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ABSTRACT 
 

This study focuses on the shape optimization of concrete gravity dams considering dam–

water–foundation interaction and nonlinear effects subject to earthquake. The concrete 

gravity dam is considered as a two–dimensional structure involving the geometry and 

material nonlinearity effects. For the description of the nonlinear behavior of concrete 

material under earthquake loads, the Drucker–Prager model based on the associated flow 

rule is adopted in this study. The optimum design of concrete gravity dams is achieved by 

the hybrid of an improved gravitational search algorithm (IGSA) and the orthogonal 

crossover (OC), called IGSA–OC. In order to reduce the computational cost of optimization 

process, the support vector machine approach is employed to approximate the dam response 

instead of directly evaluating it by a time–consuming finite element analysis. To 

demonstrate the nonlinear behavior of concrete material in the optimum design of concrete 

gravity dams, the shape optimization of a real dam is presented and compared with that of 

dam considering linear effect. 

 

Kewords: shape optimization; concrete gravity dams; dam–water–foundation interaction; 
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1. INTRODUCTION 
 

Concrete gravity dams in comparison with other concrete structures are distinguished as 

critical structures because of their size and their interactions with the reservoir and 

foundation. In addition, the nonlinear behavior of dam concrete affecting the dynamic 
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response of concrete gravity dams subject to earthquake ground motions is considered as the 

main factor. Hence, the effects of dam–water–foundation interaction and the nonlinear 

behavior of dam concrete play important roles in the earthquake design of new dams and the 

earthquake safety evaluation of existing dams. The failure of dams due to the effects could 

also result in heavy loss of human life and substantial property damages. 

Finding a proper shape design of concrete gravity dams has been considered as great 

interest in engineering. To achieve this purpose in practice, several alternative schemes with 

various patterns should be selected and modified to obtain a number of feasible shapes. 

Thus, the proper shape of concrete gravity dams considering the economy and safety of 

design, structural considerations, etc. is selected as the final shape [1]. In the recent years, 

optimization techniques have been effectively utilized for finding an optimal shape of dam 

instead of this try and error procedure. 

During the last years, various studies related to design optimization of arch dams with 

hydrodynamic effects were reported [1-7]. Furthermore, the optimal shape design of 

concrete gravity dams including dam–water–foundation rock interaction has been attracted 

by few researchers. Salajegheh et al. [8] introduced the shape optimal design of concrete 

gravity dams including hydrodynamic effects. In this work, the shape optimal design of 

concrete gravity dams was achieved using a hybrid of gravitational search algorithm (GSA) 

and particle swarm optimization (PSO). In the work of Slajegheh and Khosravi [9], the 

shape optimal design of concrete gravity dams including the dam–water–foundation rock 

interaction was obtained using a hybrid of GSA and PSO. Khatibina and Khosravi [10] 

proposed a hybrid approach based on an improved gravitational search algorithm (IGSA) 

and orthogonal crossover (OC) in order to efficiently find the optimal shape of concrete 

gravity dams. Deepika and Suribabu [11] used the differential evolution technique for the 

optimal design of gravity dam. Recently, Kaveh and Zakian [12] have presented the shape 

optimization of a gravity dam imposing stability and stress constraints. 

The main aim of this study is to introduce the shape optimization of concrete gravity 

dams considering dam–water–foundation interaction and nonlinear effects subject to 

earthquake. The geometry and material nonlinearity effects of dam are considered in the 

analysis procedure of dams. In order to model the nonlinear behavior of concrete material 

under earthquake loads, the Drucker–Prager model based on the associated flow rule is 

adopted in this study. The hybrid of an improved gravitational search algorithm (IGSA) and 

the orthogonal crossover (OC) proposed by Khatibinia and Khosravi [10] is utilized for 

finding the optimum design of concrete gravity dams. In order to reduce the computational 

cost of the optimization process complicated by numerous nonlinear dynamic analyses, the 

support vector machine (SVM) approach is employed to approximate the nonlinear dynamic 

responses of dams. To demonstrate the nonlinear behavior of dam in the optimum design of 

concrete gravity dams, the shape optimization of a real dam is presented for two conditions 

of the dam behavior. 

