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ABSTRACT 
 

Simplified Dolphin Echolocation (SDE) optimization is an improved version of the Dolphin 

Echolocation optimization. The dolphin echolocation (DE) is a recently proposed 

metaheuristic algorithm, which was imitated dolphin’s hunting process. The global or near 

global optimum solution modeled as dolphin’s bait, dolphins send sound in different 

directions to discover the best bait among their search space. This paper introduced a new 

optimization method called SDE for weight optimization of steel truss structures problems. 

SDE applies some new approaches for generating new solutions. These improvements 

enhance the accuracy and convergence rate of the DE; SDE does not depend on any 

empirical parameter. The results of the SDE for mathematical and engineering optimization 

problems are compared to those of the standard DE and some popular metaheuristic 

algorithms. The results show that SDE is competitive with other algorithms. 
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1. INTRODUCTION 
 

Optimization is an important active topic in engineering which leads to the correct use of 

funds and time and materials. Nowadays, the use of metaheuristic algorithm has become 

prevalent and various methods are provided in this regard. These methods are usually 
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adapted from natural mechanisms because they have a long history of existence. Many new 

metaheuristic algorithms are applied for structural optimization. Some efforts on the optimal 

design of structures have focused on utilizing metaheuristic methods. Some of these 

methods can be listed: 

Genetic Algorithms (GA) [1-2], Simulated Annealing (SA) [3], Ant Colony Optimization 

(ACO) [4], Harmony Search algorithm (HS) [5], Particle Swarm Optimizer (PSO) [6], 

Charged System Search method (CSS) [7], Bat algorithm [8], Water Cycle Algorithm [9], 

Ray optimization algorithm (RO) [10], krill-herd algorithm [11], Colliding Bodies 

Optimization algorithm (CBO) [12] and Enhanced colliding bodies optimization [13]. 

Recently, Kaveh and Farhoudi have proposed a new optimization method named Dolphin 

Echolocation (DE) [14]. This algorithm was adopted from hunting Dolphins. Dolphin can 

send sound in the form of click in different orientations and when this sound strikes an 

object, some part of the energy of the sound is reflected back to the Dolphin as echo [15]. 

Then, the Dolphin hears them and decides to make a decision at this time. Dolphin knows a 

range of distance and orientation of the best bait. Hunting stage is started and dolphin moves 

to bait, sending sound and receiving echo continue until Dolphin hunts the bait. Obviously, 

during this approach, the probability of hunting increases every time and search space 

decreases continuously. When the dolphin hunts bait, the probability of hunting is one 

hundred percent and search space is the lowest. When dolphin received echo from different 

orientations, it is time to process this information. Dolphin can decide to choose next step, 

which is a very important stage. In Simplified Dolphin Echolocation (SDE) more attention 

is paid to this problem in order to increase the number of processing. By this increase, first 

all the data is processed and reordered and then assessment of fitness runs is performed. In 

addition for increasing the accuracy, the use of some parameters and formation of matrices 

which are time consuming, are ignored. As a result, the speed of algorithm in Simplified 

Dolphin Echolocation (SDE) is more than Dolphin Echolocation (DE). 

The remaining sections of this paper are organized as follow: SDE algorithm with a brief 

overview of the standard DE is provided in Section 2. Weight optimization of steel truss 

structures is performed in Section 3. Finally, the paper is concluded in section 4. 

 

 

2. SIMPLIFIED DOLPHIN ECHOLOCATION ALGORITHM 

 

This section provides the proposed Simplified Dolphin Echolocation (SDE) algorithm. 

Before providing SDE algorithm, some explanations are needed as follows: 

When Dolphin starts hunting, the probability of hunting increases every time and this is 

shown with P(Loopi). This parameter is determined by Eq. (1). In addition, this parameter 

controls the two stages of the search consisting of exploration and exploitation. In 

exploration stage, the algorithm performs a global search and in exploitation it concentrates 

on investigation of better answers. If this parameter is not large, the search space is in 

exploration phase but when this parameter increases, the search space goes to exploitation 

phase, because the search space always became smaller. It means that the algorithm is going 

to local search. The probability of every step to get target is obtained by Eq. (1) and it 

increases in every loop until it reaches to one hundred percent at the final Loop. 
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Where P(Loopi) is the probability of each Loop in the final result. P(Loop1) the 

probability of first loop, usually is less than 0.1 or 10%. LoopNumber is the number of 

loops, Loopi the number of the current loop. P(Loop1( can also be calculated by Eq. (2), it is 

often achieved approximately 10% and cannot affect the accuracy of convergence and final 

results. 

