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ABSTRACT 
 

The Charged System Search (CSS) is combined to chaos to solve mathematical global 
optimization problems. The CSS is a recently developed meta-heuristic optimization 
technique inspired by the governing laws of physics and mechanics. The present study 
introduces chaos into the CSS in order to increase its global search mobility for a better 
global optimization. Nine chaos-based CSS (CCSS) methods are developed, and then for 
each variant, the performance of ten different chaotic maps is investigated to identify the 
most powerful variant. A comparison of these variants and the standard CSS demonstrates 
the superiority and suitability of the selected variants for the benchmark mathematical 
optimization problems.  
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1. INTRODUCTION 
 

The Charged System Search (CSS) is one of the most recent meta-heuristic optimization 
techniques inspired by the governing laws of electrostatics in physics and the governing 
laws of motion from the Newtonian mechanics [1]. This algorithm is growing and its 
application is extending to various optimization problems such as discrete optimum design 
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of truss structures [2], design of skeletal structures [3], grillage system design [4], 
optimization of geodesic domes [5] and configuration  optimization [6] etc. The CSS utilizes 

a number of solution candidates which are called charged particles (CPs). Each CP is treated 
as a charged sphere and it can exert electrical forces on the other agents (CPs) according to 
the Coulomb and Gauss laws of electrostatics. The resultant force acts on each CP creating 
an acceleration according to the Newton's second law. Finally, utilizing the Newtonian 
mechanics, the position of each CP is determined at any time based on its previous position, 
velocity and acceleration in the search space [1]. The comparison of the results of the CSS 
with those of the other heuristics shows a better performance of the CSS and demonstrates 
its efficiency in finding the optimum solutions [4]. 

On the other hand, chaos is a bounded unstable dynamic behavior that exhibits sensitive 
dependence on initial conditions and includes infinite unstable periodic motions in nonlinear 
systems. Although it appears to be stochastic, it occurs in a deterministic nonlinear system 
under deterministic conditions [7].  

Recently, the idea of using chaotic systems instead of random processes has been noticed 
in several fields. One of these fields is optimization theory. In random-based optimization 
algorithms, the role of randomness can be played by a chaotic dynamics. Experimental 
studies show the benefits of using chaotic signals instead of random signals, however, this is 
not mathematically proved yet. For example in evolutionary algorithms, chaotic sequences 
increase the value of some measured algorithm-performance indexes with respect to random 
sequences [8]. Chaotic sequences have been proven to be easy and fast to generate and store, 
and there is no need for storing long sequences. Merely a few functions (chaotic maps) and 
few parameters (initial conditions) are needed even for very long sequences. In addition, an 
enormous number of different sequences can be generated simply by changing its initial 
condition. Moreover these sequences are deterministic and reproducible [9]. 

This paper presents Chaotic Charged System Search (CCSS) methods for finding global 
optimization problems. The CCSS algorithms utilizing different chaotic systems substitute 
random numbers for different parameters of the CSS. Thus different methods that use 
chaotic maps as efficient alternatives to pseudorandom sequences have been proposed. In 
order to evaluate these algorithms, some mathematical benchmark examples are studied. The 
results reveal the improvement of the new algorithm due to the application of the 
deterministic chaotic signals in place of the random sequences. 

The remaining of this paper is organized as follows. Review of the CSS is briefly 
presented in Section 2. The chaotic maps utilized for generating the chaotic sequences in the 
CSS steps of the present experiments are listed in Section 3. In Section 4 different chaotic-
based methods are proposed which are called Chaotic Charged System Search (CCSS) 
algorithms. Initialization and parametric studies are presented in Section 5 and in Section 6, 
the suggested methods are evaluated through benchmark problems, and the results are 
compared to designate the most efficient approach in Section 7. Finally, the conclusion is 
drawn in Section 8 based on the reported comparison analyses. 
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2. CHARGED SYSTEM SEARCH ALGORITHM 
 

The Charged System Search (CSS) algorithm is based on the Coulomb and Gauss laws from 
electrical physics and the governing laws of motion from the Newtonian mechanics. This 
algorithm can be considered as a multi-agent approach, where each agent is a Charged 
Particle (CP). Each CP is considered as a charged sphere with radius a, having a uniform 
volume charge density and is equal to  
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where fitbest and fitworst are the best and the worst fitness of all the particles; fit(i) 
represents the fitness of the agent i, and N is the total number of CPs. The initial positions of 
CPs are determined randomly in the search space using 
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where (o)
, jix  determines the initial value of the ith variable for the jth CP; xi,min and xi,max are 

the minimum and the maximum allowable values for the ith variable; randij is a random 
number in the interval [0,1]. The initial velocities of charged particles are taken as:  
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CPs can impose electric forces on the others, and its magnitude for the CP located inside 
the sphere is proportional to the separation distance between the CPs, and for a CP located 
outside the sphere is inversely proportional to the square of the separation distance between 
the particles. The kind of the forces can be attractive or repelling determined by using a 
force parameter arij defined as: 
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where arij determines the type of the force, in which +1 represents the attractive force and 
−1 denotes the repelling force, and kt is a parameter to control the effect of the kind of the 
force. In general the attractive force collects the agents in a part of search space and the 
repelling force strives to disperse the agents. The resultant force is redefined as  
 