 

 

2. GEOMETRICAL MODEL OF CONCRETE GRAVITY DAMS 
 

In this study, the geometrical model of concrete gravity dams can be assigned by seven 

parameters. Based on the model of concrete gravity dam depicted in Fig. 1, the shape of 
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concrete gravity dam is defined by the seven parameters as follows: 

 

}{ 542321 HHHbbbbX  (1) 

 

where b and 1H  are two parameters required to defined crest and free board of gravity dam, 

respectively. H3 depends on H4 and reservoir water level (H).  

 

 
Figure 1. Geometrical model of concrete gravity dam 

 

 

3. PROBLEM FORMULATION 
 

The optimization problem of concrete gravity dam considering dam–water–foundation 

interaction and nonlinear effects subject to earthquake is stated as follows: 
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where f and gi are the objective function and the constraints, respectively.
LX and 

UX  

are the lower bound and the upper bound of the design variables, X , respectively. t and T are 

the time step and the earthquake duration, respectively. 

In the optimization problem of concrete gravity dams, the concrete weight of gravity dam 

body is considered as objective function, )(Xf , that should be minimized. The weight of 

concrete gravity dam can be determined as follows: 

 

VgWf c)(X  (3) 
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where c  and V are the mass density of the concrete and the volumeof gravity dam, 

respectively. g  is gravity acceleration.  

In the present study, the behavior and stability constraints are considered as the problem 

constraints, )( t,g i X . The behavior constraints consist on the principal stresses of each node 

in the body of gravity dam which must be satisfied for all time points of the earthquake 

interval as follows [10]: 

 

njktg tk ,...,2,1;),(11,   X  (4) 

njktg ck ,...,2,1;),(22,   X
 

(5) 

 

where )(1   and )(2   are the compressive and tensile principal stresses of each node in 

time t, respectively. t  and c are the allowable tensional and compressive stresses, 

respectively. nj is the total number of nodes in the dam body which created by meshing of 

the dam body in finite element method (FEM) framework. 

The stability constraints of a gravity dam are defined in terms of its factors of safety 

against sliding, overturning and uplift pressure, respectively. The factor of safety against 

sliding is equal to the ratio of the total frictional force, VF , which the foundation can develop 

to the force tending, HF , to cause sliding as follows [13]: 
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The factor of safety against overturning about the toe is defined as the ratio of the 

resisting moments, RM , to the overturning moments, OM , which is considered as stability 

constraint. It is expressed as [13]: 
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Furthermore, the safety of concrete gravity dam against uplift pressure force is 

considered as follows [13]: 

 

1
6

u

B
g

e
   (8) 

 

where B and e are the bottom width of the dam eccentricity of the resultant force on the dam 

section, respectively.  

Constraint handling approaches have been proposed in conjunction of problem constrain 

with meta–heuristic optimization methods. In the present study, the external penalty function 
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method as one of the most popular forms of the penalty function in the structural 

optimization is utilized as follows [14–17]: 

 

)1()()(
~

PfRff
p

 XX  (9) 

 

where )(
~

Xf , Pf and Rp are the modified function (fitness function), the penalty function and 

an penalty factor, respectively.  

 

 

4. THE OPTIMIZATION ALGORITHM 
 

In the present study, the hybrid of an improved gravitational search algorithm (IGSA) and 

the orthogonal crossover (OC) proposed by Khatibinia and Khosravi [10] is utilized to 

search the optimal shape of concrete gravity dams. The proposed hybrid approach is called 

IGSA–OC. In this section IGSA and OC algorithms are described at first, and then the 

proposed IGSA–OC is presented. 

 

4.1 The IGSA method 

Gravitational search algorithm (GSA) is one of the newest heuristic search algorithms, 

which mimics Newton’s gravitational force laws [18]. In GSA, each agent of the population 

represents a potential solution of the optimization problem. The ith agent in tth iteration is 

associated with a position vector, },...,,...,{)( 1 D
i

d
iii xxxt X , and a velocity vector,

},...,,...,{)( 1 D
i

d
iii vvvt V . D is dimension of the solution space. The force exerting on the 

object i from the object j is defined as: 
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where Mj and Mi represent the gravitational mass of the objects j and i, respectively, is a 

small constant, G is a gravitational constant, Rij(t) is the Euclidian distance between two 

objects i and j. The total force ( )d

iF t  on the object i in the dth direction is calculated by a 

randomly weighted sum of the dth components of the forces from other objects: 
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where randj is a random number from the interval [0,1]. 