DE algorithm has a power parameter. When this parameter is one, the desired accuracy 

can be obtained. Thus, it has been considered as a constant variables in the SDE algorithm. 

In SDE, a new parameter is introduced to determine the accuracy of each variable shown 

with AC. Also the Re parameter defined in DE algorithm is assumed as constant variable as 

the 
4

1
 of the search space of related variable. 

Steps of SDE algorithm include: 

Step 1) Generate [L]NL×NV matrix, in which NL and NV are the number of locations and 

the number of variables, respectively. This matrix is generated with random numbers in 

intervals of every variable in the first loop and this matrix will be generated for other loops 

according to the previous loop. 

Step 2) Calculate P(Loopi) using Eq. (1) for every loop. For first loop, P(Loop1) can be 

equal to 10% or when [L]NL×NV is generated for the first loop, calculates maximum mode for 

each variable called it as Modei. 
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Where Ci is the modal answer among all answers. After calculating P(Loop1), it is 

usually less than 0.1 or 10% . 

Step 3) Evaluate fitness of vectors of [L]NL×NV matrix and generate [Fitness]NL×2. This 

matrix has NL rows and puts fitness of every rows of [L]NL×NV matrix in the same rows and 

second column of fitness matrix, first column is the rows number of [L]NL×NV matrix. Before 

evaluating fitness, [L]NL×NV matrix should reorder; this process has high effect on reduction 

of loop numbers and increases accuracy of results. There is more information about the 

reorder of [L]NL×NV matrix in the following. This is one of the important changes on DE 

algorithm. After this section, all of variables are considered individually until information is 

obtained for next Loop. 

Step 4) Evaluate accumulative fitness; it is assumed that all variables of all locations are 

equal to one point in the coordinate system (horizontal axis is numbering of the alternatives 

and vertical axis is such fitness) and there is a triangle distribution on the left and right of 

that point. This distribution is 2×R, where R is effective radius. It is illustrated in Fig.1 

schematically. 
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Figure. 1 The triangle distribution of fitness function 

 

There are clearly overlaps occur in some parts. Whatever area under curve is higher; the 

probability of result is higher. Hence, the Accumulative Fitness (AF) is introduced. AF 

considers overlaps and sums of all fitness for every alternative. 

In SDE algorithm, the alternatives matrix is ignored. Alternatives matrix is being used 

due to all of search spaces should be numbered for every variable. In Alternatives matrix, it 

should put all of search space for every variable (each column) as ascending order. To 

calculate the numbering of [L]NL×NV matrix, should search the jth variable in alternatives 

matrix in same column. The numbering of elements starts from one to 1+
-

AC

ab
 for every 

variable. 

Where a and b are start of interval and end of interval, respectively. In SDE algorithm, 

the number of L indicated with A, is calculated using Eq. (3). 
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When search space is large, finding elements of [L]NL×NV matrix in alternatives matrix 

need more times, thus Alternatives matrix is not employed in SDE algorithm. First column 

of AF matrix is from one to length of search space for every variable. This matrix is 

calculated for every independent variable. 

As mentioned, there is a triangle distribution for neighborhood fitness; sometimes this 

neighborhood is put out of range. In his time, borders of range act like a mirror that this 

Neighborhood is reflected to the range. Fig. 2 shows distribution (1) and (2) are reflected to 

their ranges like (1)’ and (2)’. They are accumulated with initial value of distribution. 
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Figure 2. The triangle distribution and their overlaps and reflects 

 

Find rows of L that has maximum fitness, best alternatives, and put their accumulative 

fitness equal to zero and spread probability of 1-P(Loopi) to another search space then give 

probability P(Loopi) to element which has maximum fitness, this process is done for all 

variables of that row of L. Sometimes existence some maximum fitness specially at final 

steps. In SDE, algorithm predicted this topic and probability of P(Loopi) is spread relative to 

their repetition. 

