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ABSTRACT 
 

A two-stage optimization method is presented by employing the evolutionary structural 
optimization (ESO) and ant colony optimization (ACO), which is called ESO-ACO method. 
To implement ESO-ACO, size optimization is performed using ESO, first. Then, the 
outcomes of ESO are employed to enhance ACO. In optimization process, the weight of 
double layer grid is minimized under various constraints which artificial ground motion is 
used to calculate the structural responses. The presence or absence of elements in bottom and 
web grids and also cross-sectional areas are selected as design variables. The numerical 
results reveal the computational advantages and effectiveness of the proposed method. 
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1. INTRODUCTION 
 

Space structures belong to special category of three dimensional structures with special forms. 
These structures are widely used in exhibition centers, supermarkets, sport stadiums, etc., to 
cover large areas without intermediate columns. Space structures are often classified as grids, 
domes and barrel vaults [1]. Double layer grids are classical examples of prefabricated space 
structures and also the most popular forms which are used nowadays frequently. 

Topology optimization methods enable designers to find a suitable structural configuration 
for required performances of structures [2]. Fuchs and Shemesh [3] used topology 
optimization to design of structures subjected to water pressure, Achtziger and Kocvara [4] 
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applied it on the maximization of the fundamental eigenvalue, and Maute and Allen [5] used it 
for design of aeroelastic structures.  

The ground structure method is based on formulations of structural elements derived from 
fundamental mechanics. So, design engineers can easily understand the reasons for optimality 
and the mechanical viewpoints of the structure. Therefore, this type of optimization can offer 
important decision making support for structural engineers working at the conceptual design 
stage.  

The ant colony optimization (ACO) is a relatively recent heuristic method to solve 
optimization problems simulating the behavior of real ant colonies. ACO similar to genetic 
algorithm is a good choice for structural topology optimization due to their discrete 
characteristics [6]. In topology optimization, the operation of these heuristic methods can be 
increased by combining with gradient-based methods. For example, in [7] a two-stage 
optimization method has been introduced for reliability-based topology optimization (RBTO) 
of double layer grids which has been performed by employing the methods of moving 
asymptotes (MMA) and ACO. Also in [7], the presence or absence of nodes (joints) in bottom 
grid and also cross-sectional areas have been selected as design variables. 

Large scale double layer grids are subjected to vertical earthquake loads. Therefore, there 
is a great need for optimization methods which use these loads to calculate the structural 
responses [8].  

In this paper, a new combined method for topology optimization of double layer grids is 
presented that considers vertical earthquake loading. The optimization is performed using the 
evolutionary structural optimization (ESO) and ant colony optimization (ACO) method, which 
is called ESO-ACO method. To execute ESO-ACO, a size optimization is performed using 
ESO in which the nonzero optimum cross-sectional areas are calculated from continuous 
quantities, first. Then, the obtained optimum cross-sectional areas and the internal forces of 
members (elements) are employed in ACO to improve the ACO approach as: (I) finding the 
structural importance rate of elements and using this to assign an unequal amount of 
pheromone on the paths that associates with the presence or absence of the members variable, 
(II) limiting the lower border of available cross-sectional areas of each element group to the 
neighborhood of the obtained cross-sectional areas by ESO, (III) determining the number of 
compressive and tensile element types and (IV) modifying the generation of random stable 
structures.  

Through numerical examples, the optimum topologies of a double layer grid which 
obtained by ESO-ACO and ACO, are compared. The numerical results reveal the robustness 
and performance of ESO-ACO for topology optimization of skeletal structures with discrete 
cross-sectional areas and various constraints. 

 
 

2. TOPOLOGY OPTIMIZATION WITH TIME HISTORY LOADING 
 

In double layer grids topology optimization, geometry of the structure, support positions and 
coordinates of nodes are kept constant while the presence or absence of elements in bottom 
and web grids and also cross-sectional areas are selected as design variables. The symmetry 
properties of the structure are used for the tabulation of elements, which leads to decrease the 
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design space. Therefore, the elements are deleted in groups of 8 or 4 elements. For example in 
the structure shown in Figure 1, number of elements with similar geometry positions is 
arranged in Table 1. 