The acceleration of the object i, ( )d

ia t , at time t and in the dth direction, is given as: 
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where Mii is the inertial mass of the object i. Its next velocity ( 1)d

iv t  and its next position

( 1)d

ix t   are calculated as Eqs. (13) and (14): 
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In IGSA, a new moving strategy in the searching space was proposed by obeying the law 

of gravity and receiving guide of memory as follows [11]: 
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where pbesti is the best previous position of the ith agent; and gbest is the best previous 

position among all the agents. c1 and c2 are variables in the range [0, 1], respectively.  

 

4.2 OC operator 

In OC operator, an orthogonal array is integrated into the classical crossover operator so that 

chromosomes are produced by exploring alleles in parents based on combinations of an 

orthogonal array. Q is the number of levels, M is the number of rows and N is the number of 

columns of the orthogonal array )( K

M QL , respectively [19]. Leung and Wang [20] 

proposed a new version OC based on combination of the quantization technique and the OC 

operator, called QOC. In QOC, it is assumed that the search space defined by any two 

parents, i.e., },...,,{P 1

2

1

1

11

Dppp  and },...,,{ 2

2

2

1

22

DpppP . P1 and P2 define a search 

range [min ),( 21

ii pp , max ),( 21

ii pp ] for ith variable of the design variable vector, X. First, the 

search range is quantized into Q levels, li,1, li,2, . . . , li,Q, for variable xi as follows [20]: 
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Therefore, QD points are produced after quantization since each factor has Q possible 

levels. Since D is often much larger than K, one cannot directly apply )( K

M QL . To 

overcome this problem, Leung and Wang [20] proposed that QOC divides },...,,{ 11 Dxxx

into K sub–vectors as: 
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where n1, n2, …, nK–1 are randomly generated such that Dnnn K  121 ...1 . QOC 

trears each H i as a factor and defines the following Q levels for H i : 
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Then, )( K

M QL is utilized on 1H , 2H , . . . , HK to construct M solutions (i.e., 

combinations of levels).  

 

4.3 The hybrid of IGSA–OC 

In order to eliminate the drawback of IGSA and explore promising regions in the search 

space, Khatibinia and Khosravi [10] proposed the hybrid of IGSA and OC, called IGSA–

OC. In the IGSA–OC, the QOC operator is utilized as local search and improves the best 

previous position among all the agents (gbest) in each iteration of IGSA. Assuming

},{ 21 N,,, pbest   pbest pbest  the process of the improving gbest using the QOC operator is 

executed in the following steps [10]: 

Step 1: Randomly select three different numbers r1, r2 and r3 from {1, 2, ..., N}.  

Step 2: )( 321 rrr rand pbestpbestpbestU  . 

Step 3: Combine gbest and U by using QOC based on )( K

M QL to generate M trial 

vectors. 

Step 4: Evaluate the fitness function values, ,
~
f of the M trial vectors. 

Step 5: Select the one with the smallest fitness function to be Ug. 

Step 6: If ,)(
~

)(
~

gbestU ff g  set gUgbest  . 

It is noted that the more details of the IGSA–OC can be found in [10]. 

 

 

5. FINITE ELEMENT MODEL OF FLUID–NONLINEAR STRUCTURE 

SYSTEM 
 

In order to simulate the fluid–nonlinear structure interaction problem using the finite 
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element method (FEM), the discretized dynamic equations of fluid and structure should be 

considered simultaneously to obtain the coupled fluid–structure equation. 

 

5.1 The discretized structure equation 

In the FEM, the discretized linear dynamic equation of the structure including the gravity 

dam and foundation rock subject to earthquake loads are expressed as [21]: 

 

egseseses u QpMuKuCuM    (19) 

 

where sM  is the structural mass matrix, sC  is the structural damping matrix, sK  is the 

structural stiffness matrix, eu is the vector of the nodal displacements relative to the ground, 

gu is the vector of the ground acceleration, eQp  represents the nodal force vector associated 

with the hydrodynamic pressures produced by the reservoir. In this work, the damping 

matrix of the dam body is also accomplished using Rayleigh damping. 

