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ABSTRACT 
 

A charged system search algorithm (CSS) is applied to the optimal cost design of water 

distribution networks. This algorithm is inspired by the Coulomb and Gauss’s laws of 

electrostatics in physics. The CSS utilizes a number of charged particles which influence 

each other based on their fitness values and their separation distances considering the 

governing law of Coulomb. The well-known benchmark instances, Hanoi network, double 

Hanoi network, and New York City tunnel problem, are utilized as the case studies to 

evaluate the optimization performance of CSS. Comparison of the results of the CSS with 

some other meta-heuristic algorithms indicates the performance of the new algorithm. 
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1. INTRODUCTION 
 

One of the main components of urban water systems is the pipe networks. Pipe networks are 

complex systems that require a high level of investment for their construction and 

maintenance. Nearly 80% to 85% of the cost of a total water supply system is contributed 
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toward water transmission and the water distribution network. A traditional design process 

for a water distribution network is the use of a trial and error approach; however, this 

approach does not necessarily provide a least-cost solution for the problem. Though this 

process leads to safe designs, however, the cost of the water distribution networks is highly 

dependent on the experience of the designer. Thus in order to economize the cost of the 

water distribution networks under design constraints; it is advantageous to cast the problem 

as an optimization problem. 

On the other hand water distribution network design is a large-scale problem, 

complicated by the wide range of possible system operating conditions and the existing 

uncertainties. From a mathematical point of view, significant difficulties are involved due to 

the discrete nature of the pipe diameters and the nonlinearity of the head-loss relationship. 

These lead to a mixed integer nonlinear problem, corresponding to the NP-hard class [1] 

which implies that an optimal solution is not feasible in a polynomial time. Two different 

types of optimization are applied to solve this problem. The first type consists of linear 

programming (LP) and nonlinear programming (NLP). Pipe network optimization problem 

has a degree of nonlinearly due to dependence on unknown pipe discharges, which satisfy 

the nodal demands and hydraulic constraints on unknown pipe diameters. The general idea 

of LP is to relax the non-linearity by assuming a particular flow pattern (or removing one 

pipe from each loop). Then, applying LP to obtain the gradient of the objective function and 

best pipe diameters. Using gradient of the objective function, the flow pattern must be 

revised. The two stage iterative procedure is continued until no further reduction in cost can 

be observed. In NLP, the unknown pipe discharges are represented as a function of the 

unknown pipe diameters by satisfying the hydraulic conditions. Then pipe network is 

optimized to achieve the minimum cost under hydraulic and design constraints [2]. In 

general, the main drawback of these approaches is the nature of optimized domain 

conformation. Sonak [3] proved that this domain in general is convex between the points 

representing minimum values of objective function corresponding to sequential assumptions 

of zero flow rate for one selected pipe from every loop, the optimized domain between these 

points are represented by a concave surfaces. Thus the optimized domain is a concavo 

convex. The final solution achieved by these methods is always dependent on the starting 

point and the complexity of the optimized domain. In order to moderate the unpleasant 

behavior of the LP and NLP methods, the optimization procedure must be repeated with 

different starting points. 

The second type of optimization approaches is the random-based meta-heuristic 

algorithms. Meta-heuristic algorithms often perform well for most of the optimization 

problems. This is because these methods refrain from simplifying or making assumptions 

about the original form. All of these algorithms attempt to find the optimal solution in a 

stochastic manner and avoid local optimum solutions. Meta-heuristics utilize fewer 

mathematical formulas and do not require very well defined mathematical models. They 

also provide efficacious solutions to the high-scale combinatorial and non-linear problems 

[4]. 

The objective of this paper is to employ the recently developed meat-heuristic 

optimization algorithm which is based on principles from physics and mechanics, known as 

Charged System Search (CSS), for optimal cost design of water distribution networks 
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considering the pressure and demand constraints. Here, the numerical simulation is based on 

the CSS method including benchmark problems, and the results are compared with those of 

other existing heuristic approaches. This demonstrates the effectiveness of the present 

algorithm. The CSS is inspired by the governing laws of electrostatics in physics and the 

governing laws of motion from the Newtonian mechanics. The CSS contains some agents or 

charged particles (CPs) that affect each other according to the laws of Coulomb and Gauss 

from electrostatics. The optimization process in the CSS algorithm progresses by 

determining the resultant force affecting on each CP, and then agents are moved toward 

their new positions according to the Newtonian laws of motion. These successive 

movements of the CPs direct the algorithm toward optimum solutions. This algorithm is 

proposed by Kaveh and Talatahari [5]. The CSS method has been applied to a diverse range 

of optimization problems including optimal design of frame structures, geodesic domes, and 

truss structures [6], and optimum design of composite open channels [7]. The diversity of 

the applications will naturally continue grow as the algorithm becomes more widely known. 