 

 
Figure 1. Double layer grid ground structure (a), element numbers of web layer (b) and element 

numbers of bottom layer (c) 
 

Table 1. Elements group considering symmetry 

Group Number Elements in each group 

1 61, 64, 70, 69, 72, 71, 66, 65 

2 62, 63, 68, 67 

3 2, 48, 59, 19 

4 4, 8, 42, 46, 60, 57, 17, 21 

5 23, 29, 54, 53, 38, 40, 10, 12 

6 6, 44, 55, 22 

7 25, 15, 27, 49, 51, 41, 14, 36 

8 30, 35, 34, 32 
 
 Presence or absence of each element group is identified by a variable (topology variable), 

which only two digits 0 or 1 can be allocated to it. A zero amount of ith topology variable 
indicates that the ith element group should be deleted from the ground structure. 

In topology optimization problem, the number of design variables (NDV) is the summation 
of the number of topology variables (NTV) and the type number of compressive and tensile 
members. For example during the topology optimization procedure of ground structure shown 
in Figure 1, the vector of design variables of a structure is identified as shown in Figure 2. In 
this Figure, it is assumed that the type number of compressive and tensile members is 
considered as 6 and 3, respectively. 
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Figure 2. The identified design variables 

 
Since the 1st, 2nd and the 8th topology variable have a zero value, all of the members in 

these groups of Table 1 are deleted from the ground structure. The result topology is shown in 
Figure 3. 

 
Figure 3. The result topology of Figure 2: (a) double layer grid, (b) diagonal layer, and (c) bottom 

layer 
 
The remaining 9 design variables are used to assign the cross-sectional area to members in 

any group (type) by referring to the table of available profiles. 
In order to achieve a practical structure, existence of members in top grid will not be considered 

as variable. This causes that the load bearing areas of top layer joints will not change. Also, discrete 
variables are used for optimizing the cross-sectional area of structural members. These variables 
are selected from pipe sections with specified thickness and outer diameter.  

In optimum topology design of the double layer grids subjected to time history loading, the 
optimum amounts of design variables are found from discrete values to minimize the weight of the 
structure (W) under constraints on stress (gσ), slenderness ratio (gλ) and displacement (gδ): 
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where Nk is the number of members in kth member group, ak is the discrete cross-sectional 
area of the kth member group which selected from steel pipes in a given profile list ( A~ ), ρe is 



TOPOLOGY OPTIMIZATION OF DOUBLE LAYER GRIDS FOR... 
 

 

215 

the material density, li is the length of the ith element, )(tg

••

U  is ground acceleration at the time 
t, T is the time interval over which the constraints need to be applied, M, C, K and I are the 
mass, damping, stiffness and identity matrices; )(tg

••

U , )(t
•

U  and )(tU are the acceleration, 
velocity and displacement vectors of structure, respectively. 

In time-dependent optimization problems, the stress and the slenderness ratio constraints 
are taken as: 
 ∑ −=

k kk tttg )0,1)(),((max),( σσσ AA  (5) 

 
 ∑ −=

k kkg )0,1)((max)( λλλ AA  (6)  
                                           

where kσ , kσ , kλ and kλ  are the member stress, allowable stress, member slenderness ratio 
and its upper limit for the kth member of double layer grids, respectively. In this study, the 
AISC code provisions are employed for the stress limits and local buckling criteria [9], as 
follows: 
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where yF is the yield stress, E  is the modulus of elasticity and cC  is taken as yFE22π . 
The maximum slenderness ratio is limited to 300 and 240 for tension and compression 

members, respectively. Hence, the slenderness related design constraints can be formulated as 
follows: 
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where Kk is the effective length factor of the kth member (Kk=1 for all truss members) and rk 
is its radii of gyration. 