 

5.2 The discretized fluid equation 

In this paper, the motion of fluid is simulated by two–dimensional wave equation and 

assumption that the water is compressible and inviscid [22, 23]. The discretized equation of 

the fluid domain based on the FEM can be defined as [22, 23]: 
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wfeff p   (20) 

 

where Mf, Cf and Kf are the mass, damping and stiffness matrices of fluid, respectively; and 

pe and eu are the nodal pressure and relative nodal acceleration vectors, respectively. The 

term 
T

wQ is also often referred to as coupling matrix. 

 

5.3 The coupled fluid–structure equation 

In order to simulate the effects of dam–water–foundation interaction, Eqs. (19) and (20) are 

combined expressed as follows [22, 23]: 
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Also, Eq. (21) can be written in a more compact form as: 

 

)(tCCCCCCC fuKuCuM    (22) 

 

where QKQM  fs

T

wfs and .  

In fact, Eq. (22) is considered as a second order linear differential equation having 



SHAPE OPTIMIZATION OF CONCRETE GRAVITY DAMS CONSIDERING … 

 

123 

unsymmetrical matrices and can be solved by means of direct integration methods. For 

considering the nonlinearity in the FEM, Eq. (22) is modified and stated in the incremental 

form as: 

 
i

C
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CC
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where 
i

CK is the stiffness matrix in the ith time step. Also,
i

C

i

C

i

C uuu   ,, and
i

Cf are 

equivalent to the vectors of incremental acceleration, velocity, displacement and external 

load in the ith time step, respectively.  

In this study, the dam–water–foundation system is simulated as a 2D model. The nonlinear 

behavior of dam concrete is idealized as an elasto–plastic material via an associative Drucker–

Prager model [24]. In the analysis phase of gravity dams, a static analysis of gravity dam–

water–foundation system is initially implemented under a gravity load and a hydrostatic 

pressure, and then the linear dynamic analysis of the system is performed using Newmark–

Beta integration method [21]. After that, the principal stresses at the centre of dam elements 

are evaluated using nodal relative displacement of the gravity dam. 

 

 

6. CONSTITUTIVE MODEL OF CONCRETE MATERIAL 
 

In order to describe the nonlinear behavior of concrete material under earthquake loadings, 

the concrete material should be idealized using a constitutive model. For this purpose, the 

Drucker–Prager model [24] as a well–known model is employed in this study. This model 

shown in Fig. 2 is proposed for frictional materials such as soils, rock and concrete and 

utilized as an approximation to the Mohr–Coulomb law. 

 

 
Figure 2. Drucker–Prager and Mohr–Coulomb yield surfaces [24] 

 

In this model, the yield criterion is defined as: 
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where f is yield function, σ d
is the vector of deviatoric stresses represented by the mean or 

hydrostatic stress σm and the stress vector σ, respectively. In the above equation, M is a 

matrix given by: 
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In addition, α and σy are a material constant and material yield parameter, respectively. 

These parameters are defined as: 
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where ϕ  and c are angle of internal friction and cohesion factor of material, respectively. 

Based on the Drucker–Prager model, the yield surface does not change with progressive 

yielding. Hence, there is no hardening rule and the material is elastic–perfectly plastic. In the 

yield criterion presented in Eq. (24), when the yield function, f , is equal to zero, the material 

will develop plastic strains. Also, If f <0 the material is elastic and the stresses will develop 

according to the elastic stress–strain relations. The plastic strain rate is also evaluated by the 

flow rule, which is defined by a scalar plastic potential function f. During plasticity, the 

normality plastic flow rule is applied as: 

 

ε
σ

p

f

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 (28) 

 

where ε p represents the vector of incremental plastic strains; and λ is a plastic multiplier. 