The first multi-objective optimization problem appears to have been tackled in [8] in which 

a new multi-objective optimization algorithm, named as CSS-MOPSO, is proposed. The 

proposed algorithm is a hybrid method which is a combination of particle swarm (PSO) 

method and charge system search (CSS). Finally as a new variant of the algorithm 

Talatahari et al. [9] introduced an efficient CSS approach employing the chaos theory 

(CCSS) to solve mathematical global optimization problems.  

In the following, first a brief bibliographical review is presented. Then, the statement of 

the optimal design of water distribution networks is formulated. Review of the CSS is 

presented in section 4. Section 5 contains some illustrative examples. Finally, the 

conclusion is drawn in section 6 based on the reported results. 

 

 

2. A BRIEF BIBLIOGRAPHICAL REVIEW 
 

In the last three decades, a significant number of optimization methods have been applied to 

water distribution network design and maintenance planning, including linear, nonlinear, 

dynamic and mixed integer programming or enumeration techniques [10-16]. The 

algorithms are a combination of primal and dual processes and stop when the difference 

between the best solution and the global lower bound falls within a prescribed tolerance. 

Since the optimization problem is nonlinear, the gradient information may not be attained in 

many instances. This results in failure to reach the optimal solution [17].  

Recently, researchers have focused on meta-heuristic optimization methods. Many of 

these methods are created by the simulation of the natural processes. Genetic algorithms 

(GAs), simulated annealing (SA), particle swarm optimization (PSO), ant colony 

optimization (ACO), harmony search (HS), and charged system search algorithm (CSS) are 

some familiar examples of meta-heuristic algorithms. Simpson et al. [18], Cunha and Sousa 

[19], and Lippai et al. [20] were the first to apply meta-heuristic algorithms, such as GA, 

SA, and tabu search (TS) to water network design. Geem et al. [21] developed HS algorithm 

and tackled the design of a water distribution network using this method. Maier et al. [22] 

used ACO for water distribution optimization and found that the ACO can be 
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computationally efficient. Vairavamoorthy and Shen [23] tested PSO on the benchmark 

problems and concluded that the method identified correctly the optimal solutions. 

Also there is some software for optimum design of water distribution networks. Savic 

and Walters [24] developed the practical software GANET, which applies the GA to water 

network design problems. Reca and Martínez [25] developed the GENOME model, a GA 

based model. They analyzed the performance of this algorithm by applying it to several 

benchmark networks and to a complex real-sized irrigation water distribution network. A 

new computer model called meta-heuristic pipe network optimization model (MENOME) 

has been developed by Reca and Martínez [26]. The MENOME model is an extension of the 

previously developed GENOME model. This computer program includes several additional 

meta-heuristic optimizers. OptiDesigner is other software which applies the GA to water 

network design optimization problems. The program uses EPANET (a hydraulic simulator 

distributed by the US EPA) for the drawing and analyzing the system. This software can 

design the network pipes and find their minimal cost under a set of constraints. The review 

presented here should be considered only as a representative sample of the studies, and the 

reader is also referred to the references in those studies. 

 

 

3. PROBLEM FORMULATION 
 

A typical design problem of water distribution network consists of sizing, i.e., determining 

the size of as many pipes as the equations allow to meet specified pressures and discharges 

throughout the network. Generally the optimization problem can be defined as: how to 

supply an adequate water quantity in order to cover the needed demand for each node 

through a highly interconnected system of pipes, and through using network elements such 

as pumps, reservoirs and tanks. In this study we want to minimize cost of the water network 

design subject to continuity equation, conservation of energy equation, and minimum 

pressure requirements. We assume that the pipe layout, nodal demands, head and velocity 

requirements are all known. The mathematical statement of the optimal design problem can 

be written as: 
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where f (Di , Li) is the cost of pipe i with diameter Di and length Li , and Np is the number of 

pipes in the network. In continuity constraint Qin is the flow rate to the node, Qout is the flow 

rate out of the node, and Qe is the external inflow rate at the node. In energy constraint hf is 

the head loss computed by the Hazen-Williams or Darcy-Weisbach formulae and Ep is the 
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energy added to the water by a pump. Also Hj is the pressure head and Hj
min

 is the minimum 

required pressure head at node j in which j=1, 2,...,Nn . Nn is the number of nodes in the 

network. 

