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ABSTRACT 
 

A new method for structural topology optimization is introduced which employs the 

Isogeometric Analysis (IA) method. In this approach, an implicit function is constructed 

over the whole domain by Non-Uniform Rational B-Spline (NURBS) basis functions which 

are also used for creating the geometry and the surface of solution of the elasticity problem. 

Inspiration of the level set method; zero level of the function describes the boundary of the 

structure. An optimality criterion is derived to improve the implicit function towards the 

optimum boundaries. The last section of this paper is devoted to some numerical examples 

in order to demonstrate the performance of the method as well as the concluding remarks. 
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1. INTRODUCTION 
 

During the last two decades topology optimization methods have been improved by many 

researchers. In pioneering procedures on structural topology optimization, introduced by 

BendsØe and Kikuchi [1], the results are an array of material density in the finite elements 

which are used for discretization of the domain of interest. In such element based methods 

the material density function is constant within each finite element. The jogged boundaries 

and checkerboarding patterns are the well known drawbacks of such methods especially 

when a coarse mesh and lower order finite elements are used [2]. Several remedies are 

introduced to prevent these instabilities and keep the results applicable [2-3]. 

As the next generation of topology optimization methods, nodal based methods were 
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developed that have manifested the capability of removing the mentioned instabilities in 

element based methods. In these approaches the material densities are determined at the 

discretization nodes or points by considering a function throughout the domain. Level set 

methods, by Sethian, Wang and Allaire [4-6], and topology optimization by implicit 

function and regularization, by Belytschko [7], use this technique for topology optimization. 

On the other hand, it has been shown that these methods can be used when the mesh-less 

methods are employed for analyzing the structure [8]. 

Recently, the Isogeometric Analysis (IA) method has been utilized for topology 

optimization of structures instead of the FE approach where the NURBS basis functions 

have also been used for approximating the material density function by Hassani et al [9-10]. 

Density function shows the distribution of material throughout the domain of interest and is 

approximated by NURBS basis functions. Control points are restricted to be within the zero 

(for empty areas or voids) and one (for solid areas) interval. Apart from preventing 

checkerboard patterns and mesh dependency, the IA method has shown to be well-matched 

with topology optimization problems. Since the density function varies between zero and 

one the porous media might appear in optimum layout. Although, it is alleviated by the 

power law in SIMP method [11, 12], it is not totally removed.  

In this article, following [9] in order to prevent the porous media, inspired from level set 

methods [4-6] as well as topology optimization by implicit function [7], a nodal based method is 

presented. In this approach, the recently developed IA approach is employed for analysis and an 

implicit function is constructed over the whole domain by NURBS basis functions where zero 

level of the function describes the boundary of the structure. An updating scheme is suggested to 

improve the implicit (density) function towards finding the optimum boundaries. Although an 

optimality criteria method is used in this paper, different optimization methods such as Methods 

of Moving Asymptotes (MMA) [13] and heuristic methods [14-16] can be utilized for this 

purpose. 

IA is a relatively new method proposed and developed by Hughes and his co-workers in 

recent years [17-21]. This method is a logical extension and generalization of the classical 

finite element method and has many features in common with it. However, it is more 

geometrically based and takes inspiration from Computer Aided Geometry Design (CAGD). 

A primary goal of IA is to be geometrically precise no matter how coarse the discretization 

beside simplification of mesh refinement by eliminating the need for communication with 

the CAD geometry once the initial model is constructed. The main idea of the method is to 

use the same basis functions which are employed for geometry description for 

approximation and interpolation of the unknown field variables as well. Due to some 

interesting properties of B-splines and NURBS, they are perfect candidates for this purpose. 

The outline of this paper is as follows. In Section 2, the IA method for plane stress 

problems is briefly explained. Section 3 is devoted to the concise definition of the topology 

optimization problem as well as creating the implicit function and derivation of the 

optimality criteria. In Section 4 a few examples are presented to demonstrate the 

performance of the method. Finally, the results are discussed in the last section. 
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2. ISOGEOMETRICAL ANALYSIS 
 

By recent developments in the CAGD technology, the geometrical definition and generation 

of complex surfaces and objects have become achievable [22]. For this purpose, Splines and 

some modified versions of them, i.e. NURBS and T-Splines, are commonly employed. The 

main idea in the IA method is that any component of a field variable which satisfies a 

governing partial differential equation, i.e. the solution, is imagined as a (hyper-) surface 

that can be constructed by the proper versions of splines [23,24]. For example, in 

displacement method for elasticity problems, each of the components of the displacement 

vector is considered as a surface which can be constructed by NURBS and the defining 

parameters of these surfaces are sought. The criteria for finding these parameters can be 

obtained by minimizing a total potential energy functional or equivalently by 

implementation of the virtual work principle.  

