

AN EFFICIENT CHARGED SYSTEM SEARCH USING CHAOS

FOR GLOBAL OPTIMIZATION PROBLEMS

S. Talatahari1, A. Kaveh2,*, † , R. Sheikholeslami3

1Marand Faculty of Engineering, University of Tabriz, Tabriz, Iran
2Centre of Excellence for Fundamental Studies in Structural Engineering, Iran University of

Science and Technology, Narmak, Tehran-16, Iran

3Department of Civil Engineering, University of Tabriz, Tabriz, Iran

ABSTRACT

The Charged System Search (CSS) is combined to chaos to solve mathematical global
optimization problems. The CSS is a recently developed meta-heuristic optimization
technique inspired by the governing laws of physics and mechanics. The present study
introduces chaos into the CSS in order to increase its global search mobility for a better
global optimization. Nine chaos-based CSS (CCSS) methods are developed, and then for
each variant, the performance of ten different chaotic maps is investigated to identify the
most powerful variant. A comparison of these variants and the standard CSS demonstrates
the superiority and suitability of the selected variants for the benchmark mathematical
optimization problems.

Received: March 2011, Accepted: July 2011

KEY WORDS: Charged system search; chaos; optimization; chaos-based charged system
search algorithm

1. INTRODUCTION

The Charged System Search (CSS) is one of the most recent meta-heuristic optimization
techniques inspired by the governing laws of electrostatics in physics and the governing
laws of motion from the Newtonian mechanics [1]. This algorithm is growing and its
application is extending to various optimization problems such as discrete optimum design

*Corresponding author: A. Kaveh, School of Civil Engineering, Iran University of Science and
Technology, Narmak, Tehran-16, Iran
†E-mail address: alikaveh@iust.ac.ir

INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING
Int. J.Optim. Civil Eng. 2011; 2:305-325

S. TALATAHARI, A. KAVEH and R. SHEIKHOLESLAMI

306

of truss structures [2], design of skeletal structures [3], grillage system design [4],
optimization of geodesic domes [5] and configuration optimization [6] etc. The CSS utilizes

a number of solution candidates which are called charged particles (CPs). Each CP is treated
as a charged sphere and it can exert electrical forces on the other agents (CPs) according to
the Coulomb and Gauss laws of electrostatics. The resultant force acts on each CP creating
an acceleration according to the Newton's second law. Finally, utilizing the Newtonian
mechanics, the position of each CP is determined at any time based on its previous position,
velocity and acceleration in the search space [1]. The comparison of the results of the CSS
with those of the other heuristics shows a better performance of the CSS and demonstrates
its efficiency in finding the optimum solutions [4].

On the other hand, chaos is a bounded unstable dynamic behavior that exhibits sensitive
dependence on initial conditions and includes infinite unstable periodic motions in nonlinear
systems. Although it appears to be stochastic, it occurs in a deterministic nonlinear system
under deterministic conditions [7].

Recently, the idea of using chaotic systems instead of random processes has been noticed
in several fields. One of these fields is optimization theory. In random-based optimization
algorithms, the role of randomness can be played by a chaotic dynamics. Experimental
studies show the benefits of using chaotic signals instead of random signals, however, this is
not mathematically proved yet. For example in evolutionary algorithms, chaotic sequences
increase the value of some measured algorithm-performance indexes with respect to random
sequences [8]. Chaotic sequences have been proven to be easy and fast to generate and store,
and there is no need for storing long sequences. Merely a few functions (chaotic maps) and
few parameters (initial conditions) are needed even for very long sequences. In addition, an
enormous number of different sequences can be generated simply by changing its initial
condition. Moreover these sequences are deterministic and reproducible [9].

This paper presents Chaotic Charged System Search (CCSS) methods for finding global
optimization problems. The CCSS algorithms utilizing different chaotic systems substitute
random numbers for different parameters of the CSS. Thus different methods that use
chaotic maps as efficient alternatives to pseudorandom sequences have been proposed. In
order to evaluate these algorithms, some mathematical benchmark examples are studied. The
results reveal the improvement of the new algorithm due to the application of the
deterministic chaotic signals in place of the random sequences.

The remaining of this paper is organized as follows. Review of the CSS is briefly
presented in Section 2. The chaotic maps utilized for generating the chaotic sequences in the
CSS steps of the present experiments are listed in Section 3. In Section 4 different chaotic-
based methods are proposed which are called Chaotic Charged System Search (CCSS)
algorithms. Initialization and parametric studies are presented in Section 5 and in Section 6,
the suggested methods are evaluated through benchmark problems, and the results are
compared to designate the most efficient approach in Section 7. Finally, the conclusion is
drawn in Section 8 based on the reported comparison analyses.

AN EFFICIENT CHARGED SYSTEM SEARCH USING CHAOS...