Different forms for the head loss formula have been developed for practical pipe flow 

calculations. In this study, the head loss (hf) in the pipe is expressed by the Hazen-Williams 

formula: 

 

 
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 Q
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Here ω = 10.6668, α = 1.85, β = 4.87, Qi is the pipe flow (m
3
/s), Ci is the is the Hazen-

Williams roughness coefficient which ranges from 150 for smooth-walled pipes to as low as 

80 for old, corroded cast iron pipes, Di is pipe diameter (m), and Li is pipe length (m). 

Higher ω values require larger diameters to deliver the same amount of water, because these 

can violate the minimum pressure requirements, while the lower ω values may just meet the 

constraint. Thus, higher ω values eventually require more expensive water network designs 

[27]. 

 

 

4. CHARGED SYSTEM SEARCH ALGORITHM 
 

4.1. General consepts 

The charged system search (CSS) is a population-based search approach, where each agent 

(CP) is considered as a charged sphere with radius a, having a uniform volume charge 

density which can insert an electric force to the other CPs. The magnitude of forces for the 

CP located in the inside of the sphere is proportional to the separation distance between the 

CPs, and for a CP located outside the sphere it is inversely proportional to the square of the 

separation distance between the particles. The resultant forces or acceleration and the 

motion laws determine the new location of the CPs. The pseudo-code for the CSS algorithm 

can be summarized as follows: 

Step 1: Initialization. The initial positions of CPs are determined randomly in the search 

space and the initial velocities of charged particles are assumed to be zero. The values of the 

fitness function for the CPs are determined and the CPs are sorted in an increasing order of 

fitness values. The best CP among the entire set of CPs will be treated as Xbest and its related 

fitness will be fitbest. Similarly, the worst CP will have fitworst. A number of the first CPs 

and their related values of the fitness function are saved in a memory, so called charged 

memory (CM). 

Step 2: Forces determination. Calculate the force vector for each CP as 
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where Fj is the resultant force acting on the jth CP; N is the number of CPs. The magnitude 

of charge for each CP (qi) is defined considering the quality of its solution as: 
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where fitbest and fitworst are the best and the worst fitness of all the particles; fit(i) 

represents the fitness of the agent i; and N is the total number of CPs. The separation 

distance rij between two charged particles is defined as follows: 
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where Xi and Xj are the positions of the ith and jth CPs respectively, Xbest is the position of 

the best current CP, and ε is a small positive number to avoid singularities. Here, pij is the 

probability of moving each CP towards the others and is obtained using the following 

function: 
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where rand is a random number uniformly distributed in the range of (0,1). 

As mentioned before, each CP is considered as a charged sphere with radius a, having a 

uniform volume charge density. A suitable value for a is defined considering the size of the 

search space as: 
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in which xi,max and xi,min are the lower and upper bound of the ith decision parameter 

respectively; and nv is the number of design variables. 

Step 3: Solution construction. Each CP moves to the new position and the new velocity 

is calculated as: 
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where ka is the acceleration coefficient; kv is the velocity coefficient to control the influence 

of the previous velocity; and randj1 and randj2 are two random numbers uniformly 

distributed in the range of (0,1).  
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The effect of the previous velocity and the resultant force affecting a CP can be 

controlled by the values of kv and ka, respectively. Excessive search in the early iterations 

may improve the exploration ability; however it must be deceased gradually in order to 

increase the exploitation ability. Since ka is the parameter related to the attracting forces, it 

works as a control parameter of the exploitation property [5]. Therefore, choosing a linear 

incremental function (from 1 in initial to 1.5 at last) can improve the performance of the 

algorithm. Also, the direction of the previous velocity of a CP is not necessarily the same as 

the resultant force. This shows that the velocity coefficient kv controls the exploration 

process and therefore a linear decreasing function (from 2 in the start to 0.5 in the end) can 

be selected. 