Using the yield criterion presented in Eq. (24), the relation between the incremental 

stresses and strains can be given by [25]: 

 

σ D εep    (29) 

 

where Dep is an elasto–plastic matrix. 
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7. THE SVM APPROACH FOR SIMULATING SEISMIC RESPONCES 
 

In the meta–heuristic algorithms, the great number of function evaluations is required to 

obtain the optimum solution of a problem. In particular, in order to achieve the shape 

optimization of a concrete gravity dam considering dam–water–foundation interaction and 

nonlinear effects subject to earthquake, a dynamic analysis with high computational effort is 

implemented in each function evaluation. Therefore, the optimal problem of concrete gravity 

dams requires high computing time. In this study, in order to accelerate the optimization 

process and reduce the computational cost, the nonlinear dynamic analysis of concrete 

gravity dams is simulated using the weighted least squares support vector machine (WLS–

SVM) regression model. The applications of the WLS–SVM have been successfully used as 

an excellent machine learning algorithm to many engineering problems and have yielded 

encouraging results [7, 10, 17, 26, 27]. 

 

7.1 The WLS–SVM regression model 

The WLS–SVM regression introduced by Suykens et al. [28] has been used for modeling 

the high non–linear system based on small sample. This model based on the structural risk 

minimization (SRM) rules is superior to artificial neural networks (ANNs), which have been 

developed the traditional empirical risk minimization (ERM) inductive principle [28]. Also, 

the problems as over learning, dimension disaster and local minimum are eliminated in the 

WLS–SVM regression. The WLS–SVM regression model is presented as the optimization 

problem in primal weight space as follows [28]: 
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with 
n

iii y 1},{ x  a training data set, input data 
nRix  and output data Ryi  . 

dn RR :(.) is a function which maps the input space into a higher dimensional space. 

The vector dRω represents weight vector in primal weight space. The symbols Ri   

and Rb  represent error variable and bias term, respectively.  

The Lagrange multiplier method is utilized for solution of the dual problem (Eq. (30)) as: 
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Based on the Karush–Khun–Tucker (KKT) conditions, after optimizing Eq. (31) and 

eliminating ω and ξ, the solution is given by the following set of linear equation: 
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where }/1,...,/1{ 1 nvvdiag  V ; Ω is n×n Hessian vector, which expression is:

),()(),(, jiHjiji K xxxx   . .),(.K is a kernel, which in this study, radial basis 

function (RBF) is selected as the kernel function of WLS–SVM as follows: 
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Therefore, the resulting WLS–SVM model for the prediction of functions becomes: 
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Here   and b is the solution to (32). The parameters represents the high dimensional 

feature spaces that is non–linearly mapped from the input space x. Furthermore, predicting 

value of x is obtained by the model (34). 

 

7.2 Simulating the seismic responses of dam–water–foundation system 

In order to reduce the computational cost of the nonlinear dynamic analysis of concrete 

gravity dams in the optimization procedure, the maximum principle stresses of concrete 

gravity dams as seismic responses are predicted using the WLS–SVM regression model 

instead of directly performing FEA of dams. To achieve this purpose, the WLS–SVM 

regression model is trained by using a randomly generated database which consists on the 

combinations of the design variables and the seismic responses of concrete gravity dams. 

In this study, the WLS–SVM model with the 10–fold cross–validation (CV) [28] is 

employed to find the optimal values of   and   for training the WLS–SVM model. For 

predicting the maximum principle stresses of concrete gravity dams, the following 

procedure is implemented that train and test the WLS–SVM regression model based on 

RBF kernel function: 
(1) A database for training and testing the WLS–SVM model is randomly generated based on the 

vector of the design variables of concrete gravity dam defined in Section (1). This vector is 

considered as the input of the WLS–SVM model. 

(2) For each concrete gravity dam corresponding to a design variable vector in database FEA is 

performed, and the maximum tensile and compressive principle stresses of dams as the 

seismic responses of dam are obtained. The seismic responses is considered as the output of 

the WLS–SVM model  

(3) The provided database is divided to training and testing sets on a random basis.  

(4) Two WLS–SVM models are trained and tested based on the generated sets for predicting the 

maximum tensile and compressive principle stresses of dams.  