 In time-dependent optimization process, the allowable vertical displacement (δV) is 
adopted as the width of double layer grids/360 [10]. The displacement constraint is expressed 
as follows: 
 ∑ −=

j Vj ttg )0,1),((max),( δδδ AA  (10) 
 

where δj is the displacement of the jth node. 
To compute the response of structures subjected to time history loading, time history 
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analysis should be implemented. All of the time-dependent stress and displacement constraints 
need to be applied at each point in the desired time interval. To achieve this aim, the time 
interval is divided into ntp subintervals and the time-dependent constraints are imposed at each 
time grid point. Because the total time interval is divided into ntp subintervals, the constraint 
(3) is replaced by the constraints at the ntp+1 time grid points as [11]: 

 

 tpjjjj njttttg ...,,1,0,0)),(),(),(,(,, =≤
•••

UUUAδλσ  (11) 
 
For analysis of the structures subjected to earthquake loading, software framework 

OpenSees [12] is used. The OpenSees is an open source object-oriented software framework 
for static and dynamic, linear and nonlinear finite element analysis of structural systems. In 
this study, the step by step time integration algorithm of Newmark [13] is used in conjunction. 

To solve a constrained optimization problem, its objective function (W) should be modified 
in such a way that the constrained problem should be converted to an unconstrained one. Thus 
only one modified objective function )(Ψ  is minimized [11]. In this paper, Ψ  is defined as:  
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where C  is the penalty function, ne is the number of elements and nj is the number of joints.  
The optimum topology design of double layer grids is a minimization problem, and hence the 

fitness function must be chosen such that the higher the weight of a structure, the lower is its fitness 
and vice-versa. The following relation is selected as the measure of fitness function [14]: 

 

 iiF Ψ−Ψ+Ψ= minmax  (14) 
 

where maxΨ , minΨ  and iΨ  are the maximum and minimum modified objective function value 
in a cycle and the modified objective function value of the ith structure, respectively. 

As two methods ACO and ESO are combined, in order to make the paper self-descriptive, 
first the features of ACO and ESO are briefly explained in Sections 3 and 4, respectively. 
Then the characteristics of ESO-ACO are described in Section 5. 

 
 

3. ANT COLONY OPTIMIZATION (ACO) 
 

ACO method is an algorithm that tries to simulate the real social behavior of ant colonies. 
From nest to the food source, an ant deposits some quantity of pheromone on its path. Other 
ants tend to follow the paths probabilistically where the pheromone concentration is higher, 
adding themselves some quantity of pheromone. The aim of this process is to find the shortest 
(optimal) path. Also, pheromone is subjected to evaporation to increase the probability of 
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achieving the global optimal paths [15]. 
Camp and Bichon [16] employed the ACO method to find the optimum cross-sectional 

area for the elements of space trusses. In this study, their ACO methodology is used to find 
the optimum topology of double layer grids and cross-sectional area of elements.  

The following step-by-step review shows the process of optimization. 
Step 1: Set parameters, initial pheromone intensity τij and amount of visibility ηij associated 

with the path connecting variable i to variable j, as follows:   
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where Wmin is the weight of structure resulting from assigning the smallest available profile to 
each member of the structure, (1-ρ) is the evaporation rate, NP is the number of available 
profiles and a j is the cross-sectional area of the jth available profile.  

Step 2: Combine visibility and trail (pheromone) concentration to obtain the ant 
decision table D, at the cycle tc: 
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where allowed is set of neighboring variables from variable i, and α and β are constants.  

Step 3: Compute pij(tc) that represents the probability to choose the jth quantity for the ith 
variable (0 or 1, for ith topology variable or an area for (i-NTV)th member group) at tcth cycle as: 
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Step 4: Decrease τij, when the ant chooses the jth area for its (i-NTV) member group using 

(18), as follows (this pheromone lowering is not carried out for topology variables): 
 

 




≤≤
≤≤+

<<=
NPj

NDViNTV
tt cijcij 1

1
,10),(.)( θτθτ  (19) 

 
Step 5: Repeat Steps 2 to 4 until all of the ants allocate an amount to primary variable, and 

the first iteration is completed. 
Step 6: Repeat Steps 2 to 5 until each ant in colony has assigned an amount for its 

variables. 
Step 7: Analyze all of the structures and update the trail intensity on the paths with respect 

to the structures fitness, as follows [17]: 
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where Ψ+(tc) is the modified objective function of the best solution from beginning of the cycle 
tc, γ is the number of top ranked ants, μ is the rank of ant (between 1 and γ) and Ψμ is the 
modified objective function of the ant (structure) receiving rank μ. 