Step 4: Updating process. If a new CP exits from the allowable search space, a harmony 

search-based handling approach is used to correct its position. According to this mechanism, 

any component of the solution vector violating the variable boundaries can be regenerated 

from the CM (charged memory) or by randomly choosing one value from the possible range 

of values. This mechanism will only be used for the CPs which exist from the allowable 

search space to become their solution practical. For more details, the reader may refer to 

[28]. In addition, if some new CP vectors are better than the worst ones in the CM, they are 

included instead of the worst ones in the CM. 

Step 5: Terminating criterion control. Steps 2–4 are repeated until a terminating 

criterion is satisfied. The terminating criterion is one of the following conditions (the one 

which occurs earlier): 

1) Maximum distance of CPs: the maximum distance between CPs is less than a pre-

determined value (3 × a in this paper); or 

2) The maximum number of iterations: the optimization process is terminated after a 

fixed number of iterations. 

For many heuristic algorithms it is a common feature that if all the agents get gathered in 

a small space, i.e., if the agents are trapped in part of the search space, escaping from this 

may be very difficult. Since prevailing forces for the CSS algorithm are attracting forces, it 

looks as if the above problem has remained unsolved for this method. However, having a 

good balance between the exploration and the exploitations, and considering three steps 

containing self-adaptation, cooperation and competition, can solve this problem [5]. These 

three essential concepts are considered in this algorithm. Moving towards good CPs 

provides the self-adaptation step. Cooperating CPs to determine the resultant force acting on 

each CP supplies the cooperation step and having larger force for a good CP, compared to a 

bad one, and saving good CPs in the CM provide the competition step. 

 

4.2. CSS algorithm-based water distribution network optimization procedure 

Application of meta-heuristics falls into a large number of areas; one of them is optimal 

pipelines sizing for water distribution systems. As it was mentioned previously in Section 3, 

size optimization of water distribution systems involves determining optimum values for 

pipe diameters that minimize the cost. This minimum design should also satisfy the 

conservation of mass and energy and minimum pressure requirements, Eqs. (1 and 2). 

The CSS algorithm initiates the design process by selecting random values for the design 

variables. Then the algorithm checks the pressure head at each node and calculates the cost 
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(Figure 1). In this procedure choosing design parameters that fulfill all design requirements 

and have the lowest possible cost is concerned, i.e. the main objective is to comply with 

basic standards but also to achieve good economic results. 

In order to handle the constraints, a penalty approach is utilized. If the constraints are 

between the allowable limits, the penalty is zero; otherwise the amount of penalty is 

obtained by dividing the violation of allowable limit to the limit itself. After analyzing a 

model, the pressure of each node is obtained then these values are compared to the 

allowable limits to calculate the penalty functions as: 
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In this method, the aim of the optimization is redefined by introducing the cost function 

as: 
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cost 1 cos(1 ) tF f

      (11) 

 

 

Figure 1. Optimization-simulation model link for the CSS method 

 

The penalty function method has certain drawbacks, for example penalty parameters are 

problem dependent and needs proper parameter tuning to converge to the feasible domain. 

When the penalty parameters are large, penalty functions tend to be ill-conditioned near the 

boundary of the feasible domain and this may result in a local optimal solution or an 

infeasible solution [29]. In this case, repeated runs are suggested by varying the penalty 

parameter until satisfactory results are obtained. Here the constant 1  and 2  are selected 

considering the exploration and the exploitation rate of the search space. ε1 is set to unity 

and ε2 is selected in a way that it decreases the penalties and reduces the variables. Thus, in 

the first steps of the search process, ε2 is set to 1.05 and ultimately increased to 1.2. 
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5. DESIGN EXAMPLES 
 

In this section, common design examples as benchmark problems are optimized with the 

proposed method. The final results are compared to the solutions of other methods to 

demonstrate the efficiency of the present approach. In order to investigate the effect of the 

initial solution on the final result and because of the stochastic nature of the algorithm, each 

example is independently solved 20 times. The initial population in each of these runs is 

generated in a random manner. These examples include three well-known networks: 

 Hanoi network 

 Double Hanoi network 

 New York Water Supply System 

The first problem is proposed by Fujiwara and Khang [13]. This network consists of 32 

nodes, 34 pipes and 3 loops. The network has no pumping station as it is fed by gravity from 

a reservoir with a 100 m fixed head. The second design example is double Hanoi network. 