The IA method has some features in common with other numerical methods such as 

finite elements and mesh-free methods. Discretization of the domain of interest is performed 

by using the control points of splines instead of, for instance, using the finite element 

meshes, finite difference grids, or collection of points in the meshfree methods. Also, the 

basis functions of these splines are used both for approximation of the unknown variables as 

well as for interpolation.  

The procedure of the IA for elasticity problems is comprised of the following steps. First, 

the geometry of the domain of interest is constructed by using the NURBS technology. 

Depending on the complexity of the geometry and topology of the problem, multiple 

NURBS patches can be used in this stage. These patches may be thought of as kind of 

macro elements in the finite element method and can be assembled in the same fashion [17]. 

In the next step, borrowing the ideas from isoparametric finite elements, the geometry as 

well as the displacement components are approximated by making use of the NURBS basis 

functions. Then, following a standard procedure like the weighted residuals or the 

variational methods, or similarly using the principle of virtual work, the approximated 

quantities are substituted into the obtained relations. This will result in a system of linear 

equations to be solved. One should note that following this procedure the control variables 

are evaluated and to obtain the displacements at certain points a kind of post processing is 

required. A brief introduction to the construction of NURBS surfaces followed by derivation 

of IA formulation for plane elasticity problems are the subjects of the next two subsections. 

 

2.1 Surface and volume definition by NURBS 

A NURBS surface is parametrically constructed as [22] 

 
1 2
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Where 
,i jP  are 

1 2( 1) ( 1)n n    control points, ,i j  are the associated weights, and 

1, ( )i pN r
 
and 

2, ( )j pN s
 
are the normalized B-splines basis functions of degree 1p  and 2p , 
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respectively. The i-th B-spline basis function of degree 1p , denoted by 
1, ( )i pN r , is defined 

recursively as: 
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(2) 

 

Where  
10 1, ,..., mr r rr

 is the knot vector and ir  
are a non-decreasing sequence of real 

numbers, which are called knots. The knot vector  
20 1, ,..., ms s ss

 
is employed to define 

the 
2, ( )j pN s  basic functions for other direction. The interval 

1 20 0[ , ] [ , ]m mr r s s  forms a Patch 

[17]. A knot vector, for instance in r direction, is called open if the first and last knots have a 

multiplicity of 1 1p  . In this case, the number of knots is equal to 1 1 1 1m n p   . Also, the 

interval  1,i ir r   is called a knot span where at most 1 1p   of the basic functions 
1, ( )i pN r

 
are non-zero which are 

1 1, ( )i p pN r , …, 
1, ( )i pN r . For more details Reference [17] can be 

consulted. 

 

2.2 Numerical formulation for plane elasticity problems 

In the IA method, the domain of problem might be divided into subdomains or patches so 

that B-spline or NURBS parametric space is local to these patches. A patch is like an 

element in the finite element method and the approximation of unknown function can be 

written over a patch. Therefore, the global coefficient matrix, which is similar to the 

stiffness matrix in elasticity problems, can be constructed by employing the conventional 

assembling which is used in the finite element method.  

By using the NURBS basis functions for a patch p , the approximated displacement 

functions  ,p u vu  can be written as 

 
1 2

, ,

0 0

( , ) ( , )
n n

p p

i j i j

i j

r s R r s
 

u u

 

(3) 

 

Where , ( , )i jR r s  is the rational term in Equation (1). It should be noted that the geometry 

is also approximated by B-spline basis functions as 

 
1 2

, ,

0 0

( , ) ( , )
n n

p p

i j i j

i j

r s R r s
 

x x

 

(4) 

 

By using the local support property of NURBS basis functions, the above relation can be 

summarized as it follows in any given   1 1( , ) , ,i i j jr s r r s s 
   . 
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1 2
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(5) 
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r s R r s
   

  x x R X

 

(6) 

 

The strain-displacement matrix B  can be constructed from the following fundamental 

equations 

 

  ε Du ε BU  (7) 

 

Where D  is the differential operation matrix. Following a standard approach for the 

derivation of the finite elements formulation, the matrix of coefficient can easily be 

obtained. For example, by implementing the virtual displacement method with existence of 

body forces b  and traction forces t  we can write 

 

0,
p p p

T T T

V V
dV dV d  


     ε σ u b u t

 
(8) 

 

Where pV and p  are the volume and the boundary of patch p . 