Step 8: Terminate the optimization if a stopping criterion is satisfied. If not, return to Step 2. 
In this paper, two convergence criteria are determined: (a) the best solution of each cycle 

remains fixed for 10 cycles, and (b) the number of cycles reaches to 100. After satisfying one of the 
convergence criteria, Phase 1 of the ACO search is completed (Figure 4) where in this figure nAnt 
and |K are the number of ants and the determinant of the stiffness matrix, respectively.  
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Figure 4. The flow chart for topology optimization using ACO 

To motivate the ant colony to search for an improved solution, a Phase 2 local search is 
started by Camp and Bichon [16]. In this article, to achieve a better solution, at the end of this 
phase the local search space of the following phases is defined by the neighborhood of the 
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previous elitist ant’s solution. The value of trail in each phase is reset to τ0 for paths in the 
local search space and set to zero for all other paths. The size of each phase search space 
around the previous elitist ant is approximately evaluated 20% of its original size of available 
profile. The optimization in several phases is implemented until the optimum weight of the 
structure is not changed significantly in two successive phases. 

 
 

4. EVOLUTIONARY STRUCTURAL OPTIMIZATION (ESO) 
 

In this paper, in order to achieve better topology using ACO, some of the ACO parameters are 
improved so that in topology optimization the absence probability of important elements 
decreases. To achieve this aim, the size optimization is performed using ESO, first. Then, the 
location of members with high structural importance is identified using the optimum cross-
sectional areas and the internal forces of members. 

For size optimization of a structure, the following optimization problem is solved using 
ESO: 
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where amin, amax, i

~σ , Rne, F and d are the allowable minimum and maximum cross-sectional 
areas, the target stress of the ith element, a given set of continuous values, the load and 
displacement vectors, respectively. 

The following step-by-step summary shows the process of optimization of (22) using ESO 
algorithm [18]: 

Step 1: Set parameters, initial design variables a0 and the iteration counter k=0.  
Step 2: Compute the displacement vector d(ak) for the current design by carrying out a 

finite element analysis: d(ak)=K(ak)-1F.  
Step 3: For the current design ak, calculate the member stresses )ne...,,1i,( i =σ . 
Step 4: Compare stress of the ith member with its target value )~( iσ . 
Step 5: If absolute stress is above target, increase area by a small increment (Δa); or if 

absolute stress is below target then decrease area by a small increment. 
Step 6: If area reached prescribed lower or upper bound (amin or amax) then freeze area. 
Step 7: Check to see if previously frozen areas need unfrozen. 
Step 8: Put k=k+1, and return to Step 2 unless a stopping criterion is satisfied. 
In this paper, the convergence criterion is assumed that the weight of the structure does not 

change significantly in two successive iterations: 
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5. TWO-STAGE OPTIMIZATION METHOD (ESO-ACO) 
 

In topology optimization of double layer grids, topology and cross-sectional area of elements 
are two different classes of variables (Figure 2). In this paper, the ACO is modified in which 
this method can find better amounts for each class of variables. 

In topology optimization process (Figure 4), the elements are deleted in two different parts: 
(a) constructing solutions, and (b) generating the new random amounts for topology variables 
of unstable structures. To search better amounts for topology variables, a strategy is applied in 
each part of (a) and (b) which are described in sections 5.1 and 5.2, respectively. Using these 
strategies causes that the absence probability of important elements is reduced.  

The type number of compressive and tensile members is determined in Section 5.3. Finally, 
the optimum cross-sectional areas are found in a reduced search space (Section 5.4). 

To achieve this aim, the optimization problem in (22) is first solved using ESO. Then, the 
obtained optimum cross-sectional areas and the internal forces of members are used to 
accomplish the following four modifications (Sections 5.1-5.4). With these adaptations, ACO 
effectively obtains the optimum topology that all of the stress, displacement and slenderness 
ratio constraints are satisfied and the cross-sectional areas are selected from discrete quantities 
i.e. Eqs. (1-4). 