307

2. CHARGED SYSTEM SEARCH ALGORITHM

The Charged System Search (CSS) algorithm is based on the Coulomb and Gauss laws from
electrical physics and the governing laws of motion from the Newtonian mechanics. This
algorithm can be considered as a multi-agent approach, where each agent is a Charged
Particle (CP). Each CP is considered as a charged sphere with radius a, having a uniform
volume charge density and is equal to

fitworstfitbest

fitworstifit
qi 




)(
 , Ni ,...,2,1

(1)

where fitbest and fitworst are the best and the worst fitness of all the particles; fit(i)
represents the fitness of the agent i, and N is the total number of CPs. The initial positions of
CPs are determined randomly in the search space using

)(min,max,min,
(o)
, iiijiji xxrandxx  , Ni ,...,2,1 (2)

where (o)
, jix determines the initial value of the ith variable for the jth CP; xi,min and xi,max are

the minimum and the maximum allowable values for the ith variable; randij is a random
number in the interval [0,1]. The initial velocities of charged particles are taken as:

0(o)
, jiv , Ni ,...,2,1 (3)

CPs can impose electric forces on the others, and its magnitude for the CP located inside
the sphere is proportional to the separation distance between the CPs, and for a CP located
outside the sphere is inversely proportional to the square of the separation distance between
the particles. The kind of the forces can be attractive or repelling determined by using a
force parameter arij defined as:








1

1
ijar

ijt

ijt

andk

andk

r

r




 (4)

where arij determines the type of the force, in which +1 represents the attractive force and
−1 denotes the repelling force, and kt is a parameter to control the effect of the kind of the
force. In general the attractive force collects the agents in a part of search space and the
repelling force strives to disperse the agents. The resultant force is redefined as

)(
,

2213 jiijij
jii ij

i
ij

i
j pari

r

q
ir

a

q
XXF 










 



arii

arii

Nj

ij

ij






1,0

0,1

,...,2,1

21

21

(5)

S. TALATAHARI, A. KAVEH and R. SHEIKHOLESLAMI

308

where Fj is the resultant force acting on the jth CP; rij is the separation distance between two
charged particles defined as






||2/)(||

||||

bestji

ji
ijr

XXX

XX
 (6)

Here Xi and Xj are the positions of the ith and jth CPs, respectively; Xbest is the position of
the best current CP, and  is a small positive number to avoid singularity. The pij
determines the probability of moving each CP toward the others as








 





 else 0

)()(
)()(

)(
 1 jfitifitrand

ifitjfit

fitbestifit

pij (7)

The resultant forces and the laws of the motion determine the new location of the CPs. At
this stage, each CP moves towards its new position under the action of the resultant forces
and its previous velocity as

oldjoldjvj
j

j
ajnewj tkrandt

m
krand ,,2

2
1, XV

F
X  (8)

t

oldjnewj
newj 


 ,,

,

XX
V (9)

where ka is the acceleration coefficient; kv is the velocity coefficient to control the influence
of the previous velocity; and randj1 and randj2 are two random numbers uniformly
distributed in the range (0,1). If each CP moves out of the search space, its position is
corrected using the harmony search-based handling approach [1]. In addition, to save the
best results, a memory, known as the Charged Memory, is utilized.

3. CHAOTIC MAPS

For simulating complex phenomena, sampling, numerical analysis, decision making and in
particular in heuristic optimization, random sequences are needed with a long period and
reasonable uniformity [10,11]. Chaos is a deterministic, random-like process found in
nonlinear, dynamical system, which is non-period, non-converging and bounded [12]. The
nature of chaos looks to be random and unpredictable, possessing an element of regularity.
Mathematically, chaos is randomness of a simple deterministic dynamical system, and
chaotic system may be considered as the sources of randomness [10, 11].

AN EFFICIENT CHARGED SYSTEM SEARCH USING CHAOS...

309

A chaotic map is a discrete-time dynamical system running in chaotic state as

)(1 kk cmfcm  (10)

The following chaotic sequence

 ,...}2,1:{ kcmk (11)

can be used as a spread-spectrum sequence for random number sequence. Chaotic sequences
have been proven to be easy and fast to generate and store, and therefore there is no need for
storing long sequences [9]. One needs merely a few functions (chaotic maps) and few
parameters (initial conditions) for very long sequences. Also an enormous number of
different sequences can be generated simply by changing its initial condition. In addition,
these sequences are deterministic and reproducible. The choice of chaotic sequences can by
justified theoretically through their unpredictability, corresponding to their spread-spectrum
characteristic and ergodic properties.

When a random parameter is needed in the CSS algorithm, it can be generated by
iterating one step of the chosen chaotic map (cm). The selected chaotic maps for the
experiments are listed in the following subsections.

3.1. Logistic map

This map, whose equation appears in nonlinear dynamics of biological population,
highlights the chaotic behavior [13]

)1(1 kkk cmcmacm  (12)

In this equation, xk is the kth chaotic number, with k denoting the iteration number.
Obviously,)1,0(kcm under the conditions that the initial)1,0(ocm . In the experiments

a = 4 is used.

3.2. Tent map

Tent map [14] resembles the logistic map. It generates chaotic sequences in (0,1) assuming
the following form






)1(3/10

 7.0/
1

kk

k
k cmcm

cm
cm

otherwise

cmk 7.0
 (13)

3.3. Sinusoidal iterator

This iterator [13] is represented by

)sin(2
1 kkk cmcmacm   (14)

For a = 2.3 and 7.0ocm

it has the following simplified form

S. TALATAHARI, A. KAVEH and R. SHEIKHOLESLAMI

310

)sin(1 kk cmcm   (15)

It generates chaotic sequence in (0, 1).

3.4. Gauss map

The Gauss map is utilized for testing purpose in the literature [14] and is represented by





)1mod(/1

 0
1

k
k cm

cm

otherwise

cmk 0

 









kk
k cmcm

cm
11

)1mod(/1

 (16)

Here, [cm] denotes the largest integer less than cm and acts as a shift on the continued
fraction representation of numbers. This map also generates chaotic sequences in (0,1).

3.5. Circle map

The Circle map [15] is represented by

)1mod()2sin()2/(1 kkk cmabcmcm   (17)

With a = 0.5 and b = 0.2, it generates a chaotic sequence in (0, 1).