Step 5) Plot AF for every variable (horizontal axis is first column of AF and vertical axis 

is second column of AF). Now area under curve, should be equal to one or one hundred 

percent. Calculate area under curve for all alternatives of every variable using Eq. (4): 

 

∑
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Where MAreaij and Areaij are the modified area and area under the AF curve for the ith 

row and jth variable, respectively. Now generated [MArea]NOL×2 and the first column of this 

matrix is like [AF]NOL×2 and the second column of this matrix is MAreaij , if plot this matrix 

like AF, area under curve is equal to one or one hundred percent. 

DE algorithm using Eq. (5) for this aim [14] 
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However, Eq. (5) did not guarantee that area under curve is equal to one. 

Step 6) In this section, as result of the current loop, should fill [L]NL×NV matrix for the 

next Loop. Different actions can be done for this aim, in SDE algorithm for picking the new 

answers for [L]NL×NV matrix. One of the simplest ways is selected. Since the curve under 
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MArea is equal to one or one hundred percent algorithm pick, the new number to increase 

from this curve in area under curve is as specify percent. Specific value is 
NL

%100
. So for 

increasing this value of percent, SDE algorithm pick new element this process continue until 

every column is filled (for every variable) for [L]NL×NV matrix. Then, pick NL elements from 

every MArea curve. 

As mentioned in section 2.1 and step 3 after all steps were done independently for every 

variable, we should do some process for the integration this matrix. If this act is not done, 

there is no assurance that it occurs well results in one row together. It can be modeled as 

information processing in dolphin’s brain. When information is received, the dolphin first 

processes them and then decides for the next movement, so [L]NL×NV matrix should be 

reordered. This is the most important change in SDE algorithm. In SDE algorithm, one of 

the simplest ways to reorder [L]NL×NV matrix before evaluating fitness is as follow: 

 For the jth variable, put other variables equal to constant value and Evaluate fitness then 

arrange the jth variable in order of ascending fitness do this process for all variables. Now 

the final row of [L]NL×NV matrix is the best result of same Loop. In addition, it is better to 

replace first row of [L]NL×NV, worst one, with last row of the previous Loop to give a 

memory to algorithm not to get away from better answer. It is better to reorder [L]NL×NV 

matrix for first Loop too, this can increase the speed of convergence. Repeat step 1 to step 2 

as Loop numbers. Number of evaluation in SDE is [Locations + (NV × Locations)] × 

LoopNumber. 

 

 

3. WEIGHT OPTIMIZATION OF STEEL TRUSS STRUCTURES PROBLEMS 
 

In this section, to show the efficiency of the SDE algorithm and to compare its results with 

other methods some famous truss problems are presented. Stiffness method applied for 

analysis of trusses and Matlab software is used for optimal design of trusses. The penalty 

approach used for control of constraints. Clearly if the constraints are not violated, the 

coefficient of the penalty will be zero. The aim is to find a minimum weight for elements 

groups of trusses considering the constraints. 

 

3.1 A 25-bar spatial truss 

Size optimization of the 25-bar planar truss shown in Fig. 3 is considered. This is a well 

known problem in weight optimization of the structures literature. The material density is 

considered as 0.1 lb/in
3
 and the modulus of elasticity is taken as 10,000 ksi . Table 1 

illustrates the two load cases for this problem. The structure includes 25 members, which 

are divided into eight groups, as follows: (1) A1, (2) A2–A5, (3) A6–A9, (4) A10–A11, (5) 

A12–A13, (6) A14–A17, (7) A18– A21 and (8) A22–A25.  

Maximum displacement limitations of ±0.35 in, are imposed on every node in every 

direction. The range of the cross-sectional areas varies from 0.01 to 3.4 in
2
. This 

optimization problem is solved by proposed algorithm and the results are shown in Table 2, 

which is compared with GA [16], PSO [17], HS [18], RO [10] and CBO [12]. The best 

weight of the SDE is 547.86 with AC equal to 4. Fig. 4 shows the convergence diagram of 
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the SDE in 10 loops. Number of evaluations in this problem is only 1800 with SDE, which 

is less than other methods, for example number of evaluations in PSO, HS, RO and CBO are 

9596, 15000, 13880 and 9090, respectively. Location number considered 20 for this 

problem.  