 

)(
,

2213 jiijij
jii ij

i
ij

i
j pari

r

q
ir

a

q
XXF 










 



 
arii

arii

Nj

ij

ij






1,0

0,1

,...,2,1

21

21

 

(5) 



S. TALATAHARI, A. KAVEH and R. SHEIKHOLESLAMI 

 

308 

where Fj is the resultant force acting on the jth CP; rij is the separation distance between two 
charged particles defined as  
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Here Xi and Xj are the positions of the ith and jth CPs, respectively; Xbest is the position of 
the best current CP, and   is a small positive number to avoid singularity. The pij 
determines the probability of moving each CP toward the others as 
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The resultant forces and the laws of the motion determine the new location of the CPs. At 
this stage, each CP moves towards its new position under the action of the resultant forces 
and its previous velocity as 
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where ka is the acceleration coefficient; kv is the velocity coefficient to control the influence 
of the previous velocity; and randj1 and randj2 are two random numbers uniformly 
distributed in the range (0,1). If each CP moves out of the search space, its position is 
corrected using the harmony search-based handling approach [1]. In addition, to save the 
best results, a memory, known as the Charged Memory, is utilized. 

 
 

3. CHAOTIC MAPS 
 

For simulating complex phenomena, sampling, numerical analysis, decision making and in 
particular in heuristic optimization, random sequences are needed with a long period and 
reasonable uniformity [10,11]. Chaos is a deterministic, random-like process found in 
nonlinear, dynamical system, which is non-period, non-converging and bounded [12]. The 
nature of chaos looks to be random and unpredictable, possessing an element of regularity. 
Mathematically, chaos is randomness of a simple deterministic dynamical system, and 
chaotic system may be considered as the sources of randomness [10, 11]. 
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A chaotic map is a discrete-time dynamical system running in chaotic state as 

 )(1 kk cmfcm    (10) 

The following chaotic sequence 

 ,...}2,1:{ kcmk   (11) 

 
can be used as a spread-spectrum sequence for random number sequence. Chaotic sequences 
have been proven to be easy and fast to generate and store, and therefore there is no need for 
storing long sequences [9]. One needs merely a few functions (chaotic maps) and few 
parameters (initial conditions) for very long sequences. Also an enormous number of 
different sequences can be generated simply by changing its initial condition. In addition, 
these sequences are deterministic and reproducible. The choice of chaotic sequences can by 
justified theoretically through their unpredictability, corresponding to their spread-spectrum 
characteristic and ergodic properties. 

When a random parameter is needed in the CSS algorithm, it can be generated by 
iterating one step of the chosen chaotic map (cm). The selected chaotic maps for the 
experiments are listed in the following subsections. 

 
3.1. Logistic map 

This map, whose equation appears in nonlinear dynamics of biological population, 
highlights the chaotic behavior [13] 

 
 )1(1 kkk cmcmacm    (12) 

 
In this equation, xk is the kth chaotic number, with k denoting the iteration number. 
Obviously, )1,0(kcm  under the conditions that the initial )1,0(ocm . In the experiments 

a = 4 is used. 
 

3.2. Tent map 

Tent map [14] resembles the logistic map. It generates chaotic sequences in (0,1) assuming 
the following form 

 





 )1(3/10

             7.0/
1

kk

k
k cmcm

cm
cm    

otherwise

cmk 7.0
 (13) 

3.3. Sinusoidal iterator 

This iterator [13] is represented by 
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For a = 2.3 and 7.0ocm

 

it has the following simplified form 
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 )sin(1 kk cmcm     (15) 

It generates chaotic sequence in (0, 1). 
 

3.4. Gauss map 

The Gauss map is utilized for testing purpose in the literature [14] and is represented by 
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Here, [cm] denotes the largest integer less than cm and acts as a shift on the continued 
fraction representation of numbers. This map also generates chaotic sequences in (0,1). 

 
3.5. Circle map 

The Circle map [15] is represented by 
 

 )1mod()2sin()2/(1 kkk cmabcmcm     (17) 

 
With a = 0.5 and b = 0.2, it generates a chaotic sequence in (0, 1). 

 
3.6. Sinus map 

Sinus map is defined as 
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3.7. Henon map 

This map is a nonlinear 2-dimensional map most frequently employed for testing purposes, 
and it is represented by 
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The suggested parameter values are a = 1.4 and b = 0.3. 