3.6. Sinus map

Sinus map is defined as

)sin(2
1)(3.2 kcm

kk cmcm 
   (18)

3.7. Henon map

This map is a nonlinear 2-dimensional map most frequently employed for testing purposes,
and it is represented by

 1
2

1 1   kkk cmbcmacm (19)

The suggested parameter values are a = 1.4 and b = 0.3.

3.8. Ikeda map

An Ikeda map is a discrete-time dynamical system defined by [16]

    
    

22

1

1

1

6
4.0

,cossin7.0

,sincos7.01

nn
n

nnnnn

nnnnn

yx

yxy

yxx
















 (20)

AN EFFICIENT CHARGED SYSTEM SEARCH USING CHAOS...

311

3.9. Liebovtech map

Another example of chaotic maps is Liebovitch map proposed by Liebovitch and Toth [17].
This map consists of three piecewise linear segments on non-overlapping subintervals on the
interval (0, 1). This map is defined by the following equations

 















k

k

k1

k

x

dd

xd
xα

x

11

2

12

2

1


 1

,

,0

2

21

1





k

k

k

xd

dxd

dx

 (21)

where d1, d2(0,1) with d1 < d2 and

  

    .1
1

1

,1

1212
2

2

12
1

2
1

dddd
d

dd
d

d












 (22)

3.10. Zaslavskii map

One of the interesting dynamic systems evidencing chaotic behavior is the Zaslavskii map
[18], The corresponding equation is given by:

     

    kzekykz

kazkyky
r







2cos)1(

1mod1)1(
 (23)

where mod is the modulus after division and v = 400, r = 3, a = 12.6695. In this case, the
values of z(t)  [–1.0512, 1.0512].

4. CHAOTIC CHARGED SYSTEM SEARCH ALGORITHM

In the standard CSS since it is not possible to change the parameters during subsequent
iterations, random initialization of the CSS and the adjusted limit parameters may affect the
performance of the algorithm and reduce its convergence speed. Though, the standard CSS
uses fixed predefined values for kt, ka and kv, however when these are multiplied to random
numbers, the resultant values will have randomized nature. These values are the key factors to
control the balance of the exploration and exploitation of the algorithm. However their changes
are limited to effects of the related random numbers during the subsequent iterations.
Therefore, determining suitable values for the constant parameters (kt, ka and kv) becomes
important while it is time consuming. In addition, for this purpose there is no deterministic
approach. Due to the importance of these parameters on the performance of the algorithm in

S. TALATAHARI, A. KAVEH and R. SHEIKHOLESLAMI

312

one hand, and having no definite and reliable approach to determine these parameters on the
other hand; their coefficients may be selected chaotically by using chaotic maps.

In this paper, sequences generated from chaotic systems substitute the random parameters
utilized in the CSS algorithm, where it is necessary to make a random-based choice. In this
way, it is intended to improve the global convergence and to prevent being trapped in a local
solution. The use of chaotic sequences in the CSS algorithm can be helpful to escape more
easily from local minima because of the ergodic property of chaotic variables that plays a
central role in ensuring that the local agent information diffuses eventually over the entire
network of agents.

The new chaotic CSS algorithms, denoted by CCSS, may simply be classified and
described as follows:

4.1. CCSS-1

The initial positions of CPs are determined chaotically in the search space by iterating the
selected chaotic map (cm) as shown in Figure 1.

Figure 1. Pseudo-code of CCSS-1
4.2. CCSS-2

In this algorithm the kind of the forces (attracting or repelling) is determined by using
chaotic arij defined as








1

1
ijar

ijt

ijt

cmk

cmk




 (24)

where cmij is a chaotic variable according to the selected map.

4.3. CCSS-3

In this algorithm the probability of moving each CP toward the others is determined as








 





 else 0

)()(
)()(

)(
 1 jfitifitcm

ifitjfit

fitbestifit

p
ij

ij (25)

AN EFFICIENT CHARGED SYSTEM SEARCH USING CHAOS...

313

4.4. CCSS-4

The CCSS-2 and CCSS-3 are combined, i.e. the kind of the forces is determined by using
Eq. (24), and pij value is modified by the selected chaotic map.

4.5. CCSS-5

The coefficient of the force term in Eq. (8) is modified by the selected chaotic maps and
position update equation is modified by

 oldjoldjvj
j

j
jnewj tkrandt

m
cm ,,2

2
1, XV

F
X  (26)

where cmj1 is a chaotic variable based on the selected map.

4.6. CCSS-6

The coefficient of the velocity term in Eq. (8) is modified by the selected chaotic maps and
the position update equation is modified as

 oldjoldjj
j

j
ajnewj tcmt

m
krand ,,2

2
1, XV

F
X  (27)

where cmj2 is a chaotic variable based on the selected map.

4.7. CCSS-7

The coefficients of the force and velocity terms in Eq. (8) are modified by the selected
chaotic maps and position update equation is modified as:

 oldjoldjj
j

j
jnewj tcmt

m
cm ,,2

2
1, XV

F
X  (28)

4.8. CCSS-8

In this algorithm, CCSS-4 and CCSS-7 are combined.

4.9. CCSS-9

CCSS-1 and CCSS-8 are combined, that is the initial CPs locations are generated by the
selected chaotic maps and arij, pij, randj1 and randj2 values are modified by the selected
chaotic maps when needed.

5. INITIALIZATION AND PARAMETRIC STUDIES

We used 50 different runs for each setting with completely different initial conditions. The
final results are found to be almost independent of the initial guess. In fact, we have used

S. TALATAHARI, A. KAVEH and R. SHEIKHOLESLAMI

314

statistical measures such as mean objective values and their standard deviations to measure
the performance of the algorithm, rather than relying simply on a few runs. This approach is
reflected in the tables provided. The number of variables is set to 10 for the examples. The
simulations for map limits of ka as (0,0.5) results in a better performance while for the other
generated maps, no changes are observed.