Now, by substituting  ε B U  from Equation (7) and the constitutive equation σ Cε , 

in Equation (8) and by dropping the non-zero coefficient of TU , the matrix of coefficients 

can be obtained as 

 

p

p T

V
dV K B CB

 
(9) 

 

 

3. TOPOLOGY OPTIMIZATION PROBLEM 
 

The problem at hand is defined as finding the stiffest possible structure when a certain 

amount of material is given. A structure with maximum global stiffness provides a 

minimum for the external work with the real displacement field or minimum mean 

compliance. Since, minimization of mean compliance is equivalent to the maximization of 

the total potential energy, the topology optimization problem can be constructed as below 

[3, 25]. 

 
max min ( )

s ssubject to

and design restrictions



 

u

 

(10) 

 

Where u  is displacement field,   is total potential energy and s  is the amount of 

D
ow

nl
oa

de
d 

fr
om

 ij
oc

e.
iu

st
.a

c.
ir 

at
 9

:3
6 

IR
S

T
 o

n 
F

rid
ay

 N
ov

em
be

r 
16

th
 2

01
8

http://ijoce.iust.ac.ir/article-1-168-en.html


S.M.Tavakkoli and B. Hassani 

 

156 156 

material available. s  is the volume of solid material in each design. One should note that 

minimization of ( ) u  in (11) is equivalent to satisfying the state equations or equilibrium. 

( ) u  can be written as follows 

 

1
( ) ( ) ( )

2

T T Td d d
  

      u ε u Cε u u b u t
 

(11) 

 

In structural topology optimization, the problem is how to distribute the material in order 

to minimize the objective function. In other words, the goal can be thought of as 

determination of the optimal spatial material distribution. To achieve this, an implicit 

function can be considered over the whole domain which is able to take positive (solid) and 

negative (void) values during the optimization process and the zero level of the function 

describes the boundary of the structure. The implicit or density function for patch p can be 

approximated by NURBS basis functions as follows 

 
1 2

, ,

0 0

( ) ( )

n n
p p

i j i j

i j

R
 

 r r

 

(12) 

 

Where ,
p

i j  are the third components of control points of the NURBS surface in patch 

p and can be assumed as design variables of the optimization problem. It is noted that here 

the same basis functions are used for approximation of geometry, displacements and the 

density function. The boundaries, solid and void areas of the domain are described by 

implicit function as follows 

 

( ) 0

( ) 0

( ) 0

on

inside

outside







 

 

 

x

x

x
 

(13) 

 

In order to prevent drastic changes during the optimization process ( ) x  is substituted by 

signed distance functions in the level set method or can be cut by a parameter  . By doing 

this, a narrow band about the surface ( ) 0 x  is considered to be altered. Therefore, we 

impose the constraint 

 

( ) ( ) ( ( ))if then sign     x x x
 

(14) 

 

In order to find out the density and elasticity matrix for each point of the structure the 

heaviside function ( )H   is constructed based on zero level of the implicit function ( ) x  as 

follows 
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0
0 0

( ) ( ( )) , ( )
1 0

C H C H


 



  


x x

 

(15) 

 

where 0C  is the elasticity matrix of solid material. Since, first derivatives of the 

objective function and the constraints are needed in optimization algorithm and the 

derivation of the heaviside step function is the Dirac delta function, it makes the method 

unworkable [7]. In fact, there is no guarantee of having a Gauss point exactly on boundary 

of the structure when the Dirac delta function is integrated numerically. Therefore, the step 

function should be regularized so that integration of its derivative becomes numerically 

stable. In this research, different regularized functions for satisfying equilibrium equation 

and the volume constraint have been considered as follows: 

 

1

1

1 1
( ) ( )

2 2

0

H 

 

   


 

  



   

    

(16) 

 

And 

 

2

1

1 1
( )

2 2

0

H

 

   


 

  



   

    

(17) 

 

where   is assumed to be less than  . The regularization procedure is demonstrated in 

Figure (1). First, ( ) x  is truncated by   and then the border of structure which is exactly 

line ( ) 0 x  can be extended to area   by choosing parameter   and defining 
1( )H  . It 

is noted that since 
2 ( )H   is used for calculating the volume constraint, it does not need to 

be penalized by  . 