 

 
Figure 3. Schematic of a 25-bar spatial truss 

 
Table 1: Loading conditions for the 25-bar spatial truss 

Node Case 1 Case 2 

 Px kips PY kips Pz kips Px kips PY kips Pz kips 

1 0 20 -5 1 10 -5 

2 0 -20 -5 0 10 -5 

3 0 0 0 0.5 0 0 

4 0 0 0 0.5 0 0 

 

Table 2: Comparison of SDE results with other methods in the 25-bar spatial truss 

Element 

Group 

Optimal cross-sectional areas (in
2
) 

GA PSO HS RO CBO SDE (AC=3) SDE (AC=4) 

1 A1 0.1 0.01 0.047 0.0157 0.01 0.01 0.01 

2 A2-A5 1.8 2.121 2.022 2.0217 2.1297 1.93 2.0832 

3 A6-A9 2.3 2.893 2.95 2.9319 2.8865 2.872 2.9141 

4 A10-A11 0.2 0.01 0.01 0.0102 0.01 0.01 0.01 

5 A12-A13 0.1 0.01 0.014 0.0109 0.01 0.01 0.01 

6 A14-A17 0.8 0.671 0.688 0.6563 0.6792 0.9 0.6959 

7 A18-A21 1.8 1.611 1.657 1.6793 1.6077 1.79 1.6319 

8 A22-A25 3 2.717 2.663 2.7163 2.6927 2.515 2.7272 

Weight (lb) 546 545.21 544.38 544.656 544.31 552.9891 547.86 
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Figure. 4 The convergence diagram for the 25-bar spatial truss 

 
3.2 A 52-bar planar truss 

Wu and Chow [19], Lee and Geem [20] and Li et al [21] have analyzed the 52-bar planar 

truss structure shown in Fig. 5. The members of this structure are divided into 12 groups: (1) 

A1_A4, (2) A5_A10, (3) A11_A13, (4) A14_A17, (5) A18_A23, (6) A24_A26, (7) 

A27_A30, (8) A31_A36, (9) A37_A39, (10) A40_A43, (11) A44_A49, and (12) A50_A52. 

The material density is 7860 kg/m
3
 and the modulus of elasticity is 2.07×105 MPa. The 

members are subjected to stress limitations of ±180 MPa. Both of the loads, Px=100 kN and 

Py=200 kN, are considered. The discrete variables are selected from Table 3.  

Table 4 shows the comparison of optimal design results, which is compared with GA 

[19], HS [20], PSO [21], Particle Swarm Optimizer with Passive Congregation (PSOPC) 

[21], A heuristic particle swarm optimizer (HPSO) [21]. The best weight of the SDE is 

1904.126 kg. Fig. 6 shows the convergence diagram of the SDE in 20 loops. Number of 

evaluations in this problem is only 3900 with SDE, which is less than other methods. 

Location number considered 15 for this problem. 

 

 
Figure 5. Schematic of a 52-bar planar truss 
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Table 3: The available cross-section areas of the AISC code 