Because this network is derived from the basic Hanoi network, its optimal cost is known. 

All the parameters for the reservoir, nodes and lines in the double Hanoi water distribution 

network are the same as in the original Hanoi network. The third test problem concerns the 

rehabilitation of the New York City water supply network with 21 pipes, 20 demand nodes, 

and one reservoir. This example first presented by Shaake and Lai [30], in which the 

existing gravity flow tunnels are inadequate to meet the pressure requirements, therefore 

new pipes can be added in parallel to the existing ones. 

 

5.1. Hanoi Water Distribution Network 

For this example the system data are presented in Table 1. Hanoi network (Figure 2.) 

requires the optimal design of 34 pipes, allowing a minimum hydraulic head of 30 m for all 

its 32 nodes, by means of 6 available diameters. The total solution space is then equal to 6
34

 

= 2.87 × 10
26

. The cost of commercially available pipe sizes {12, 16, 20, 24, 30, 40; in 

inches} is {45.73, 70.40, 98.38, 129.30, 180.80, 278.30 in dollar/meter}.  
 

Table 1: Hanoi network data 

Node 

number 
Demand (m³/h) Pipeline Length (m) 

CSS optimal 

diameter (in) 

01 – 01 100 40 

02 890 02 1350 40 

03 850 03 900 40 

04 130 04 1150 40 

05 725 05 1450 40 

06 1005 06 450 40 

07 1350 07 850 40 

08 550 08 850 40 

09 525 09 800 40 

10 525 10 950 30 

11 500 11 1200 24 

12 560 12 3500 24 
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13 940 13 800 20 

14 615 14 500 16 

15 280 15 550 12 

16 310 16 2730 12 

17 865 17 1750 16 

18 1345 18 800 24 

19 60 19 400 20 

20 1275 20 2200 40 

21 930 21 1500 20 

22 485 22 500 12 

23 1045 23 2650 40 

24 820 24 1230 30 

25 170 25 1300 30 

26 900 26 850 20 

27 370 27 300 12 

28 290 28 750 12 

29 360 29 500 16 

30 360 30 2000 12 

31 105 31 1600 12 

32 805 32 150 16 

  33 860 16 

  34 950 24 

 

 

Figure 2. Network layout for the Hanoi problem 

 

Table 2 reports the best results and the required number of analyses for convergence in 

the present algorithm and some of other heuristic methods. In this example, a population of 

30 individuals is used and CSS found the best feasible solution of 6.081 ×10
6
 $ after 548 

iteration (16,440 analysis). The hydraulic head for each nude is shown in Figure 3. As 

shown in this figure the minimum value for pressure head is equal to 30.0061 m (in nude 

11). The best cost of the SCE [17], ACO [31], MENOME [26], and PSO [32] is 6.220, 
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6.134, 6.173, and 6.093 million dollars, respectively. Also the minimum cost obtained by 

the GENOME [25], TS [33], PSHS [34], and GHEST [35] is 6.081 ×10
6
 $ after 50000, 

40200, 17980, and 16,600 function evaluations, respectively. The convergence history of the 

results obtained by the CSS algorithm is shown in Figure 4. 

 

Table 2. Performance comparison for the Hanoi network 

Method* Cost (10
6
$) No. of analysis 

SCE [17] 6.220 25,402 

MENOME [26] 6.173 26,457 

ACO [31] 6.134 85,600 

PSO [32] 6.093 6,600 

GENOME [25] 6.081 50,000 

TS [33] 6.081 40,200 

PSHS [34] 6.081 17,980 

GHEST [35] 6.081 16,600 

CSS (present work) 6.081 16,440 

* For all methods ω =10.6668 

 

 
Figure 3. Comparison of the allowable and existing hydraulic head for the nodes of the 

Hanoi network using CSS 

 

5.2. Double Hanoi network 

Network layout for this problem is shown in Figure 5. All the parameters for the reservoir, 

nodes and lines in the double Hanoi water distribution network are the same as in the 

original Hanoi network on both mirrored parts except for the first pipe (from the reservoir to 

node 2), which is shortened from the original 100 to 28.9 m. This change was made for the 

sake of obtaining the same head in node 2 (with a diameter of 40 in, which will certainly be 

proposed here by any optimization method) as in the original Hanoi network. In such 

conditions the optimal solution for the double Hanoi network should have the same 

diameters on the corresponding pipes as in the original Hanoi network (on both mirrored 
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parts). The total solution space is then equal to 6
67

 = 1.37 × 10
52

.  
 