 

 
Figure 1. Regularized Heaviside function 
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By considering ,i j
 
as design variables, the optimization problem, Equation (10), can 

be discretized as below: 

 

,
1 21,..., , 1,...,

, 1 2

, 1 2

max min ( )

0 1,..., , 1,...,

0 1,..., , 1,...,

i j i n j n

i j

i j

s s

subject to i n j n

i n j n

and



 

 

 



   

    

 

u

 

(18) 

 

The Lagrangian function  of the optimization problem can be constructed by using the 

Lagrange multipliers: 

 

1 ,

, 1

2 ,

, 1

( ) ( ) ( )

( )

n m N

s s i j

i j

n m N

i j

i j

  

  

 



 



       

 





u

 

(19) 

 

where  , 1  and 2  are the volume, upper and lower bound Lagrange multipliers, 

respectively, which are positive according to the Kuhn-Tucker conditions [25]. The 

stationary condition with respect to the design variables ,i j  can be obtained as follows 

 

1 2

, ,

( )
0s

i j i j

 
 


   

 

u

 
(20) 

 

By manipulating the above equation it can be written as  

 

, 1 2

, ,

1 / /s s
i j

i j i j

E  
 

 
    

 
 

(21) 

 

Where 

 

1

,

,

2

,

( )1

2

( )

T

i j

i j

i j

H
d

E
H

d
















 







ε Cε

 

(22) 

 

It can be assumed that in iteration k , the design variable ,i j  has been decreased in 

order to move towards optimum point. Therefore, ,i j    and the upper side limit is not 
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active, which yields 1 0  . Since 
,

s

i j





 is a positive real number and 2 0  , from (21) it 

follows that 
, 1k

i jE  . On the other hand, increasing ,i j , results , 1k
i jE  . Therefore, 

inspired by this argument, ,
k
i jE  is calculated and compared with unity. If , 1k

i jE   then ,i j  

is decreased by the move limit   and vice versa. Based on this conclusion and considering 

the side limits, the following resizing scheme is suggested. 

 

1
, ,

,

1
(1 )

( )

k k
i j i j k

i jE 
   

 

(23) 

 

Where superscript k  denotes the iteration number,   is move limit coefficient and   is 

damping factor of the resizing scheme. One should note that derivation of regularized 

Heaviside function in Eq. (22) can be obtained by following formula: 

 

, ,

( ) ( )

i j i j

H H  



  


  
 

(24) 

 

Also in Eq. (22), 
,

k
i jE  depends on the current value of k  which needs to be adjusted in 

an inner iteration loop. For this purpose the bisection method can be employed [25-26]. 

 

 

4. NUMERICAL EXAMPLES 
 

To demonstrate the performance of the method two examples of isotropic plane elasticity 

problems are presented in this section. The modulus of elasticity and the Poisson's ratio are 

considered as 1500 2kgf cm  and 0.3, respectively. In the following examples dimensions 

and point load magnitude are considered as 8L cm , 5H cm and 100P Kgf , 

respectively. 

Example 1: The geometry, loading and boundary conditions are illustrated in Figure 2. 

In this example the ability of the proposed method in capturing the optimum topology and 

the effect of the number of control points is studied. For this purpose, a couple of control 

nets with 400 and 1617 points are used for discretizing the design domain. The degree of the 

NURBS’ basis functions is assumed 3p  . Also, optimization parameters are considered to 

be 1.7  , 0.25  , the exponent 3  , the damping factor 0.5   and the move limit 

coefficient 0.5  . 

The resulted layouts are depicted in Figures 3(a) and 3(b). From the results, it is observed 

that obtained topology has not changed by using different numbers of control points. The 

results are compared to optimum layouts with the same problem definition in reference [9]. 