 
3.8. Ikeda map 

An Ikeda map is a discrete-time dynamical system defined by [16] 
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3.9. Liebovtech map 

Another example of chaotic maps is Liebovitch map proposed by Liebovitch and Toth [17]. 
This map consists of three piecewise linear segments on non-overlapping subintervals on the 
interval (0, 1). This map is defined by the following equations 
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where d1, d2(0,1) with d1 < d2 and 
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3.10. Zaslavskii map 

One of the interesting dynamic systems evidencing chaotic behavior is the Zaslavskii map 
[18], The corresponding equation is given by: 
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where mod is the modulus after division and  v = 400, r = 3, a = 12.6695. In this case, the 
values of z(t)  [–1.0512, 1.0512]. 

 
 

4. CHAOTIC CHARGED SYSTEM SEARCH ALGORITHM 
 

In the standard CSS since it is not possible to change the parameters during subsequent 
iterations, random initialization of the CSS and the adjusted limit parameters may affect the 
performance of the algorithm and reduce its convergence speed. Though, the standard CSS 
uses fixed predefined values for kt, ka and kv, however when these are multiplied to random 
numbers, the resultant values will have randomized nature. These values are the key factors to 
control the balance of the exploration and exploitation of the algorithm. However their changes 
are limited to effects of the related random numbers during the subsequent iterations. 
Therefore, determining suitable values for the constant parameters (kt, ka and kv) becomes 
important while it is time consuming. In addition, for this purpose there is no deterministic 
approach. Due to the importance of these parameters on the performance of the algorithm in 
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one hand, and having no definite and reliable approach to determine these parameters on the 
other hand; their coefficients may be selected chaotically by using chaotic maps. 

In this paper, sequences generated from chaotic systems substitute the random parameters 
utilized in the CSS algorithm, where it is necessary to make a random-based choice. In this 
way, it is intended to improve the global convergence and to prevent being trapped in a local 
solution. The use of chaotic sequences in the CSS algorithm can be helpful to escape more 
easily from local minima because of the ergodic property of chaotic variables that plays a 
central role in ensuring that the local agent information diffuses eventually over the entire 
network of agents. 

The new chaotic CSS algorithms, denoted by CCSS, may simply be classified and 
described as follows: 

 
4.1. CCSS-1 

The initial positions of CPs are determined chaotically in the search space by iterating the 
selected chaotic map (cm) as shown in Figure 1. 

 

 

Figure 1. Pseudo-code of CCSS-1 
4.2. CCSS-2 

In this algorithm the kind of the forces (attracting or repelling) is determined by using 
chaotic arij defined as 
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where cmij is a chaotic variable according to the selected map. 

 
4.3. CCSS-3 

In this algorithm the probability of moving each CP toward the others is determined as 
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4.4. CCSS-4 

The CCSS-2 and CCSS-3 are combined, i.e. the kind of the forces is determined by using 
Eq. (24), and pij value is modified by the selected chaotic map.  

 
4.5. CCSS-5 

The coefficient of the force term in Eq. (8) is modified by the selected chaotic maps and 
position update equation is modified by 
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where cmj1 is a chaotic variable based on the selected map. 
 

4.6. CCSS-6 

The coefficient of the velocity term in Eq. (8) is modified by the selected chaotic maps and 
the position update equation is modified as 
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where cmj2 is a chaotic variable based on the selected map. 
 

4.7. CCSS-7 

The coefficients of the force and velocity terms in Eq. (8) are modified by the selected 
chaotic maps and position update equation is modified as: 
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4.8. CCSS-8 

In this algorithm, CCSS-4 and CCSS-7 are combined. 
 

4.9. CCSS-9 

CCSS-1 and CCSS-8 are combined, that is the initial CPs locations are generated by the 
selected chaotic maps and arij, pij, randj1 and randj2 values are modified by the selected 
chaotic maps when needed. 

 
 

5. INITIALIZATION AND PARAMETRIC STUDIES 
 

We used 50 different runs for each setting with completely different initial conditions. The 
final results are found to be almost independent of the initial guess. In fact, we have used 



S. TALATAHARI, A. KAVEH and R. SHEIKHOLESLAMI 

 

314 

statistical measures such as mean objective values and their standard deviations to measure 
the performance of the algorithm, rather than relying simply on a few runs. This approach is 
reflected in the tables provided. The number of variables is set to 10 for the examples. The 
simulations for map limits of ka as (0,0.5) results in a better performance while for the other 
generated maps, no changes are observed.  

For most cases in our implementation, we have carried out some extensive sensitivity 
studies of the parameters such as the population size. From these simulations, we observed 
that the population size N = 20~30 is sufficient for most of the problems; here, N is set to 30 
for the examples. With a fixed number of CPs (N) at each run, the benchmark mathematical 
functions are optimized within 500 iterations. This means the number of function 
evaluations is set to15,000.   