The available cross-section areas of the AISC code 

No In
2
 mm

2
 No In

2
 mm

2
 

1 0.111 71.613 33 3.84 2477.414 

2 0.141 90.968 34 3.87 2496.769 

3 0.196 126.451 35 3.88 2503.221 

4 0.25 161.29 36 4.18 2696.769 

5 0.307 198.064 37 4.22 2722.575 

6 0.391 252.258 38 4.49 2896.768 

7 0.442 285.161 39 4.59 2961.284 

8 0.563 363.225 40 4.8 3096.768 

9 0.602 388.386 41 4.97 3206.445 

10 0.766 494.193 42 5.12 3303.219 

11 0.785 506.451 43 5.74 3703.218 

12 0.994 641.289 44 7.22 4658.055 

13 1 645.16 45 7.97 5141.925 

14 1.13 729.031 46 8.53 5503.215 

15 1.228 792.256 47 9.3 5999.988 

16 1.266 816.773 48 10.85 6999.986 

17 1.457 939.998 49 11.5 7419.43 

18 1.563 1008.385 50 13.5 8709.66 

19 1.62 1045.159 51 13.9 8967.724 

20 1.8 1161.288 52 14.2 9161.272 

21 1.99 1283.868 53 15.5 9999.98 

22 2.13 1374.191 54 16 10322.56 

23 2.38 1535.481 55 16.9 10903.2 

24 2.62 1690.319 56 18.8 12129.01 

25 2.63 1696.771 57 19.9 12838.68 

26 2.88 1858.061 58 22 14193.52 

27 2.93 1890.319 59 22.9 14774.16 

28 3.09 1993.544 60 24.5 15806.42 

29 3.38 2180.641 61 26.5 17096.74 

30 3.47 2238.705 62 28 18064.48 

31 3.55 2290.318 63 30 19354.8 

32 3.63 2341.931 64 33.5 21612.86 

 

Table 4: Comparison of SDE results with other methods in the 52-bar planar truss 

Element 

Group 

Optimal cross-sectional areas (mm
2
) 

GA HS PSO PSOPC HPSO SDE 

1 A1-A4 4658.055 4658.055 4658.055 5999.988 4658.055 4658.055 

2 A5-A10 1161.288 1161.288 1374.19 1008.38 1161.288 1161.288 

3 A11-A13 645.16 506.451 1858.06 2696.38 363.225 363.225 

4 A14-A17 3303.219 3303.219 3206.44 3206.44 3303.219 3303.219 
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5 A18-A23 1045.159 940 1283.87 1161.29 940 939.998 

6 A24-A26 494.193 494.193 252.26 729.03 494.193 641.289 

7 A27-A30 2477.414 2290.318 3303.22 2238.71 2238.705 2238.705 

8 A31-A36 1045.159 1008.385 1045.16 1008.38 1008.385 1008.385 

9 A37-A39 285.161 2290.318 126.45 494.19 388.386 363.225 

10 A40-A43 1696.771 1535.481 2341.93 1283.87 1283.868 1283.868 

11 A44-A49 1045.159 1045.159 1008.38 1161.29 1161.288 1161.288 

12 A50-A52 641.289 506.451 1045.16 494.19 792.256 641.289 

Weight (kg) 1970.142 1906.76 2230.16 2146.63 1905.49 1904.126 

 

 
Figure 6. The convergence diagram for the 52-bar planar truss 

 

3.3 A 72-bar spatial truss 

For the 72-bar spatial truss structure shown in Fig. 7, the elements are sorted in 16 design 

groups: 

(1) A1_A4, (2) A5_A12, (3) A13_A16, (4) A17_A18, (5) A19_A22, (6) A23_A30, (7) 

A31_A34, (8) A35_A36, (9) A37_A40, (10) A41_A48, (11) A49_A52, (12) A53_A54, (13) 

A55_A58, (14) A59_A66 (15), A67_A70, and (16) A71_A72. 

The material density is 0.1 lb/in
3
 and the modulus of elasticity is taken as 10,000 ksi. The 

members are subjected to the stress limits of ±25 ksi. The nodes are subjected to the 

displacement limits of ±0.25 in. The minimum permitted cross-sectional area of each 

member is taken as 0.10 in
2
, and the maximum cross-sectional area of each member is 4.00 

in
2
. The loading conditions are considered as:  

1. Loads 5, 5 and -5 kips in the x, y and z directions at node 17, respectively. 

2. A load -5 kips in the z direction at nodes 17, 18, 19 and 20. 

Table 5 shows the results obtained by SDE and those of the previously reported 

researches. The best result of the SDE method is 380.28 Ib. The results are compared with 

GA [22], ACO [23], PSO [24], Big Bang–Big Crunch optimization (BB–BC) [25], RO [10], 

Cuckoo Search algorithm with levy flights (CS) [26] and CBO algorithm [12]. Fig. 8 shows 

the convergence diagrams in terms of the number of loops and AC equal to 10 and 3, 

respectively. Number of evaluations in this problem is only 6800 with SDE, which is less 

than other methods, for example, number of evaluations in ACO, BB–BC, RO, CS and CBO 

algorithm are 18500, 19621, 19084, 10600 and 15600, respectively. Location number 

considered 20 for this problem. 
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Figure 7. Schematic of a 72-bar spatial truss 