 
5.1 Determining the pheromones of the topology variables 

In order to achieve a better topology, the importance rate of the ith group elements (IRi) is 
calculated as follows: 

 

nbweiMAMAMAMAIR iii ...,,1,)(max, maxmax ===                            (24) 
 

where MAi is the cross-sectional area of a member of the ith group and nbwe is the number of 
bottom and web grids elements. 

Thereafter, the pheromones of the presence or absence of the elements in ith group is 
identified as follows: 
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where τ(i,1) and τ(i,2) are the pheromone of the absence and presence of ith group elements, 
respectively. Therefore the more IRi means more presence pheromone of the ith group 
elements and the existence probability of these elements in structure increases. τmin is the 
minimum pheromone that the following formulations are adopted [19]: 

 
 )ττ( 210min ττ =  (26) 
where 
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5.2 Enhancing the generation of new random stable structures 

Numerous unstable structures are produced in topology optimization procedure of double 
layer grids using ACO and ESO-ACO. In this article, after finding each unstable structure, a 
new random structure is constructed and then its stability is checked. This process is 
continued until a stable structure is produced. To increase the efficiency of ESO-ACO for 
producing a new structure, ith group elements are deleted randomly from the ground structure 
if the following relationship is satisfied:  
 
 minIRIRi ≤  (28) 

 
where IRmin is the minimum importance rate. Selecting a small amount of IRmin removes a few 
numbers of elements. Also, if IRmin is selected a large amount, near to one, large number of 
elements are subjected to delete randomly. It causes that removing chance of elements which 
have large and small amount of IR, will be equal. So the amount of IRmin should be chosen 
such that the proper number of elements will be deleted by chance.  

 
5.3 Identifying the type number of compressive and tensile members 

After solving the optimization problem (22), the member forces are found. With consideration 
of the stress and slenderness ratio constraints in design stage, the proper cross-sectional area is 
chosen from available profiles for any member with tensile and compressive internal force to 
satisfy the mentioned constraints. 

After designing all of the members, the members that have the same cross-sectional area 
are located in the same type, with respect to compressive and tensile internal force. Then, 
counting the various cross-sectional areas determines the number of compressive and tensile 
element types. 

 
5.4 Lowering the available list profile for elements of each type 

The allocated profile to each element in Section 5.3 is based on the optimization problem (22) 
which has only two constraints. When in the optimization problem, there are several 
constraints such as stress, displacement and slenderness ratio, subject to static and dynamic 
loads, greater cross-sectional area should be probably assigned to the elements. Therefore the 
allocated cross-sectional area to the elements in Section 5.3 can be considered approximately 
as the lowest limit of the available profile. To have more security, the following relationship is 
suggested to the lowest limit of available profile for ith elements type (lbi): 
 1),(1.0 ≥−= iii lbNPdplb  (29) 
where dpi is the digit of the  assigned profile for ith elements type which is calculated in 
Section 5.3. 

The process of ESO-ACO method is schematically shown in Figure 5. 
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Identifying the type 
number of compressive 

and tensile members 

Determining the pheromones of 
the topology variables 

Lowering the available 
list profile for elements 

of each type 

END 

Setting  
parameters 

Solving the optimization 
problem (22) 

Topology optimization of double layer grids 
by ACO (Figure 4), while the random stable 

structures are produced using Section 5.2 

Initialization 

Topology optimization: 
Figure (4), without its Initialization 
 

 
Figure 5. The flowchart of ESO-ACO method 

 
 