As it is shown in Figures 4(a) and 4(b) porous media emerges by using SIMP method which 

is not the case here. For the sake of comparison with finite element based methods, the 
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optimal design from Sigmund’s 99 line MATLAB code [27] is illustrated in Figure 5. It 

should be noted that in this code noise cleaning technique is implemented in order to 

prevent checker-boarding and mesh dependency instabilities [3]. It can be seen that the 

obtained topologies in both methods are identical, however, the system of equations that 

shall be solved here for analysis of the structure in each iteration is much smaller. 

 

 
Figure 2. Problem definition of example 1 

 

  
(a) (b) 

Figure 3. Optimum layout (a) by using 400, (b) by using 1617 control points 

 

  
(a) (b) 

Figure 4. Optimum layout (a) by using 400, (b) 1617 control points [9] 

 

 
Figure 5. Optimum layout by SIMP and FEM [3,27] 

 

Example 2: Topology optimization of the MBB beam is here considered as the second 

example. The design domain and boundary conditions are shown in Figure 6. In order to 

discretize the design domain 95 patches with 1617 control points are employed. The degree 
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of the NURBS’ basis functions is considered to be 3. The volume fraction is taken as 40% . 

Equally spaced knot vectors are defined as    0, 0, 0, 0,0.5,1, 1, 1, 1 , 0, 0, 0, 0,0.5,1, 1, 1, 1 r s . 

Also, optimization parameters are considered to be 1.0  , 0.25  , the exponent 5  , 

the damping factor 0.5   and the move limit coefficient 0.5  . 

The obtained layout by employing the proposed method is illustrated in Figure 7(a). For 

the sake of comparison, the result generated by using the SIMP material model together 

with the IA and the FE methods, as reported in references [9] and [3], are also shown in 

Figures 7(b) and 7(c), respectively. As it is observed the obtained topologies are basically 

identical. However, it is noticed that the gray areas do not exist in the result by the proposed 

method. 

 

 
Figure 6. Problem definition of example 2 

 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Optimum layouts by using (a) proposed method (b) SIMP and IA [9] (c) SIMP and 

FEM [3] 

 

 

5. CONCLUSIONS 
 

In this paper, an implicit function is considered to form the topology of structure so that the 

zero level of the function indicates the boundaries of the structure. The implicit function is 

created by the NURBS basis functions and organized by a set of control points which the 

third coordinates are used as the optimization design variables. By using the IA method, 

geometry and displacement field are also approximated by the same basis functions. In this 
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work an optimality criterion is suggested to modify the implicit function during the 

optimization process so that the topology changes towards optimum. According to our 

experience, even with a coarse net of control points, one ends up with a reasonable topology 

that is always checkerboard-free and mesh independent which is not the case when the FE 

method is used. Also, it is noted that in topology optimization by the FE method, apart from 

requiring an appropriate discretization to have accuracy in analysis results, usually a finer 

mesh is needed in order to have smooth boundaries in final optimum topology. But by using 

the proposed method, if the desired accuracy of the analysis results is fulfilled by a number 

of control points they would be enough to obtain precise boundaries due to flexibility of the 

NURBS in constructing the implicit function. 

 

 

REFERENCES 
 

1. Bendsøe MP, Kikuchi N. Generating optimal topologies in structural design using 

homogenization method, Comput Meth Appl Mech Eng 1988; 71: 197-224. 

2. Sigmund O. Numerical instabilities in topology optimization: A survey on procedure 

dealing with checkerboards, mesh-dependencies and local minima, Struct Optim 1998; 

16: 68-75. 

3. Bendsøe MP, Sigmund O. Topology Optimization, Theory, Methods And Applications, 

Springer, Germany, 2003. 

4. Sethian J, Wiegmann A. Structural boundary design via level set and immersed interface 

methods, J Comput Phys 2000; 163: 489–528. 

5. Wang MY, Wang X, Guo D. A level-set method for structural topology optimization, 

Comp Meth Appl Mech Eng 2003; 192: 227–46. 

6. Allaire G, Jouve F, Toader AM. Structural optimization using sensitivity analysis and a 

level-set method, J Comp Phys 2004; 194: 363-93. 

7. Belytschko T, Xiao SP, Parimi C. Topology optimization with implicit functions and 

regularization, Int J Numer Meth Eng 2003; 57: 1177–96. 

8. Zhou JX, Zou W. Meshless approximation combined with implicit topology 

description for optimization of continua, Struct Multidiscip Optim 2008; 36: 347–53. 