 

Table 5: Comparison of SDE results with other methods in the 72-bar spatial truss 

 Optimal cross-sectional areas (in
2
) 

Element Group GA ACO PSO 
BB-

BC 
RO CS CBO 

SDE 

AC=1 

SDE 

AC=3 

1 A1-A4 1.755 1.948 1.7427 1.8577 1.8365 1.9122 1.9028 2 1.91 

2 A5-A12 0.505 0.508 0.5185 0.5059 0.5021 0.5101 0.518 0.5 0.513 

3 A13-A16 0.105 0.101 0.1 0.1 0.1 0.1000 0.1001 0.1 0.1 

4 A17-A18 0.155 0.102 0.1 0.1 0.1004 0.1000 0.1003 0.1 0.1 

5 A19-A22 1.155 1.303 1.3079 1.2476 1.2522 1.2577 1.2787 1.3 1.257 

6 A23-A30 0.585 0.511 0.5193 0.5269 0.5033 0.5128 0.5074 0.5 0.515 

7 A31-A34 0.1 0.101 0.1 0.1 0.1002 0.1000 0.1003 0.1 0.1 

8 A35-A36 0.1 0.1 0.1 0.1012 0.1001 0.1000 0.1003 0.1 0.1 

9 A37-A40 0.46 0.561 0.5142 0.5209 0.573 0.5229 0.524 0.5 0.512 

10 A41-A48 0.53 0.492 0.5464 0.5172 0.5499 0.5177 0.515 0.5 0.515 

11 A49-A52 0.12 0.1 0.1 0.1004 0.1004 0.1000 0.1002 0.1 0.114 

12 A53-A54 0.165 0.107 0.1095 0.1005 0.1001 0.1000 0.1015 0.1 0.114 

13 A55-A58 0.155 0.156 0.1615 0.1565 0.1576 0.1566 0.1564 0.2 0.155 

14 A59-A66 0.535 0.55 0.5092 0.5507 0.5222 0.5406 0.5494 0.6 0.541 

15 A67-A70 0.48 0.39 0.4967 0.3922 0.4356 0.4152 0.4029 0.4 0.41 

16 A71-A72 0.52 0.592 0.5619 0.5922 0.5971 0.5701 0.5504 0.6 0.565 

Weight (lb) 385.76 380.24 381.91 379.85 380.458 379.63 379.6943 385.54 380.28 
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Figure 8. The convergence diagram for the 72-bar spatial truss 

 

3.4 A 582-bar tower truss 

The 582-bar tower truss with the height of 80 m, shown in Fig. 9. This problem is chosen as 

the last problem. The symmetry of the tower around x-axis and y-axis is considered to group 

the 582 members into 32 independent size variables. A single load case is considered such 

that it consists of lateral loads of 5.0 kN applied in both x and y directions and a vertical 

load of -30 kN applied in the z-direction at all nodes of the tower. A discrete set of 137 

economical standard steel sections selected from W-shape profile list based on area and 

radii of gyration properties is used to size the variables. The lower and upper bounds on size 

variables are taken as 39.74 cm
2
 and 1387.09 cm2, respectively. The stress limitations of the 

members are imposed according to the provisions of ASD-AISC [27], as Eqs. (6)-(8). 
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where is calculated according to the slenderness ratio 
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Where E= the modulus of elasticity; Fy=the yield stress of steel; CC=the slenderness ratio 

( iλ ) dividing the elastic and inelastic buckling regions (CC= yFE /2 2 ); =iλ  the 

slenderness ratio ( iλ  = kLi/ri); k = the effective length factor; Li= the member length and ri = 

the radius of gyration. The other constraint is the limitation of node displacements (no more 

than 8.0 cm or 3.15 in. in any direction). In addition, the maximum slenderness ratio is 

limited to 300 for tension members, and it is recommended to be 200 for compression 

members according to ASD-AISC design code provisions, which can be formulated as 

follows: 
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

 (8) 

 

where km is the effective length factor of the mth member (km= 1 for all truss members), 

and rm is its minimum radius of gyration. 