6. ARTIFICIAL EARTHQUAKES 
 

For seismic design of structures, either response spectrum or dynamic time history analysis 
subjected to earthquake is required. The dynamic time history analysis has shown its 
superiority both in accuracy and efficiency as compared to other methods [20]. It is then 
necessary to have accelerograms that has compatible characteristics and seismic excitation 
with desired site. Therefore, it is often difficult or may be impossible in some cases to choose 
a proper record for a site, because historically recorded accelerograms for the given site are 
scare. Hence, artificial earthquakes that are statistically influenced by desired properties of the 
given site are very useful for seismic design of structures. A number of approaches based on 
time domain and frequency domain have been proposed for the generation of synthetic ground 
motion records. In this paper, spectral representation method based on time domain procedure 
is used. The non-stationary ground motion ))(( ta  is simulated using this method as [21]: 
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where )(tIm and (.)KTS  are the modulation function and the specific power spectral density 
function (PSDF), respectively. NFR  is the number of sine functions or frequencies included, 
between 0 and maxf , Sδ and NR  are the coefficient of variation and a standard normal variable 
that used in ordinates of PSDF, f∆ is frequency step, and nθ are random phase angles with a 
uniform distribution between 0 and π2 . In this study, the modulation function expressed in 
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[22] is used as follows: 

 








≤≤

≤≤
≤≤

=
−− TtTe

TtT
TtTt

tI
Ttc

d

m

2
)(

21

11

2

1
0)/(

)(  (31) 

 
where 1T , 2T  and T are specific times and the duration of the simulated record, d and c are 
constants. Also, the PSDF of the non-stationary ground motion suggested by Clough and 
Penzien [13] is considered as: 
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where 0S  is the constant PSDF of input white-noise random process; gf and gξ are the 

characteristic ground frequency and the ground damping ratio; ff and fξ are parameters for a 
high-pass filter to attenuate low frequency components. The parameters for the generation of 
simulated ground motion are selected according to values that proposed by Moller et al. [23] 
as following: 

 
Table 2. The parameters for generation of simulated ground motion 

Parameter 2/350 scmaG ≤  2/700350 scmaG ≤≤  2/700 scmaG ≥  

T (sec) 5.12 10.24 20.48 

T1 (sec) 0.50 1.50 2.00 

T2 (sec) 4.00 8.00 16.00 

c 2.0 1.0 0.7 

d 2.0 2.0 2.0 

NFR 100 200 300 

fmax (Hz) 12 15 15 

Sδ  0.40 0.40 0.40 

 
Numerical integration of artificial ground motions in the time domain often results in non-

physical shifts in velocity and displacement time histories. Many methods are available to 
perform correction of artificial ground motion and eliminate the unrealistic velocity or 
displacement drift. In this paper, the method proposed by Yang et al. [24] is used for this 
purpose. In this approach, the baseline correction is firstly imposed on the data of artificial 
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ground motion in the time domain using the least-square curve fitting technique, and then a 
windowed filter in the frequency domain is used to eliminate the components that cause long-
period oscillations in the derived displacement. The corrected record is finally compatible with 
the code design spectrum and is scaled to a peak acceleration aG, a random peak value that 
could occur at the site in case of an earthquake.  

Because of the time consuming analysis of double layer grids subjected to earthquake 
loading, in this paper T is selected as the smallest value of Table 2 (5.12 sec). Also, aG is 
assumed as 0.3 times the gravity acceleration (294 cm/s2). Therefore, the parameters for 
generation of ground motion are selected from the first column of Table 2. The modified 
simulated ground motion is shown in Figure 6. 
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Figure 6. The modified obtained artificial ground motion 

 
These types of artificial records have been used in literature as horizontal ground 

acceleration. According to code of practice for skeletal steel space structures [25], the ratio of 
response spectrum values of the vertical earthquake to horizontal one must be selected more 
than 0.667. Also, it is recommended that for the space structures with periods more than 0.2 
sec, this minimum ratio to use. It is noted that in focal or near fault regions, this minimum 
ratio is registered more than 1 for periods that are less than 0.1 sec [25]. In this paper, for 
more safety, this minimum ratio is considered as 1 instead of 0.667. Therefore, the artificial 
ground motion shown in Figure 6 is selected as vertical ground acceleration. 