 

Figure 4. The convergence history for the Hanoi network using the CSS algorithm 

 

 
Figure 5. Double Hanoi network 

 

In node 2 the same demand is as in the original Hanoi network; it is not doubled. Under 

these conditions the reference optimal solution (global) could be evaluated as follows [36]: 

 

 111 9.2822 CCLCC HDH   (12) 

 

in which CDH is the optimal cost of the double Hanoi network; CH is the reference optimal 
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cost of the Hanoi network (6.081 ×10
6
 $); L1 is the length of the first pipe on the original 

network (100 m); and C1 is the unit price of diameter 40 in (278.28 $).  

For our solution described in the previous example (6.081 ×10
6
 $), according to Eq. 13 

the global optimum solution of the double Hanoi network should be 12.114×10
6
 $. The best 

results obtained with CSS, GALP, GA, OptiDesigner, and the HS [36] are summarized in 

Table 3. The reference optimal cost of the Hanoi network for CSS, HS, and GA is 

6.081×10
6
 $. But CSS found the best feasible solution of 12.119×10

6
 $ after 100,000 

analysis (a population of 50 CPs is used) and the best cost for the HS and GA are 12.405 

and 12.601 million dollars, respectively. In addition, deviation from global optimum 

(12.114×10
6
 $) for the CSS algorithm is 0.04%, while it is 2.39% and 4.01% for the HS and 

GA, respectively. This result demonstrates that the CSS algorithm is better in term of 

closeness to the global minimum. The Convergence history for double Hanoi network using 

the CSS algorithm is shown in Figure 6. 
 

 

 

Table 3: Performance comparison for the Double Hanoi network 

Method  Hanoi network Double Hanoi 

network 

Deviation from reference 

global optimum (%) 

CSS (present work) 6,081,087 12,118,706 0.04 

GALP [36] 6,057,697 12,073,039 0.04 

HS [36] 6,081,087 12,404,680 2.39 

GA [36] 6,081,087 12,600,624 4.01 

OptiDesigner [36] 6,115,055 12,795,541 5.62 

 

 
 

Figure 6. The convergence for the double Hanoi network using CSS algorithm 
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5.3. The New York City water supply tunnels 

A number of studies in pipe network optimization have examined the expansion of the New 

York water supply system. The common objective of the studies was to determine the most 

economically effective design for additions to the then-existing system of tunnels that 

constituted the primary water distribution system of the city of New York (Figure 7). For 

each of the tunnels there is the option to leave the tunnel (e.g. a null option) or the option to 

provide a duplicate tunnel with one of fifteen different diameter sizes. i.e., 16 possible 

decisions including the do nothing option and 21 pipes to be considered for duplication, the 

total solution space is 16
21

 = 1.93 × 10
25

 possible network designs. The Hazen-Williams 

coefficient value for new pipes is taken as 100. For summaries of system data and unit costs 

of tunnel network, please refer to [37].  

Table 4 shows the best cost and the required number of analyses for convergence of the 

present algorithm and some other meta-heuristic algorithms. The CSS-based algorithm 

needs 2000 analyses to find the best solution while this number is equal to 7014, 4475, 

3373, 2400 and 2100 analyses for ACO [22], PSHS [34], HS [34], PSO [38] and GHEST 

[35], respectively. It means that, CSS algorithm appeared really fast, since the required 

number of analysis is the best performance published to date. CSS approach obtained the 

best cost of 38.64×10
6
 $, this optimal solution indicates an excellent agreement with the 

previous designs reported in the literature. In addition the difference between the best and 

the worst results of this problem for CSS in 20 tests is 3.61% and the average cost is 

40.08×10
6
 $. The minimum nodal pressure requirement for all nodes, except 16 and 17, is 

255 ft and for nodes 16 and 17 it is 260 ft and 272.8 ft, respectively, while the pressure 

heads for these critical nodes (16, 17, and 19) obtained by CSS is 260.08 ft, 272.87 ft, and 

255.05 ft, respectively. 
 