 
 

6. TESTING WITH BENCHMARK PROBLEMS 
 

In order to compare these variants of the new method, some well-known benchmark 
mathematical examples are considered from literature. The explanation of the examples is 
presented in Sections 6.1 and the criterion of success is explained in Section 6.3. The 
performance of the CCSS algorithms to optimize these functions is investigated in the  
next section. 

 
6.1. Description of the examples 

From the standard set of benchmark problems available in the literature, four well-known 
functions, one of which is uni-modal (containing only one optimum) and three of them are 
multi-modal (containing many local optima, but only one global optimum), are considered to 
test the efficacy of the proposed methods. The description of these test problems is provided 
in Table 1. When the dimension is selected as 2, a perspective view and the related contour 
lines for these functions are illustrated in Figure 2.  

 
Table 1. Specifications of the benchmark problems 
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Figure 2. A perspective view and the related contour lines for some of function when n = 2., (a) 
Griewank (b) Rosenbrock, (c) Rastring , (d) Ackley. 
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6.2. Criterion of Success for the examples 

There are many criteria in the literature for evaluating the performance of the algorithms. 
Here, the success rate is defined as 

 
all

successful
r N

N
S 100  (29) 

 

where Nall is the number of all trials, and Nsuccessful is the number of trials which finds the 
successful solution. Here, we identify a run as a successful run when it is very near to the 
global optimum for the examples. It should be noted that this distance changes for different 
search spaces. The criterion for a successful run can be defined as 

 
   QLBUBfitfitgb  *  (30) 

 
where fitgb is the global best obtained result by the proposed algorithms; UB and LB are the 
upper and lower bounds, respectively, and Q is an accepted tolerance.  

 
 

7. EXPERIMENTAL RESULTS 
 

All the four benchmark mathematical problems are solved by simulating the different variants 
of CCSS and the standard CSS methods. Two criteria are applied to terminate the algorithms: 
reaching a maximum number of iterations (a constant number) or a minimum error.  

 
7.1. Results for Griewangk function 

The five statistical analyses of the fitness values obtained through 50 simulation runs for 
Griewangk function using different chaotic maps are performed for each the CCSS 
algorithm.  

All of the algorithms considered in this paper are simulated 50 times and the results are 
recorded. All swarms are initialized in the regions which do not include the global optimum, 
for a fair evaluation. From the recorded results statistical analyses are carried out and for the 
two first algorithms, these are presented in Tables 2 and 3. For each method, the Best (Min), 
Average (Mean), Worst (Max), Median, Standard Deviation (SD) are calculated from the 
simulated runs and then these are compared to determine the approximate rank of the related 
methods. For this propose, the rank of each algorithm is evaluated when for example 
comparing Best values and then the approximate rank can easily be evaluated. The similar 
comparative work is performed for the other seven methods; however in order to save some 
space only the two best maps for the other algorithms as well as two first ones are collected 
in Table 4.  

Many statistical measures justify the superiority of the proposed methods in compression to 
the standard CSS. The low standard value of the proposed methods ensures the degree of 
consistency in producing the global optimal value. The results of Table 4 show the superior of 
the CCSS-7 and CCSS-6 methods to the other CCSS approaches. The CCSS-7 can find the best 
minimum value and the CCSS-6 is capable of reaches the best average and standard deviation. 
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Table 2. Statistical results for Griewank’s function for the CCSS-1 

Chaotic Map Best Mean Median Worst Std. Dev. 
Approximated 

Rank 

Logistic CCSS-1 1.50E-05 (7)* 2.56E-3 (2) 1.17E-3 (3) 1.01E-2 (2) 3.059E-3 (2) 2 

Tent CCSS-1 8.01E-07 (2) 2.33E-3 (1) 1.26E-3 (4) 8.10E-3 (1) 2.415E-3 (1) 1 

Sinusoidal CCSS-1 2.50E-05 (8) 1.99E-2 (9) 9.26E-4 (1) 4.17E-1 (9) 7.826E-2 (9) 9 

Gauss CCSS-1 1.43E-06 (5) 3.06E-3 (3) 1.73E-3 (7) 1.10E-2 (3) 3.336E-3 (3) 3 

Circle CCSS-1 3.56E-05 (9) 4.11E-3 (4) 1.32E-3 (5) 4.02E-2 (4) 8.219E-3 (4) 5 

Sinus CCSS-1 1.12E-06 (4) 1.53E-2 (7) 3.75E-3 (9) 2.44E-1 (8) 4.496E-2 (7) 8 

Henon CCSS-1 5.82E-05 (10) 8.76E-2 (10) 7.14E-3 (10) 4.58E-1 (10) 
1.307E-1 

(10) 
10 

Ikeda CCSS-1 8.11E-07 (3) 6.31E-3 (5) 1.10E-3 (2) 1.46E-1 (6) 2.637E-2 (6) 4 

Liebovtech CCSS-1 9.14E-08 (1) 1.64E-2 (8) 2.43E-3 (8) 2.42E-1 (7) 4.582E-2 (8) 7 

Zaslavski CCSS-1 3.34E-06 (6) 7.16E-3 (6) 1.68E-3 (6) 9.12E-2 (5) 1.755E-2 (5) 6 

* The numbers in ( ) identify the rank of the utilized map compared to the remaining maps. 