For most cases in our implementation, we have carried out some extensive sensitivity
studies of the parameters such as the population size. From these simulations, we observed
that the population size N = 20~30 is sufficient for most of the problems; here, N is set to 30
for the examples. With a fixed number of CPs (N) at each run, the benchmark mathematical
functions are optimized within 500 iterations. This means the number of function
evaluations is set to15,000.

6. TESTING WITH BENCHMARK PROBLEMS

In order to compare these variants of the new method, some well-known benchmark
mathematical examples are considered from literature. The explanation of the examples is
presented in Sections 6.1 and the criterion of success is explained in Section 6.3. The
performance of the CCSS algorithms to optimize these functions is investigated in the
next section.

6.1. Description of the examples

From the standard set of benchmark problems available in the literature, four well-known
functions, one of which is uni-modal (containing only one optimum) and three of them are
multi-modal (containing many local optima, but only one global optimum), are considered to
test the efficacy of the proposed methods. The description of these test problems is provided
in Table 1. When the dimension is selected as 2, a perspective view and the related contour
lines for these functions are illustrated in Figure 2.

Table 1. Specifications of the benchmark problems

AN EFFICIENT CHARGED SYSTEM SEARCH USING CHAOS...

315

Figure 2. A perspective view and the related contour lines for some of function when n = 2., (a)
Griewank (b) Rosenbrock, (c) Rastring , (d) Ackley.

S. TALATAHARI, A. KAVEH and R. SHEIKHOLESLAMI

316

6.2. Criterion of Success for the examples

There are many criteria in the literature for evaluating the performance of the algorithms.
Here, the success rate is defined as

all

successful
r N

N
S 100 (29)

where Nall is the number of all trials, and Nsuccessful is the number of trials which finds the
successful solution. Here, we identify a run as a successful run when it is very near to the
global optimum for the examples. It should be noted that this distance changes for different
search spaces. The criterion for a successful run can be defined as

   QLBUBfitfitgb  * (30)

where fitgb is the global best obtained result by the proposed algorithms; UB and LB are the
upper and lower bounds, respectively, and Q is an accepted tolerance.

7. EXPERIMENTAL RESULTS

All the four benchmark mathematical problems are solved by simulating the different variants
of CCSS and the standard CSS methods. Two criteria are applied to terminate the algorithms:
reaching a maximum number of iterations (a constant number) or a minimum error.

7.1. Results for Griewangk function

The five statistical analyses of the fitness values obtained through 50 simulation runs for
Griewangk function using different chaotic maps are performed for each the CCSS
algorithm.

All of the algorithms considered in this paper are simulated 50 times and the results are
recorded. All swarms are initialized in the regions which do not include the global optimum,
for a fair evaluation. From the recorded results statistical analyses are carried out and for the
two first algorithms, these are presented in Tables 2 and 3. For each method, the Best (Min),
Average (Mean), Worst (Max), Median, Standard Deviation (SD) are calculated from the
simulated runs and then these are compared to determine the approximate rank of the related
methods. For this propose, the rank of each algorithm is evaluated when for example
comparing Best values and then the approximate rank can easily be evaluated. The similar
comparative work is performed for the other seven methods; however in order to save some
space only the two best maps for the other algorithms as well as two first ones are collected
in Table 4.

Many statistical measures justify the superiority of the proposed methods in compression to
the standard CSS. The low standard value of the proposed methods ensures the degree of
consistency in producing the global optimal value. The results of Table 4 show the superior of
the CCSS-7 and CCSS-6 methods to the other CCSS approaches. The CCSS-7 can find the best
minimum value and the CCSS-6 is capable of reaches the best average and standard deviation.

AN EFFICIENT CHARGED SYSTEM SEARCH USING CHAOS...

317

Table 2. Statistical results for Griewank’s function for the CCSS-1

Chaotic Map Best Mean Median Worst Std. Dev.
Approximated

Rank

Logistic CCSS-1 1.50E-05 (7)* 2.56E-3 (2) 1.17E-3 (3) 1.01E-2 (2) 3.059E-3 (2) 2

Tent CCSS-1 8.01E-07 (2) 2.33E-3 (1) 1.26E-3 (4) 8.10E-3 (1) 2.415E-3 (1) 1

Sinusoidal CCSS-1 2.50E-05 (8) 1.99E-2 (9) 9.26E-4 (1) 4.17E-1 (9) 7.826E-2 (9) 9

Gauss CCSS-1 1.43E-06 (5) 3.06E-3 (3) 1.73E-3 (7) 1.10E-2 (3) 3.336E-3 (3) 3

Circle CCSS-1 3.56E-05 (9) 4.11E-3 (4) 1.32E-3 (5) 4.02E-2 (4) 8.219E-3 (4) 5

Sinus CCSS-1 1.12E-06 (4) 1.53E-2 (7) 3.75E-3 (9) 2.44E-1 (8) 4.496E-2 (7) 8

Henon CCSS-1 5.82E-05 (10) 8.76E-2 (10) 7.14E-3 (10) 4.58E-1 (10)
1.307E-1

(10)
10

Ikeda CCSS-1 8.11E-07 (3) 6.31E-3 (5) 1.10E-3 (2) 1.46E-1 (6) 2.637E-2 (6) 4

Liebovtech CCSS-1 9.14E-08 (1) 1.64E-2 (8) 2.43E-3 (8) 2.42E-1 (7) 4.582E-2 (8) 7

Zaslavski CCSS-1 3.34E-06 (6) 7.16E-3 (6) 1.68E-3 (6) 9.12E-2 (5) 1.755E-2 (5) 6

* The numbers in () identify the rank of the utilized map compared to the remaining maps.