 
Figure 7. General layout of New York network 
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Table 4. Performance comparison for the New York Tunnel problem 

Method* Cost (10
6
$) No. of analyses ω 

GA [24] 40.42 10
6
 10.9031 

TS [33] 40.42 35,300 10.9031 

ACO [22] 38.64 7014 10.6668 

PSHS [34] 38.64 4475 10.6668 

HS [34] 38.64 3373 10.6668 

PSO [38] 38.64 2400 N/A 

GHEST [35] 38.64 2100 10.6668 

CSS (present work) 38.64 2000 10.6668 

 

 

6. DISCUSSION AND CONCLUSION 
 

This paper applies a new algorithm for discrete cost optimization of water distribution 

networks, so called the charged system search (CSS) based on some basic laws of physics 

and mechanics. The optimal network design algorithms are computationally complex and 

generally belong to a group of NP-hard problems. Thus the new population based 

algorithms can be more promising. In this direction in this article we have used the CSS-

based model which contains three levels and some sub-levels as follow: 

 

Level 1: Initialization 

• Step 1: Initialization. Initialize CSS algorithm parameters; Initialize an array of 

Charged Particles with random positions and their associated velocities. 

• Step 2: CP ranking. Evaluate the values of the fitness function for the CPs, compare 

with each other, and sort increasingly. 

• Step 3: CM creation. Store CMS number of the first CPs and their related values of the 

objective function in the CM. 

 

Level 2: Search 

• Step 1: Attracting force determination. Determine the probability of moving each CP 

toward others, and calculate the attracting force vector for each CP. 

• Step 2: Solution construction. Move each CP to the new position and find the 

velocities. 

• Step 3: CP position correction. If each CP exits from the allowable search space, 

correct its position using a harmony search-based handling approach. 

• Step 4: CP ranking. Evaluate and compare the values of the objective function for the 

new CPs, and sort them increasingly. 

• Step 5: CM updating. If some new CP vectors are better than the worst ones in the CM, 

include the better vectors in the CM and exclude the worst ones from the CM.  

 

Level 3: Terminating criterion controlling 

The terminating criterion is one of the following: 

 Maximum number of iterations: the optimization process is terminated after a fixed 
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number of iterations. 

 Number of iterations without improvement: the optimization process is terminated after 

some fixed number of iterations without any improvement. 

 Minimum objective function error: the difference between the values of the best 

objective function and the global optimum is less than a pre-fixed anticipated 

threshold. 

Compared to ACO, both CSS and ACO are randomized search techniques which contain 

a number of agents. The ant algorithms are based on the indirect pheromone communication 

capabilities of the ants, while CSS is based on the direct effect of the electrical forces. The 

quality of the solutions can affect the optimization process in both algorithms. The ACO is a 

discrete algorithm while the CSS is essentially a continuous one. In the ACO method, the 

probability of selecting a good section is higher than the others and the pheromone of a good 

section will increase favoring the section to be selected by more ants. Similarly, for the CSS, 

a good solution creates a bigger force than others and attracts more CPs. This results in 

having more searches around the good solution and increases the probability of finding 

better solution vectors. 

The HS algorithm, similar to CSS, includes a memory storing the feasible vectors. A new 

harmony vector is generated from the harmony memory, the memory considerations, pitch 

adjustments, and randomization. In the HS, in each iteration only one solution vector is 

generated, while in the CSS a number of CPs is created. The HS utilizes the stored vectors 

in HM to create new vectors directly, while CSS uses the stored vectors in determining the 

electrical forces. Only when a CP swerves from the search space, the charged memory is 

utilized directly. In special conditions, the CSS works as a HS method and uses some of 

operators of the HS algorithm as an auxiliary tool. 

In order to demonstrate the performance of the CSS, it is applied to the design of three 

water distribution networks (Hanoi, Double Hanoi, and New York network). Compared to 

other meta-heuristics such as GA, TS, PSO, HS and ACO, the CSS has less computational 

cost and can determine the optimum result with a smaller number of analyses. The 

comparison of the results of the CSS results with those of the other heuristics shows the 

performance of the present algorithm and demonstrates the efficiency of the algorithm in 

finding the optimum design of water distribution networks. The future works should focus 

on expanding the CSS-based algorithm to other fields of optimization due to high potential 

of the algorithm in solving difficult optimization problems. Simultaneous optimization of 

topology and geometry of pipe networks is one of these problems.  
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