 
Table 3. Statistical results for Griewank’s function for the CCSS-2 

Chaotic Map Best Mean Median Worst Std. Dev. 
Approximated

Rank 

Logistic CCSS-2 1.08E-05 (5) 3.95E-3 (3) 1.48E-3 (8) 2.04E-2 (2) 5.33E-3 (3) 3 

Tent CCSS-2 1.52E-09 (1) 3.69E-3 (2) 9.11E-4 (4) 3.26E-2 (3) 6.34E-3 (4) 2 

Sinusoidal CCSS-2 3.19E-4 (10) 1.21E-2 (9) 4.55E-3 (10) 1.31E-1 (6) 2.95E-2 (8) 6 

Gauss CCSS-2 5.09E-0 (4) 9.70E-3 (6) 3.47E-4 (2) 2.41E-1 (10) 4.38E-3 (2) 4 

Circle CCSS-2 2.40E-05 (7) 8.29E-3 (5) 7.45E-4 (3) 1.51E-1 (8) 2.97E-2 (9) 7 

Sinus CCSS-2 4.89E-05 (8) 9.80E-3 (7) 3.92E-3 (9) 5.58E-2 (5) 1.30E-2 (6) 9 

Henon CCSS-2 6.30E-05 (9) 5.55E-3 (4) 1.32E-3 (7) 4.52E-2 (4) 9.72E-3 (5) 5 

Ikeda CCSS-2 4.63E-06 (3) 1.49E-3 (1) 3.21E-4 (1) 1.32E-2 (1) 3.08E-3 (1) 1 

Liebovtech CCSS-2 1.53E-5 (6) 1.31E-2 (10) 1.31E-3 (6) 1.34E-1 (7) 2.93E-2 (7) 10 

Zaslavski CCSS-2 4.16E-09 (2) 1.13E-2 (8) 1.22E-3 (5) 1.88E-1 (9) 3.48E-2 (10) 8 

 
The success rates of the CCSS methods using different chaotic maps for Griewank 

function are presented in Table 5. The success rate for the standard CSS is equal to 56%, and 
according to Table 5, it is clear that many CCSS algorithms have improved the performance 
of the standard CSS. The CCSS-6 with an average value of 75.4% for the success rate is the 
best method. The CCSS-8, CCSS-9 and CCSS-7 are categorized as the next better 
approaches. In addition, good results for success rates are obtained when the CCSS-7 and 
CCSS-8 have been used with the sinus map. 
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Table 4. Statistical results of the best maps for Griewank’s function for the CCSS algorithms 

Chaotic Map Best Mean Median Worst Std. Dev. 

Standard CSS 8.86E-06 2.88E-3 1.15E-3 1.55E-2 4.21E-2 

CCSS-1      

Tent map 8.01E-7 2.33E-3 1.26E-3 8.10E-3 2.415E-3 

Logistic map 1.50E-5 2.56E-3 1.17E-3 1.01E-2 3.059E-3 

CCSS-2      

Ikeda map 4.63E-6 1.49E-3 3.21E-4 1.32E-2 3.08E-3 

Tent map 1.52E-9 3.69E-3 9.11E-4 3.26E-2 6.34E-3 

CCSS-3      

Logistic map 2.86e-7 1.38E-3 6.55E-4 6.32E-3 1.69E-3 

Sinusoidal map 2.95E-6 1.46E-3 4.03E-4 1.61E-2 3.01E-3 

CCSS-4      

Circle map 7.64E-7 2.32E-3 9.25E-4 1.41E-2 3.65E-3 

Zaslavski map 8.62E-6 2.45E-3 1.17E-3 9.29E-3 2.88E-3 

CCSS-5      

Sinus map 7.22E-9 6.85E-3 1.07E-3 1.48E-1 2.66E-2 

Liebovtech map 1.28E-9 1.03E-2 2.28E-3 8.88E-1 9.44E-2 

CCSS-6      

Liebovtech map 1.98E-7 1.24E-2 6.70E-4 2.49E-1 4.60E-2 

Zaslavski map 2.77E-6 1.06E-3 4.81E-4 7.45E-3 1.55E-3 

CCSS-7      

Sinusoidal map 7.03E-5 3.61E-3 2.01E-3 2.69E-2 5.17E-3 

Sinus map 1.00E-9 1.11E-2 1.09E-4 1.96E-1 4.32E-2 

CCSS-8      

Sinus map 2.01E-07 5.75E-3 2.91E-05 7.60E-2 1.73E-2 
Sinusoidal map 7.47E-6 1.92E-2 5.67E-4 2.7272E-2 6.42E-2 