Table 3. Statistical results for Griewank’s function for the CCSS-2

Chaotic Map Best Mean Median Worst Std. Dev.
Approximated

Rank

Logistic CCSS-2 1.08E-05 (5) 3.95E-3 (3) 1.48E-3 (8) 2.04E-2 (2) 5.33E-3 (3) 3

Tent CCSS-2 1.52E-09 (1) 3.69E-3 (2) 9.11E-4 (4) 3.26E-2 (3) 6.34E-3 (4) 2

Sinusoidal CCSS-2 3.19E-4 (10) 1.21E-2 (9) 4.55E-3 (10) 1.31E-1 (6) 2.95E-2 (8) 6

Gauss CCSS-2 5.09E-0 (4) 9.70E-3 (6) 3.47E-4 (2) 2.41E-1 (10) 4.38E-3 (2) 4

Circle CCSS-2 2.40E-05 (7) 8.29E-3 (5) 7.45E-4 (3) 1.51E-1 (8) 2.97E-2 (9) 7

Sinus CCSS-2 4.89E-05 (8) 9.80E-3 (7) 3.92E-3 (9) 5.58E-2 (5) 1.30E-2 (6) 9

Henon CCSS-2 6.30E-05 (9) 5.55E-3 (4) 1.32E-3 (7) 4.52E-2 (4) 9.72E-3 (5) 5

Ikeda CCSS-2 4.63E-06 (3) 1.49E-3 (1) 3.21E-4 (1) 1.32E-2 (1) 3.08E-3 (1) 1

Liebovtech CCSS-2 1.53E-5 (6) 1.31E-2 (10) 1.31E-3 (6) 1.34E-1 (7) 2.93E-2 (7) 10

Zaslavski CCSS-2 4.16E-09 (2) 1.13E-2 (8) 1.22E-3 (5) 1.88E-1 (9) 3.48E-2 (10) 8

The success rates of the CCSS methods using different chaotic maps for Griewank

function are presented in Table 5. The success rate for the standard CSS is equal to 56%, and
according to Table 5, it is clear that many CCSS algorithms have improved the performance
of the standard CSS. The CCSS-6 with an average value of 75.4% for the success rate is the
best method. The CCSS-8, CCSS-9 and CCSS-7 are categorized as the next better
approaches. In addition, good results for success rates are obtained when the CCSS-7 and
CCSS-8 have been used with the sinus map.

S. TALATAHARI, A. KAVEH and R. SHEIKHOLESLAMI

318

Table 4. Statistical results of the best maps for Griewank’s function for the CCSS algorithms

Chaotic Map Best Mean Median Worst Std. Dev.

Standard CSS 8.86E-06 2.88E-3 1.15E-3 1.55E-2 4.21E-2

CCSS-1

Tent map 8.01E-7 2.33E-3 1.26E-3 8.10E-3 2.415E-3

Logistic map 1.50E-5 2.56E-3 1.17E-3 1.01E-2 3.059E-3

CCSS-2

Ikeda map 4.63E-6 1.49E-3 3.21E-4 1.32E-2 3.08E-3

Tent map 1.52E-9 3.69E-3 9.11E-4 3.26E-2 6.34E-3

CCSS-3

Logistic map 2.86e-7 1.38E-3 6.55E-4 6.32E-3 1.69E-3

Sinusoidal map 2.95E-6 1.46E-3 4.03E-4 1.61E-2 3.01E-3

CCSS-4

Circle map 7.64E-7 2.32E-3 9.25E-4 1.41E-2 3.65E-3

Zaslavski map 8.62E-6 2.45E-3 1.17E-3 9.29E-3 2.88E-3

CCSS-5

Sinus map 7.22E-9 6.85E-3 1.07E-3 1.48E-1 2.66E-2

Liebovtech map 1.28E-9 1.03E-2 2.28E-3 8.88E-1 9.44E-2

CCSS-6

Liebovtech map 1.98E-7 1.24E-2 6.70E-4 2.49E-1 4.60E-2

Zaslavski map 2.77E-6 1.06E-3 4.81E-4 7.45E-3 1.55E-3

CCSS-7

Sinusoidal map 7.03E-5 3.61E-3 2.01E-3 2.69E-2 5.17E-3

Sinus map 1.00E-9 1.11E-2 1.09E-4 1.96E-1 4.32E-2

CCSS-8

Sinus map 2.01E-07 5.75E-3 2.91E-05 7.60E-2 1.73E-2
Sinusoidal map 7.47E-6 1.92E-2 5.67E-4 2.7272E-2 6.42E-2

CCSS-9

Sinus map 6.22E-08 2.93E-3 1.78E-05 4.64E-2 1.02E-2

Tent map 8.12E-05 03.82E-2 5.27E-4 8.93E-2 9.09E-2

Table 5. Success rate of the standard and chotic-based CSS for Griewank’s function. (Q =1E-5)

 CCSS
Chaotic Map

1 2 3 4 5 6 7 8 9
Logistic map 10 56 74 58 74 76 60 66 60

Tent map 66 60 58 50 74 90 68 70 84
Sinusoidal map 64 42 80 64 50 84 66 70 64

Gauss map 70 84 68 54 56 78 64 70 84
Circle map 50 88 58 64 50 84 66 74 70
Sinus map 60 34 54 74 94 68 98 98 86
Henon map 40 60 48 48 10 40 50 46 42
Ikeda map 24 88 78 68 64 78 66 90 86

Liebovtech map 70 58 68 78 66 68 94 94 80
Zaslavski map 48 58 58 70 66 88 68 74 70

Aveage rate 50 62.4 64.4 62.8 60.4 75.4 70 75.2 72.6
Best rate 70 88 80 78 94 90 98 98 86

AN EFFICIENT CHARGED SYSTEM SEARCH USING CHAOS...