Moreover, several statistical methods, the mean absolute percentage error (MAPE), the 

relative root–mean–squared error (RRMSE) and the absolute fraction of variance (R2), are 

used to compare predicted and testing values for computing the model validation. The MAPE, 

RRMSE and R2 parameters are calculated as: 



SHAPE OPTIMIZATION OF CONCRETE GRAVITY DAMS CONSIDERING … 

 

127 







tN

i i

ii

t y

yy

N
MAPE

1

100
1

 (35) 














t

t

n

i

it

N

i

iit

yN

yyN

RRMSE

1

2

1

2

)1(

)(

 
(36) 

)

)(

(1

1

2

1

2

2












t

t

N

i

i

N

i

ii

y

yy

R

 

(37) 

 

where y and y are actual value and predicted value, respectively; and Nt is the number of 

testing samples. It is noted that the smaller RRMSE and MAPE and the larger R
2
 are 

indicative of better performance generality [10]. Therefore, the framework of the IGSA–

OC with the WLS–SVM model is depicted in Fig. 3.  

 

 
Figure 3. Flowchart of IGSA–OC with the WLS–SVM model 
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8. TEST EXAMPLE 
 

In this study, Pine Flat dam located on King's River near Fresno California is considered as a 

real–world structure, in order to investigate the nonlinear effects in the shape optimization of 

concrete gravity dams. The properties of the dam structure are 400 ft height with a crest 

length of 1840 ft and its construction about 9491.94 kip concrete [29]. The optimal shape of 

this dam is found subjected to the S69E component of Taft Lincoln School Tunnel during 

Kern country, California, earthquake (July 21, 1952) [29]. This component of the recorded 

ground motion is shown in Fig. 4.  
 

 
Figure 4. Ground motion at Taft Lincoln Tunnel; Kern country, California, 1952 

 

The lower and upper bounds of the design variables (X) defined in Section (2) are 

considered to find the optimal shape of the Pine flat dam. The bounds of the variables are 

shown in Table 1 [29]: 

 
Table 1: The lower and upper bounds of design variables  

Design variable Lower bound (ft) Upper bound (ft) 
B 16.67 39.34 

b1 30.232 34.166 

b3 28.413 34.727 

b4 210.6 257.4 

H2 12.6 15.4 

H4 302.32 341.66 

H5 270 330 

 

To investigate the optimal shape of the selected dam, two cases related to dam–

water–flexible foundation rock interaction problem are considered and compared as 

follows: 
Case 1: Dam with the linear effects. 

Case 2: Dam with the nonlinear effects. 

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10 12 14 16 18 20

Time (Sec)

G
ro

u
n

d
 a

cc
el

er
at

io
n

 (
g)



SHAPE OPTIMIZATION OF CONCRETE GRAVITY DAMS CONSIDERING … 

 

129 

8.1 Verification of finite element model of Pine Flat gravity dam 

An idealized symmetric model of Pine Flat gravity dam–water–foundation rock system for 

full reservoir is simulated using FEM and depicted on Fig. 5. 

 

 
Figure 5. The finite element model of Pine Flat dam–water–foundation rock system 

 

The properties of concrete, water and foundation are given in Table 2 [29]. In order to 

validate FEM with the employed assumptions in this study, the first natural frequency of 

FEM of the gravity dam for four cases are determined from the frequency response function.  

 
Table 2: The properties of materials 

Value Property Material 
  Concrete 

3.25106 Modulus of elasticity (psi) 
 0.2 Poisson's ratio 

155 Mass density (lb/ft3) 
17.775 Cohesion factor of concrete (kips)  

45  Angle of internal friction of concrete  
  Water 

62.4 Mass density (lb/ft3) 
 4720 Wave velocity (ft/sec) 

0.817 Wave reflection coefficient 
  Foundation 

107 Moulus of elasticity (psi) 
 

0.33 Poisson's ratio 
 

The results are compared with those reported by Chopra and Chakrabarti [29] as given in 

Table 3. 
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Table 3: A comparison of the natural frequencies from the literature with FEM 

Natural frequency (Hz) 

Water 
Foundation rock 

condition 
Case 

Error (%) 
The present 

study 

Chopra and 

Chakrabarti [29] 

0.082 3.152 3.1546 Empty Rigid 1 

0.242 2.525 2.5189 Full Rigid 2 

0.085 2.93 2.9325 Empty Flexible 3 

2.18 2.383 2.3310 Full Flexible 4 
 

It can be observed from the results of Table 3 that a good conformity has been achieved 

between the results of the present work with those reported in the literature.  