9. Hassani B, Khanzadi M, Tavakkoli SM. An Isogeometrical approach to structural 

topology optimization by optimality criteria, Struct Multidiscip Optim 2012; 45(2): 223–

33. 

10. Tavakkoli SM, Hassani B, Ghasemnejad H. Isogeometric Topology optimization of 

strucutres by using MMA, Int J Optim Civil Eng 2013; 3(2): 313-26. 

11. Rozvany GIN, Zhou M. The COC algorithm, Part I: Cross section optimization or sizing, 

Comp Meth Appl Mech Eng 1991; 89: 281-308. 

12. Rozvany GIN. Structural Design via Optimality Criteria, Kluwer Academic Publishers, 

Dordrecht, 1989. 

13. Svanberg K. The method of moving asymptotes – a new method for structural 

optimization, Int J Numer Meth Eng 1987; 24: 359–73. 

14. Kaveh A, Hassani B, Shojaee S, Tavakkoli SM. Structural topology optimization 

using ant colony methodology. Eng Struct 2008; 30(9): 2559–65. 

D
ow

nl
oa

de
d 

fr
om

 ij
oc

e.
iu

st
.a

c.
ir 

at
 9

:3
6 

IR
S

T
 o

n 
F

rid
ay

 N
ov

em
be

r 
16

th
 2

01
8

http://ijoce.iust.ac.ir/article-1-168-en.html


ISOGEOMETRIC TOPOLOGY OPTIMIZATION BY USING OPTIMALITY CRITERIA … 

 

163 

15. Tavakkoli SM, Shahryari L, Parsa M. Topology optimization of space strucutres using 

ant colony method, Int J Optim Civil Eng 2013; 3(3): 359-70. 

16. Kaveh A, Kalatjari VR, Talebpour MH, Torkamanzadeh J.  Configuration optimization 

of trusses using a multi heuristic based search method, Int J Optim Civil Eng 2013; 3(1): 

151-78. 

17. Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, 

NURBS, exact geometry and mesh refinement, Comput Meth Appl Mech Eng 2005; 194: 

4135–95. 

18. Bazilevs Y, Beirao Da Veiga L, Cottrell J, Hughes TJR, Sangalli G. Isogeometric 

analysis: approximation, stability and error estimates for h-refined meshes. Math Mod 

Meth Appl Sci 2006; 16: 1031–90. 

19. Bazilevs Y, Calo V, Cottrell J, Hughes TJR, Reali A, Scovazzi G. Variational multiscale 

residual-based turbulence modeling for large eddy simulation of incompressible flows, 

Comput Meth Appl Mech Eng 2007; 197: 173–201. 

20. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR. Isogeometric fluid structure interaction 

analysis with applications to arterial blood flow, Comput Meth Appl Mech Eng 2006; 38: 

310-22 

21. Cottrell JA, Reali A, Bazilevs Y, Hughes TJR. Isogeometric analysis of structural 

vibrations, Comput Meth Appl Mech Eng 2006; 195: 5257–96. 

22. Piegl L, Tiller W. The NURBS book, Springer-Verlag, New York, USA, 1997. 

23. Hassani B, Moghaddam NZ, Tavakkoli SM. Isogeometrical solution of Laplace equation, 

Asian J Civil Eng 2009; 10(5): 572-92. 

24. Hassani B, Khanzadi M, Tavakkoli SM, Moghaddam NZ. Isogeometric shape 

optimization of three-dimensional problems, 8th World Congress on Structural and 

Multidisciplinary Optimization, June 1-5, Lisbon, Portugal, 2009. 

25. Hassani B, Hinton E. Homogenization and Structural Topology Optimization: Theory, 

Practice and Software, Springer, London, UK, 1999. 

26. Suzuki K, Kikuchi N. A homogenization method for shape and topology optimization, 

Comput Meth Appl Mech Eng 1991; 93: 291-318. 

27. Sigmund O. A 99 line topology optimization code written in MATLAB, Struct 

Multidiscip Optim 2001; 21: 120-7. 

D
ow

nl
oa

de
d 

fr
om

 ij
oc

e.
iu

st
.a

c.
ir 

at
 9

:3
6 

IR
S

T
 o

n 
F

rid
ay

 N
ov

em
be

r 
16

th
 2

01
8

http://ijoce.iust.ac.ir/article-1-168-en.html