319

7.2. Results for Rosenbrock function

Table 6 represents the results obtained from different CCSS methods for the Rosenbrock
function. For this example, the CCSS-9, CCSS-6 and CCSS-7 methods have shown better
performance than other methods and especially the standard CSS. The overall success rates
of the CCSS variants as well as the standard CSS for Rosenbrock function are shown in
Table 7, when Q is set to 1E-3. The success rate for the standard CSS is obtained to be 40%.
The CCSS-8, CCSS-9 and CCSS-6 have better performance in average. The best success
rate belongs to the CCSS-8 when the sinus map is utilized, improving the performance of
the standard CSS twice comparing their success rates.

Table 6. Statistical results of the best maps for Rosenbrock’s function for the CCSS algorithms

Chaotic Map Best Mean Median Worst Std. Dev.

Standard CSS 1.36E-3 5.84E-2 8.21E-2 1.15E-1 3.83E-1

CCSS-1

Tent map 5.66E-06 7.60E-2 7.68E-2 1.21E-1 3.66E-1

Circle map 4.20E-04 6.33E-2 6.88E-2 4.82E-2 2.04E-1

CCSS-2

Sinusoidal map 1.56E-06 9.80E-2 8.40E-2 1.11E0 1.96E-1

Gauss map 3.00E-04 4.09E-2 2.20E-2 9.82E-2 4.04E-2

CCSS-3

Sinus map 9.09E-04 3.94E-2 1.34E-2 8.93E-2 4.13E-2

Circle map 1.20E-06 5.23E-2 5.99E-2 1.00E-1 4.06E-2

CCSS-4

Circle map 9.14E-04 5.00E-2 4.01E-2 9.21E-2 3.74E-2

Tent map 3.33E-04 4.55E-2 3.69E-2 1.03E-1 3.75E-2

CCSS-5

Liebovtech map 7.36E-07 2.80E-2 9.85E-2 9.63E-2 6.57E-2

Zaslavski map 4.94E-06 1.03E-1 3.00E-1 1.16E-1 2.25E-1

CCSS-6

Sinusoidal map 1.24E-08 6.57E-2 8.87E-2 2.44E-1 5.57E-2

Sinus map 1.45E-07 1.07E-1 9.56E-2 2.81E-1 6.98E-2

CCSS-7

Sinus map 7.11E-05 3.24E-2 1.71E-2 2.11E-1 4.66E-1

Liebovtech map 2.18E-05 7.99E-2 1.03E-2 3.11E-1 9.33E-1

CCSS-8

Sinus map 3.60E-06 5.11E-2 1.61E-2 2.65E-1 7.50E-2

Sinusoidal map 2.28E-06 9.03E-2 1.71E-2 3.82E-1 5.28E-2

CCSS-9

Sinus map 1.19E-6 1.96E-2 8.30E-2 2.42E-2 1.19E-2

Gauss map 9.57E-6 1.30E-2 1.14E-2 5.24E-2 9.57E-2

7.3. Results for Rastrigin function

Overall success rates of the CCSS variants are computed and summarized in Table 8. The

S. TALATAHARI, A. KAVEH and R. SHEIKHOLESLAMI

320

success rate for the standard CSS is only 46%. Similar to the previous example, The CCSS-
8, CCSS-9 and CCSS-6 have the best performances in average.The results obtained for this
example is presented in Table 9. The CCSS methods have shown better performance than
the standard CSS method. The CCSS-8, CCSS-7 and CCSS-9 methods have shown better
performance when the statistical analyses are compared. CCSS-8 using the sinus map seems
be the best CCSS among others.

Table 7. Success rate of the standard and chotic-based CSS for Rosenbrock’s function (Q =1E-3)

 CCSS
Chaotic Map

1 2 3 4 5 6 7 8 9

Logistic map 28 50 50 36 44 30 32 42 44

Tent map 60 56 42 62 60 60 60 62 60

Sinusoidal map 44 50 54 46 50 72 54 72 54

Gauss map 50 60 54 46 50 54 48 58 66

Circle map 54 52 42 54 50 60 42 46 44

Sinus map 40 50 66 46 50 60 50 78 76

Henon map 28 28 24 24 22 30 34 30 32

Ikeda map 42 50 42 44 60 58 50 54 56

Liebovtech map 56 46 54 52 68 72 60 72 64

Zaslavski map 50 50 54 50 52 56 60 52 60

Aveage rate 45.2 49.2 48.2 46 50.6 55.2 49 56.6 55.6

Best rate 60 60 66 62 68 72 60 78 76

Table 8. Success rate of the standard and chotic-based CSS for Rastring’s function (Q =1E-4)

 CCSS
Chaotic Map

1 2 3 4 5 6 7 8 9

Logistic map 50 62 62 56 62 60 60 60 48

Tent map 78 56 68 68 56 74 50 88 86

Sinusoidal map 48 56 66 52 44 60 42 50 40

Gauss map 52 68 62 60 72 64 60 66 80

Circle map 62 50 42 44 68 42 62 62 60

Sinus map 28 44 66 50 64 62 56 90 70

Henon map 22 66 50 60 28 42 34 38 40

Ikeda map 60 86 76 72 60 60 60 64 64

Liebovtech map 50 54 72 60 66 68 68 62 64

Zaslavski map 56 60 44 60 60 68 78 68 72

Aveage rate 50.6 60.2 60.8 58.2 58 60 57 64.8 62.4

Best rate 78 86 76 72 72 74 78 90 86

AN EFFICIENT CHARGED SYSTEM SEARCH USING CHAOS...