CCSS-9      

Sinus map 6.22E-08 2.93E-3 1.78E-05 4.64E-2 1.02E-2 

Tent map 8.12E-05 03.82E-2 5.27E-4 8.93E-2 9.09E-2 

 
Table 5. Success rate of the standard and chotic-based CSS for Griewank’s function. (Q =1E-5) 

   CCSS    
Chaotic Map 

1 2 3 4 5 6 7 8 9 
Logistic map 10 56 74 58 74 76 60 66 60 

Tent map 66 60 58 50 74 90 68 70 84 
Sinusoidal map 64 42 80 64 50 84 66 70 64 

Gauss map 70 84 68 54 56 78 64 70 84 
Circle map 50 88 58 64 50 84 66 74 70 
Sinus map 60 34 54 74 94 68 98 98 86 
Henon map 40 60 48 48 10 40 50 46 42 
Ikeda map 24 88 78 68 64 78 66 90 86 

Liebovtech map 70 58 68 78 66 68 94 94 80 
Zaslavski map 48 58 58 70 66 88 68 74 70 

Aveage rate 50 62.4 64.4 62.8 60.4 75.4 70 75.2 72.6 
Best rate 70 88 80 78 94 90 98 98 86 
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7.2. Results for Rosenbrock function 

Table 6 represents the results obtained from different CCSS methods for the Rosenbrock 
function. For this example, the CCSS-9, CCSS-6 and CCSS-7 methods have shown better 
performance than other methods and especially the standard CSS. The overall success rates 
of the CCSS variants as well as the standard CSS for Rosenbrock function are shown in 
Table 7, when Q is set to 1E-3. The success rate for the standard CSS is obtained to be 40%. 
The CCSS-8, CCSS-9 and CCSS-6 have better performance in average. The best success 
rate belongs to the CCSS-8 when the sinus map is utilized, improving the performance of 
the standard CSS twice comparing their success rates. 

 
Table 6. Statistical results of the best maps for Rosenbrock’s function for the CCSS algorithms 

Chaotic Map Best Mean Median Worst Std. Dev. 

Standard CSS 1.36E-3 5.84E-2 8.21E-2 1.15E-1 3.83E-1 

CCSS-1      

Tent map 5.66E-06 7.60E-2 7.68E-2 1.21E-1 3.66E-1 

Circle map 4.20E-04 6.33E-2 6.88E-2 4.82E-2 2.04E-1 

CCSS-2      

Sinusoidal map 1.56E-06 9.80E-2 8.40E-2 1.11E0 1.96E-1 

Gauss map 3.00E-04 4.09E-2 2.20E-2 9.82E-2 4.04E-2 

CCSS-3      

Sinus map 9.09E-04 3.94E-2 1.34E-2 8.93E-2 4.13E-2 

Circle map 1.20E-06 5.23E-2 5.99E-2 1.00E-1 4.06E-2 

CCSS-4      

Circle map 9.14E-04 5.00E-2 4.01E-2 9.21E-2 3.74E-2 

Tent map 3.33E-04 4.55E-2 3.69E-2 1.03E-1 3.75E-2 

CCSS-5      

Liebovtech map 7.36E-07 2.80E-2 9.85E-2 9.63E-2 6.57E-2 

Zaslavski map 4.94E-06 1.03E-1 3.00E-1 1.16E-1 2.25E-1 

CCSS-6      

Sinusoidal map 1.24E-08 6.57E-2 8.87E-2 2.44E-1 5.57E-2 

Sinus map 1.45E-07 1.07E-1 9.56E-2 2.81E-1 6.98E-2 

CCSS-7      

Sinus map 7.11E-05 3.24E-2 1.71E-2 2.11E-1 4.66E-1 

Liebovtech map 2.18E-05 7.99E-2 1.03E-2 3.11E-1 9.33E-1 

CCSS-8      

Sinus map 3.60E-06 5.11E-2 1.61E-2 2.65E-1 7.50E-2 

Sinusoidal map 2.28E-06 9.03E-2 1.71E-2 3.82E-1 5.28E-2 

CCSS-9      

Sinus map 1.19E-6 1.96E-2 8.30E-2 2.42E-2 1.19E-2 

Gauss map 9.57E-6 1.30E-2 1.14E-2 5.24E-2 9.57E-2 

 
7.3. Results for Rastrigin function 

Overall success rates of the CCSS variants are computed and summarized in Table 8. The 
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success rate for the standard CSS is only 46%. Similar to the previous example, The CCSS-
8, CCSS-9 and CCSS-6 have the best performances in average.The results obtained for this 
example is presented in Table 9. The CCSS methods have shown better performance than 
the standard CSS method. The CCSS-8, CCSS-7 and CCSS-9 methods have shown better 
performance when the statistical analyses are compared. CCSS-8 using the sinus map seems 
be the best CCSS among others. 