 
 

7. EXAMPLE: 10×10 DOUBLE LAYER GRID 
 

A square-on-square double layer grid with 221 nodes and 800 elements is presented to 
examine and verify the proposed optimization method. The depth of the double layer grid and 
the node spacing in the top and bottom chord is 290 cm and 400 cm, respectively. The ground 
structure is assumed to be supported at perimeter nodes of bottom grid (Figure 7). 
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Figure 7. A 10×10 double layer grid 

 
The assumed material is steel with a Young’s modulus and mass density of 2.1×106 

kg/cm2 and 7850 kg/m3, respectively. Gravity acceleration is considered as 981 cm/s2 and the 
dead load (DL) on double layer grid is 180 kg/m2. This distributed load is assigned to the 
nodes of the top grid in the proportion of their load bearing area [26]. 

The cross-sectional area of members is selected from the pipe profiles available in Table 3, 
where OD and TH are outer diameter and thickness in centimeter, respectively.  

 
Table 3. Available pipe profiles 

No. OD TH No. OD TH No. OD TH No. OD TH 

1 4.83 0.26 6 10.80 0.36 11 16.86 0.45 16 32.39 0.71 

2 6.03 0.29 7 11.43 0.36 12 19.37 0.45 17 35.56 0.80 

3 7.61 0.29 8 13.30 0.40 13 21.91 0.45 18 40.64 0.88 

4 8.89 0.32 9 13.97 0.40 14 24.45 0.63 19 45.72 1.00 

5 10.16 0.36 10 15.90 0.45 15 27.30 0.63    

 
The number of ant, γ, ρ and θ are selected as 100, 10, 0.5 and 0.67, respectively [16]. The 

computational results show that the other specifications of ACO and ESO-ACO which are 
shown in Table 4 are good choices. 
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Table 4. Specifications of ACO and ESO-ACO methods 

i
~σ  (kg/cm2)  

Parameter α β amin 
(cm2) amax(cm2) Δa(cm2) IRmin ε  Tension 

members 
Compression 

 members  

Value 1 0.2 1.5 50 0.05 0.2 0.001 1440 1200 
 
The bottom and diagonal members are tabulated in 80 different groups (NTV=80). Using 

the values of Table 4, the optimization problem (22) is solved, and the number of member 
types is obtained as 3 for tensile members and 12 for compressive members (Section 5.3), 
which resulted in 95 design variables. The optimum structure is shown in Figure 8, in which 
the thickness of each element is directly proportional to its cross-sectional area. 

 

  

  
Figure. 8 The optimum structure using the ESO: (a) double layer grid, (b) top layer, (c) diagonal 

layer, and (d) bottom layer 
       
 Considering IRmin=0.2, stating in (28), causes that the positions of members which are 

allowable and unallowable to delete randomly, are determined as shown in Figure 9 with the 
same small and large thickness, respectively. 
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Figure. 9 The positions of members which are allowable and unallowable to delete randomly: (a) 

diagonal layer, (b) bottom layer 
 
This example is optimized in three cases as follows: 
Case 1: Size optimization of the ground structure. 
Case 2: Topology optimization using ACO. 
Case 3: Topology optimization using ESO-ACO. 
In each of these three cases, the constraints should be calculated for load combinations 

proposed by AISC code. The load combinations are as follows [9]: 
 

 
)(75.0:

:

zEDLLoadingDynamic
DLLoadingStatic

±
 (33) 

 
where EZ is the vertical time history loading. Also, for dynamic loading, the constraints are 
checked at 257 grid points with time step of 0.02 sec. 

The members are grouped for reduction of the search space. To achieve this aim, an 
introductory static analysis is first performed in which all members have the same cross-
sectional area. Then, the entire range of axial forces is divided into several equal ranges for 
both of the tension and compression members. Each member of the double layer grid is placed 
into various groups according to its amount of axial force. It is noted that the number of these 
equal ranges for tension and compression members are determined in Section 5.3.  

To consider the stochastic nature of the ACO and ESO-ACO approaches, seven sample 
optimization runs are performed for each design case and the achieved optimal solutions for 
Cases 1 to 3 are presented. 

In all of the following figures, (a), (b), (c) and (d) are double layer grid, top layer, diagonal 
layer and bottom layer, respectively. Furthermore in these figures the thickness of each 
element is directly proportional to its cross-sectional area. 