321

Table 9. Statistical results of the best maps for Rastring’s function for the CCSS algorithms

Chaotic Map Best Mean Median Worst Std. Dev.

Standard CSS 4.03E-3 5.34E-3 3.21E-3 1.58E-1 5.37E-3

CCSS-1

Tent map 1.01E-07 1.98E-3 1.04E-4 1.03E-1 3.53E-3

Logistic map 4.17E-5 4.07E-3 1.48E-3 1.49E-1 4.92E-3

CCSS-2

Circle map 2.22E-08 7.27E-3 7.89E-3 3.94E-1 9.73E-3

Ikeda map 4.71E-08 2.92E-3 1.33E-4 2.59E-1 5.97E-3

CCSS-3

Sinusoidal map 2.43E-10 3.12E-3 3.46E-4 1.04E-1 4.24E-3

Liebovtech map 4.05E-09 4.04E-3 6.52E-5 3.98E-1 7.96E-3

CCSS-4

Circle map 2.86E-08 6.89E-3 8.32E-3 3.98E-1 8.38E-3

Tent map 1.15E-07 4.39E-3 3.35E-4 2.11E-1 5.93E-3

CCSS-5

Sinus map 2.90E-11 2.77E-3 1.52E-4 9.95E-2 3.63E-3

Circle map 1.53E-08 3.80E-3 1.38E-4 2.37E-1 5.92E-3

CCSS-6

Liebovtech map 7.58E-5 1.75E-3 8.91E-4 6.62E-2 2.12E-3

Tent map 3.53E-08 6.42E-3 5.05E-3 4.00E-1 8.31E-3

CCSS-7

Sinus map 5.59E-09 8.43E-4 2.54E-4 4.70E-2 1.25E-3

Tent map 7.13E-07 3.56E-3 2.39E-4 3.98E-2 7.87E-3

CCSS-8

Sinus map 8.15E-5 1.35E-3 1.23E-3 3.44E-2 1.23E-3

Liebovtech map 2.41E-11 4.85E-3 5.89E-4 4.2E-1 8.8E-3

CCSS-9

Sinus map 2.02E-6 3.74E-3 3.47E-3 1.34E-2 2.00E-3

Gauss map 4.05E-6 9.74E-3 9.47E-3 2.98E-2 408E-3

7.4. Results for Ackley function

Tables 10 and 11 collect the statistical results and the success rates of the Ackley function
using the CCSS methods. The success rate for the standard CSS is 70%. The CCSS-8 using
the sinus map can find the global optimum in all 50 different runs. In addition, this method

S. TALATAHARI, A. KAVEH and R. SHEIKHOLESLAMI

322

is the best method even when the statistical results are considered. The CCSS-3 utilizing the
Gauss map is the second best method. This algorithm can also reach to an accept solution in
all 50 runs.

Table 10. Statistical results of the best maps for Ackley’s function for the CCSS algorithms

Chaotic Map Best Mean Median Worst Std. Dev.

Standard CSS 8.10E-5 3.01E-3 4.90E-4 4.91E-2 1.09E-2

CCSS-1

Sinus map 9.01E-5 8.79E-3 2.07E-3 9.46E-2 3.69E-3

Liebovtech map 6.06E-05 6.33E-3 2.90E-3 8.29E-2 7.68E-3

CCSS-2

Tent map 3.50E-6 2.74E-4 5.87E-5 2.30E-3 6.32E-4

Gauss map 1.66E-6 7.63E-4 3.83E-5 1.07E-2 2.39E-3

CCSS-3

Gauss map 5.02E-7 5.50E-5 3.07E-5 2.80E-4 7.17E-05

Zaslavski map 2.09E-6 1.45E-4 4.99E-5 1.05E-3 2.93E-4

CCSS-4

Tent map 2.97E-6 8.48E-5 3.85E-5 4.84E-4 1.24E-4

Ikeda map 1.64E-7 5.12E-4 2.57E-5 4.86E-3 1.30E-3

CCSS-5

Sinus map 1.19E-6 1.35E-4 1.15E-4 7.44E-2 1.81E-3

Gauss map 1.05E-5 1.45E-4 1.33E-4 3.52E-3 9.99E-4

CCSS-6

Circle map 1.51E-6 5.86E-4 1.29E-4 5.495E-3 1.24E-3

Sinusoidal map 2.27E-7 1.15E-3 3.10E-5 1.76E-2 3.98E-2

CCSS-7

Sinus map 2.68E-5 3.82E-4 1.78E-4 1.56E-2 4.19E-3

Zaslavski map 6.61E-6 5.09E-4 9.88E-5 2.34E-2 6.94E-3

CCSS-8

Sinus map 1.46E-06 3.08E-05 1.77E-05 1.02E-5 2.93E-05

Liebovtech map 5.33E-07 1.02E-4 5.72E-05 9.35E-4 2.04E-4

CCSS-9

Sinus map 8.00E-6 6.41E-4 3.11E-4 8.01E-3 8.00E-3

Tent map 5.63E-5 1.75E-4 1.59E-4 8.11E-3 5.63E-3

AN EFFICIENT CHARGED SYSTEM SEARCH USING CHAOS...