 
Table 7. Success rate of the standard and chotic-based CSS for Rosenbrock’s function (Q =1E-3) 

   CCSS    
Chaotic Map 

1 2 3 4 5 6 7 8 9 

Logistic map 28 50 50 36 44 30 32 42 44 

Tent map 60 56 42 62 60 60 60 62 60 

Sinusoidal map 44 50 54 46 50 72 54 72 54 

Gauss map 50 60 54 46 50 54 48 58 66 

Circle map 54 52 42 54 50 60 42 46 44 

Sinus map 40 50 66 46 50 60 50 78 76 

Henon map 28 28 24 24 22 30 34 30 32 

Ikeda map 42 50 42 44 60 58 50 54 56 

Liebovtech map 56 46 54 52 68 72 60 72 64 

Zaslavski map 50 50 54 50 52 56 60 52 60 

Aveage rate 45.2 49.2 48.2 46 50.6 55.2 49 56.6 55.6 

Best rate 60 60 66 62 68 72 60 78 76 

 
Table 8. Success rate of the standard and chotic-based CSS for Rastring’s function (Q =1E-4) 

    CCSS    
Chaotic Map 

1 2 3 4 5 6 7 8 9 

Logistic map 50 62 62 56 62 60 60 60 48 

Tent map 78 56 68 68 56 74 50 88 86 

Sinusoidal map 48 56 66 52 44 60 42 50 40 

Gauss map 52 68 62 60 72 64 60 66 80 

Circle map 62 50 42 44 68 42 62 62 60 

Sinus map 28 44 66 50 64 62 56 90 70 

Henon map 22 66 50 60 28 42 34 38 40 

Ikeda map 60 86 76 72 60 60 60 64 64 

Liebovtech map 50 54 72 60 66 68 68 62 64 

Zaslavski map 56 60 44 60 60 68 78 68 72 

Aveage rate 50.6 60.2 60.8 58.2 58 60 57 64.8 62.4 

Best rate 78 86 76 72 72 74 78 90 86 
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Table 9. Statistical results of the best maps for Rastring’s function for the CCSS algorithms 

Chaotic Map Best Mean Median Worst Std. Dev. 

Standard CSS 4.03E-3 5.34E-3 3.21E-3 1.58E-1 5.37E-3 

CCSS-1      

Tent map 1.01E-07 1.98E-3 1.04E-4 1.03E-1 3.53E-3 

Logistic map 4.17E-5 4.07E-3 1.48E-3 1.49E-1 4.92E-3 

CCSS-2      

Circle map 2.22E-08 7.27E-3 7.89E-3 3.94E-1 9.73E-3 

Ikeda map 4.71E-08 2.92E-3 1.33E-4 2.59E-1 5.97E-3 

CCSS-3      

Sinusoidal map 2.43E-10 3.12E-3 3.46E-4 1.04E-1 4.24E-3 

Liebovtech map 4.05E-09 4.04E-3 6.52E-5 3.98E-1 7.96E-3 

CCSS-4      

Circle map 2.86E-08 6.89E-3 8.32E-3 3.98E-1 8.38E-3 

Tent map 1.15E-07 4.39E-3 3.35E-4 2.11E-1 5.93E-3 

CCSS-5      

Sinus map 2.90E-11 2.77E-3 1.52E-4 9.95E-2 3.63E-3 

Circle map 1.53E-08 3.80E-3 1.38E-4 2.37E-1 5.92E-3 

CCSS-6      

Liebovtech map 7.58E-5 1.75E-3 8.91E-4 6.62E-2 2.12E-3 

Tent map 3.53E-08 6.42E-3 5.05E-3 4.00E-1 8.31E-3 

CCSS-7      

Sinus map 5.59E-09 8.43E-4 2.54E-4 4.70E-2 1.25E-3 

Tent map 7.13E-07 3.56E-3 2.39E-4 3.98E-2 7.87E-3 

CCSS-8      

Sinus map 8.15E-5 1.35E-3 1.23E-3 3.44E-2 1.23E-3 

Liebovtech map 2.41E-11 4.85E-3 5.89E-4 4.2E-1 8.8E-3 

CCSS-9      

Sinus map 2.02E-6 3.74E-3 3.47E-3 1.34E-2 2.00E-3 

Gauss map 4.05E-6 9.74E-3 9.47E-3 2.98E-2 408E-3 

 
7.4. Results for Ackley function 

Tables 10 and 11 collect the statistical results and the success rates of the Ackley function 
using the CCSS methods. The success rate for the standard CSS is 70%. The CCSS-8 using 
the sinus map can find the global optimum in all 50 different runs. In addition, this method 
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is the best method even when the statistical results are considered. The CCSS-3 utilizing the 
Gauss map is the second best method. This algorithm can also reach to an accept solution in 
all 50 runs.  

 
Table 10. Statistical results of the best maps for Ackley’s function for the CCSS algorithms 

Chaotic Map Best Mean Median Worst Std. Dev. 