SDE has obtained the best design compared to some other methods such as SA, tabu 

search, ACO, HS and GA reported by Hasançebi et al [28]. Table 6 shows the best solutions 

of the PSO [28] and Particle Swarm Ant Colony Optimization (DHPSACO) [29] and SDE 

algorithms. The optimum result of the SDE is 21.225 m
3
, while it is 22.39 m

3
 and 22.06 m

3
 

for the PSO and DHPSACO algorithms. Fig. 10 compares the allowable and existing stress 

ratio and displacement values of the SDE. The maximum values of displacements in the x, y 

and z directions are 7.99 cm, 7.6 cm and 2.39 cm, respectively and the maximum stress ratio 

is 90.52%. Fig. 11 shows the convergence diagram of the SDE in 10 loops. Number of 

evaluations in this problem is only 6600 with SDE, which is less than other methods. 

Location number considered 20 for this problem. 
 

 
Figure 9. Schematic of a 582-bar tower truss 
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Table 6: Comparison of SDE results with other methods in the 582-bar tower truss 

Element Group Optimal cross-sectional areas (in
2
) 

 PSO DHPSACO SDE 

1 39.74 45.68 39.74186 

2 149.68 136.13 136.1288 

3 45.68 53.16 53.2257 

4 113.55 109.68 115.4836 

5 45.68 45.68 45.67733 

6 39.74 45.68 39.74186 

7 90.97 92.9 92.90304 

8 45.68 45.68 45.67733 

9 39.74 45.68 39.74186 

10 85.81 75.48 85.80628 

11 45.68 56.71 45.67733 

12 129.03 136.129 123.2256 

13 140.65 143.87 146.4513 

14 90.97 92.9 92.90304 

15 143.87 154.84 143.8707 

16 55.9 58.84 58.90311 

17 39.74 115.48 115.4836 

18 127.1 45.68 45.67733 

19 45.68 39.74 39.74186 

20 39.74 75.48 64.516 

21 75.48 45.68 45.67733 

22 45.68 41.87 39.74186 

23 39.74 58.84 47.35474 

24 41.87 53.16 45.67733 

25 45.68 39.74 39.74186 

26 39.74 39.74 39.74186 

27 39.74 45.68 45.67733 

28 45.68 53.16 39.74186 

29 39.74 68.39 39.74186 

30 39.74 45.68 45.67733 

31 45.68 39.74 39.74186 

32 45.68 45.68 49.35474 

Volume(m
3
) 22.3958 22.0607 21.225 
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(a) (b) 

  
(c) (d) 

Figure 10. Comparison of the allowable and existing constraints for the 582-bar truss using the 

SDE. (a) Displacement in the X-direction. (b) Displacement in the Y-direction. (c) 

Displacement in the Z-direction. (d) Stress ratio 

 

 
Figure 11. The convergence diagram for the 582-bar tower truss 
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4. CONCLUSIONS 
 

A new metaheuristic method called SDE is developed to improve the performance of the 

DE algorithm. DE algorithm adopted from hunting dolphins. Dolphin can send sound in the 

form of click and then receive it as echo then choose the best bait and it’s orientation but in 

this paper, dolphin process information before choose the bait. Four well-studied Weight 

optimization of steel truss structures problems are considered to show the efficiently of SDE 

method. 

SDE algorithm has more accuracy compared with DE algorithm and speed of 

convergence is higher than DE algorithm. In SDE algorithm, does not need Alternatives 

matrix, when search space is large, more time is needed to generate this matrix and find the 

position of [L]NL×NV. Also SDE algorithm do not need power, ɛ  and Re parameters, Re 

calculates automatically. A new parameter is defined as AC that can determine the accuracy 

of variables. Prediction probability of occurrence is the same in maximum fitness in SDE 

algorithm. In SDE algorithm, is guaranteed to be equal to 100 percent or 1 in the area under 

the curve. Reordering of [L]NL×NV matrix in SDE algorithm causes to increase the accuracy 

of algorithm and increases the speed of convergence.  

The results of some benchmark problems illustrate that the SDE has a good performance 

and it can be used for other optimization problems, the results show that SDE is competitive 

with other algorithms. Finally, SDE algorithm can be used for continuous and discrete 

variables but DE algorithm only can be used for discrete variables. 
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