323

Table 11. Success rate of the standard and chotic-based CSS for Ackley’s function (Q =1E-5)

 CCSS
Chaotic Map

1 2 3 4 5 6 7 8 9

Logistic map 40 50 66 56 64 80 92 86 84

Tent map 90 90 96 100 86 76 80 96 96

Sinusoidal map 55 76 66 86 78 100 90 90 80

Gauss map 60 80 100 86 86 98 86 100 96

Circle map 60 86 76 90 80 100 94 60 80

Sinus map 70 60 86 86 100 80 100 100 100

Henon map 76 60 46 60 56 60 60 60 64

Ikeda map 50 90 96 96 90 82 90 100 96

Liebovtech map 50 65 90 84 96 84 86 60 74

Zaslavski map 60 85 86 82 78 70 90 86 80

Aveage rate 61.1 74.2 80.8 82.6 81.4 83 86.8 83.8 85

Best rate 90 90 100 100 100 100 94 100 100

8. DISCUSSION AND CONCLUSION

As the first report of hybridizing the charged system search and chaos, different methods are
developed to solve numerical global optimization problems. The proposed approaches
utilize different chaotic maps to adapt the parameters of the CSS algorithm. Nine new
chaotic CSS algorithms are proposed and ten different chaotic maps are analyzed for the
benchmark functions. The simulation resulting from 50 runs are presented in this paper for
each method and each example demonstrate that some tested CCSS approaches are efficient
methods to explore the search space and discover the global solution. From the statistical
investigation, it is shown that the CCSS-8, utilizing the chaotic maps, instead of aij, pij, kv, ka,
have better performance than other approaches. The second best methods can be listed as
CCSS-6 and CCSS-9. In the CCSS-6, chaotic maps are only utilized as kv and this shows the
importance of this parameter in the CSS-based methods.

In order to simplify determining the most adaptive maps, Table 12 is presented
containing two best maps for each described algorithm. The reported maps are obtained
considering both statistical results and the success rates reported for the numerical examples.
Then to sum up, for each algorithm three maps as the best ones are chosen. The results show
that Tent, Sinus, Liebovtech, Gauss, Ikeda, Sinusoidal, Zaslavski, Circle maps can be
categorized as better maps for the CCSS methods, respectively. This is not a general result
for the CCSS methods and based on the parameter utilizing the chaotic map, this order can
be changed. As a result, due to the superiorities of the present methods, more elaborated
experiments may be performed to design/discover the best map which can be considered as
the future work.

S. TALATAHARI, A. KAVEH and R. SHEIKHOLESLAMI

324

Table 12. Most success CCSS methods and their related best maps

REFERENCES

1. Kaveh A, Talatahari S. A novel heuristic optimization method: charged system search,

Acta Mech 2010; 213(3-4): 267-89.
2. Kaveh A, Talatahari S. A charged system search with a fly to boundary method for

discrete optimum design of truss structures, Asian J Civil Eng 2010; 11(3): 277-93.
3. Kaveh A, Talatahari S. Optimal design of skeletal structures via the charged system

search algorithm, Struct Multidiscip Optim 2010; 41(6): 893-911.
4. Kaveh A, Talatahari S. Charged system search for optimum grillage systems design

using the LRFD-AISC code, J Construct Steel Res 2010; 66(6):767-71.
5. Kaveh A, Talatahari S. Geometry and topology optimization of geodesic domes using

charged system search. Struct Multidiscip Optim 2011; 43(2): 215-29.
6. Kaveh A, Talatahari S. An enhanced charged system search for configuration

optimization using the concept of fields of forces, Struct Multidiscip Optim 2011; 43(3):
339-51.

7. Alatas B, Akin E, Bedri O. 2009. Chaos embedded particle swarm optimization
algorithms, Chaos Soliton Fract 2009; 40: 1715-34.

8. Tavazoei M, Haeri M. 2007. Comparison of different one-dimensional maps as chaotic
search pattern in chaos optimization algorithms, J Comput Appl Math 2007;187: 1076-
85.

9. Heidari-Bateni G, McGillem CD. A chaotic direct-sequence spread spectrum
communication system, IEEE T Commun 1994; 42(2-4): 1524-7.

10. Schuster GG. Deterministic Chaos: An Introduction (2nd revised ed.), Federal Republic
of Germany: Physick-Verlag, GmnH, Weinheim, 1998.

AN EFFICIENT CHARGED SYSTEM SEARCH USING CHAOS...

325

11. Coelho LS, Mariani VC. Use of chaotic sequences in a biologically inspired algorithm
for engineering design optimization, Expert Syst Appl 2008; 34: 1905–13.

12. Alatas B. Chaotic bee colony algorithms for global numerical optimization, Expert Syst
Appl 2010; 37: 5682–7

13. May RM. Simple mathematical models with very complicated dynamics, Nature 1976;
261: 459.

14. Peitgen H, Jurgens H, Saupe D. Chaos and Fractals, Springer-Verlag, Berlin,
Germany, 1992.

15. Zheng WM. Kneading plane of the circle map, Chaos Soliton Fract 1994; 4:1221.
16. Dressler U, Farmer JD. Generalized Lyapunov exponents corresponding to higher

derivatives, Physica D, 1992; 59: 365-77.
17. Erramilli A, Singh RP, Pruthi P. Modeling Packet Traffic with Chaotic Maps, Royal

Institute of Technology, Stockholm-Kista, Sweden,1994.
18. Zaslavskii GM. The simplest case of a strange attractor, Physics Letters A, 1978; 69(3):

145–7.

