RBF and BP models 

are trained and the results reveal that for all examples the computational performance of BP 

is better than that of the RBF model. The trained BP model is effectively employed to 

implement MCS. In this case, 10
7
 input vectors are generated and their corresponding 



NEURAL NETWORK-BASED RELIABILITY ASSESSMENT OF OPTIMALLY... 

 

25 

outputs are predicted by the trained BP model. These results indicate that the optimum RC 

frames are highly vulnerable against the existing uncertainties at IO and LS performance 

levels with the mean exceedence probability of about 0.8 and 0.3, respectively. For the 

optimum steel frames, the mean exceedence probability for IO level is about 0.4 while good 

safety is observed for these structures at LS and CP performance levels. The results indicate 

that the optimum performance-based RC and steel moment frames are highly vulnerable 

against existing uncertainties of structural capacity and seismic demands. Therefore, 

implementation of seismic reliability-based optimization for these structures is necessary to 

have seismically reliable and safe structures. 
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