 
7.1. Static Loading 

In Cases 1, 2 and 3, the optimum structures are shown in Figures (10-12), which the optimum 
weights of these structures are obtained as 21497 kg, 17256 kg and 15979 kg, respectively. 
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Figure 10. Optimum ground structure in Case 1 

 

 
Figure 11. Optimum topology in Case 2 

 

       
Figure 12. Optimum topology in Case 3 

 
7.2. Dynamic Loading 

The optimum structures in Cases 1, 2 and 3, are shown in Figures (13-15), where the optimum 
weights of these structures are obtained as 22880 kg, 19581 kg and 18285 kg, respectively. 

 

  
Figure 13. Optimum ground structure in Case 1 
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Figure 14. Optimum topology in Case 2 

 

 
Figure 15. Optimum topology in Case 3 

 
The best optimum weights of all cases are listed in Table 5 to compare with each other. 
 

Table 5. Comparison of the optimum weights of structure for Cases 1, 2 and 3 

Optimum Weight (kg) 
Loading 

Case 1 Case 2 Case 3 

Static 21497 17256 15979 

Dynamic 22880 19581 18285 

 
These values validate that topology optimization of double layer grids achieves better 

weight than their size optimization with the same constraints. 
To evaluate the better comparison of ACO and ESO-ACO to achieve the optimum 

topologies, optimum weights of the topologies attained for Cases 2 and 3 are listed in Table 6 
for seven sample runs where the weight of topologies shown in Figures. (11, 12, 14 and 15) is 
highlighted.  
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Table 6. Optimum weights of the topologies attained for Cases 2 and 3 for seven sample runs 

Optimum Weight (kg) 
Loading Case 

No. Sample 
1 

Sample 
2 

Sample 
3 

Sample 
4 

Sample 
5 

Sample 
6 

Sample 
7 

2 17913 18526 17583 17256 17340 17522 17418 
Static 

3 16745 17186 17288 16616 15979 16487 16756 
2 22895 20365 20844 20144 21879 19581 21842 

Dynamic 
3 18778 19437 18285 19676 19830 18832 18733 

 
The mean )(W  and the standard deviation (SD) of these optimum weights with ns testing 

samples are listed in Table 7 and are calculated as follows: 
 

  
ns
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Table 7. The mean and the standard deviation of the optimum weights 

Loading Case No. W (kg) SD (kg) 

2 17651 440 
Static Loading 

3 16722 439 

2 21079 1169 
Dynamic Loading 

3 19082 570 
 
All of the statistical values of Table 7 demonstrate that the ESO-ACO in topology 

optimization of double layer grids achieves better performance than the ACO with 
consideration of various loadings. It is noted that although for static loading the SD of Cases 2 
and 3 are approximately the same, but observing Table 7 indicates that in six samples, Case 3 
achieves lower weight than the smallest weight in Case 2. 

 
 

8. CONCLUSIONS 
 

In this paper, a two-stage optimization method (ESO-ACO) has been proposed for topology 
optimization of double layer grids subject to static and time-history loading (e.g. earthquake) 
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and uses ground structure approach. In optimization process of ESO-ACO, the weight of the 
structure is minimized under constraints on stress, slenderness ratio and displacement which 
artificial ground motion is used to calculate these structural responses.  

For implementation of ESO-ACO, the location of members with high structural 
significance was first recognized. To achieve this aim, the solution of the size optimization 
problem was found using ESO. Then the outcomes of ESO (optimum cross-sectional areas 
and the internal forces of members) were used to improve ACO through four modifications. 

The proposed method was applied for topology optimization of a double layer grid and the 
optimization was implemented in three cases which their results are as follows: (a) ESO-ACO 
method obtains the optimum topologies with lower weight than those of optimum topologies 
attained by ACO with consideration of various constraints, (b) ESO-ACO approach is more 
reliable than ACO. With respect to the ACO method, ESO-ACO has better solutions and 
standard deviations, and (c) topology optimization of double layer grids causes that these 
structures satisfy the various constraints, subject to static and dynamic loads, with better 
weight than that of the size optimization of ground structures. 
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