Standard CSS 8.10E-5 3.01E-3 4.90E-4 4.91E-2 1.09E-2 

CCSS-1      

Sinus map 9.01E-5 8.79E-3 2.07E-3 9.46E-2 3.69E-3 

Liebovtech map 6.06E-05 6.33E-3 2.90E-3 8.29E-2 7.68E-3 

CCSS-2      

Tent map 3.50E-6 2.74E-4 5.87E-5 2.30E-3 6.32E-4 

Gauss map 1.66E-6 7.63E-4 3.83E-5 1.07E-2 2.39E-3 

CCSS-3      

Gauss map 5.02E-7 5.50E-5 3.07E-5 2.80E-4 7.17E-05 

Zaslavski map 2.09E-6 1.45E-4 4.99E-5 1.05E-3 2.93E-4 

CCSS-4      

Tent map 2.97E-6 8.48E-5 3.85E-5 4.84E-4 1.24E-4 

Ikeda map 1.64E-7 5.12E-4 2.57E-5 4.86E-3 1.30E-3 

CCSS-5      

Sinus map 1.19E-6 1.35E-4 1.15E-4 7.44E-2 1.81E-3 

Gauss map 1.05E-5 1.45E-4 1.33E-4 3.52E-3 9.99E-4 

CCSS-6      

Circle map 1.51E-6 5.86E-4 1.29E-4 5.495E-3 1.24E-3 

Sinusoidal map 2.27E-7 1.15E-3 3.10E-5 1.76E-2 3.98E-2 

CCSS-7      

Sinus map 2.68E-5 3.82E-4 1.78E-4 1.56E-2 4.19E-3 

Zaslavski map 6.61E-6 5.09E-4 9.88E-5 2.34E-2 6.94E-3 

CCSS-8      

Sinus map 1.46E-06 3.08E-05 1.77E-05 1.02E-5 2.93E-05 

Liebovtech map 5.33E-07 1.02E-4 5.72E-05 9.35E-4 2.04E-4 

CCSS-9      

Sinus map 8.00E-6 6.41E-4 3.11E-4 8.01E-3 8.00E-3 

Tent map 5.63E-5 1.75E-4 1.59E-4 8.11E-3 5.63E-3 
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Table 11. Success rate of the standard and chotic-based CSS for Ackley’s function (Q =1E-5) 

    CCSS     
Chaotic Map 

1 2 3 4 5 6 7 8 9 

Logistic map 40 50 66 56 64 80 92 86 84 

Tent map 90 90 96 100 86 76 80 96 96 

Sinusoidal map 55 76 66 86 78 100 90 90 80 

Gauss map 60 80 100 86 86 98 86 100 96 

Circle map 60 86 76 90 80 100 94 60 80 

Sinus map 70 60 86 86 100 80 100 100 100 

Henon map 76 60 46 60 56 60 60 60 64 

Ikeda map 50 90 96 96 90 82 90 100 96 

Liebovtech map 50 65 90 84 96 84 86 60 74 

Zaslavski map 60 85 86 82 78 70 90 86 80 

Aveage rate 61.1 74.2 80.8 82.6 81.4 83 86.8 83.8 85 

Best rate 90 90 100 100 100 100 94 100 100 

 
 

8. DISCUSSION AND CONCLUSION 
 

As the first report of hybridizing the charged system search and chaos, different methods are 
developed to solve numerical global optimization problems. The proposed approaches 
utilize different chaotic maps to adapt the parameters of the CSS algorithm. Nine new 
chaotic CSS algorithms are proposed and ten different chaotic maps are analyzed for the 
benchmark functions. The simulation resulting from 50 runs are presented in this paper for 
each method and each example demonstrate that some tested CCSS approaches are efficient 
methods to explore the search space and discover the global solution. From the statistical 
investigation, it is shown that the CCSS-8, utilizing the chaotic maps, instead of aij, pij, kv, ka, 
have better performance than other approaches. The second best methods can be listed as 
CCSS-6 and CCSS-9. In the CCSS-6, chaotic maps are only utilized as kv and this shows the 
importance of this parameter in the CSS-based methods.  

In order to simplify determining the most adaptive maps, Table 12 is presented 
containing two best maps for each described algorithm. The reported maps are obtained 
considering both statistical results and the success rates reported for the numerical examples. 
Then to sum up, for each algorithm three maps as the best ones are chosen. The results show 
that Tent, Sinus, Liebovtech, Gauss, Ikeda, Sinusoidal, Zaslavski, Circle maps can be 
categorized as better maps for the CCSS methods, respectively. This is not a general result 
for the CCSS methods and based on the parameter utilizing the chaotic map, this order can 
be changed. As a result, due to the superiorities of the present methods, more elaborated 
experiments may be performed to design/discover the best map which can be considered as 
the future work.  
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Table 12. Most success CCSS methods and their related best maps 
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