 

8.2 Training and testing the WLS–SVM model 

To generate a database for training and testing the WLS–SVM model, the design variable 

vector of earth dam with the specific height, defined in Section (1), is considered as the input 

vector of WLS–SVM, and the maximum compressive and tensile principal stresses in the 

dam body are taken as the output of the WLS–SVM model. For achieving this purpose, first, 

design of computer experiments is employed by generating a set of combinations of the 

design variables. This set is spread in the entire design variables by design of computer 

experiments. In this study, Latin Hypercube Design (LHD) proposed for computer 

experiments [30] is used for generating 150 concrete gravity dam samples. The maximum 

compressive and tensile principal stresses in the dam body of all dam samples subjected 

earthquake load are obtained using FEA. Then, the samples are selected on a random basis 

and from which 70% and 30% samples are employed to train and test the WLS–SVM 

model. The performance generality of WWLS–SVM in testing mode associated with the 

maximum compressive and tensile principal stresses in the dam body are shown in Figs. 6 

and 7 in terms of the absolute percentage errors (APE). 

 

 
Figure 6. Absolute percentage errors associated with the maximum tensile principal stress 

0

2

4

6

8

10

12

14

16

18

20

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

A
P

E
 (
%

)

Test sample



SHAPE OPTIMIZATION OF CONCRETE GRAVITY DAMS CONSIDERING … 

 

131 

 
Figure 7. Absolute percentage errors associated with the maximum compressive principal stress 

 

The displayed results in these figures demonstrate that the WWLS–SVM models achieve 

a good performance generality in predicting the responses of concrete gravity dam samples. 

Furthermore, the results of testing the performance generality of the WLS–SVM models 

based on the statistical values of MAPE, RRMSE and R2 are given in Table 4: 

 
Table 4: Statistical values for the WLS–SVM model in testing mode. 

Case 
Statistical values 

MAPE RRMSE R
2
 

The maximum tensile principal stress 3.67 0.0292 0.9974 
The maximum compressive principal stress 6.76 0.0385 0.9861 

 

As seen from results of Table 4, the performance generality of the WLS–SVM models is 

good and therefore it can be incorporated into the optimization process as a powerful tool for 

predicting the time history responses of the structures. 

 

8.3. Optimization results 

In order to consider the stochastic nature of the optimization process, ten independent 

optimization runs are performed for the selected dam with the nonlinear and linear effects 

and the four best solutions are reported in Tables 5 and 6. It is noted that the optimum 

designs of the dam for the nonlinear and linear effects are obtained using the IGSA–OC and 

the WLS–SVM regression model.  

By comparing the solutions obtained for the dam with the nonlinear and linear effects, it 

can be found that the nonlinear effects can significantly increase the optimal weight of dam. 

The optimal designs of the dam are also analyzed by an accurate FEA and the value of 

constraint for all design cases is not violated. Hence, the WLS–SMV regression model can 

be used reliably to predict the seismic responses of concrete gravity dams in the optimization 

procedure.  
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Table 5: Optimal solutions of concrete gravity dam for the nonlinear effects 

Variables Optimization design 

Case 1 Case 2 Case 3 Case 4 

b (ft) 34.67 33.49 38.76 33.69 

b1 (ft) 34.16 34.16 34.17 34.17 

b2 (ft) 33.60 34.73 32.96 32.6418 

b3 (ft) 257.40 250.86 248.31 257.40 

H2 (ft) 15.40 15.40 15.40 15.18 

H4 (ft) 336.33 341.66 338.00 341.66 

H5 (ft) 312.90 320.45 312.64 311.79 

Concrete weight (lb) 11049 11058 11047 10928 

Mean of the best solutions 11020.5 

 
Table 6: Optimal solutions of concrete gravity dam for the linear effects 

Linear variables 
Optimization design 

Case 1 Case 2 Case 3 Case 4 

b (ft) 28.55 35.00 31.78 30.46 

b1 (ft) 33.63 34.16 34.11 34.17 

b2 (ft) 34.73 34.73 34.73 31.58 

b3(ft) 241.81 241.55 246.24 230.78 

H2(ft) 15.40 15.40 15.40 15.11 

H4 (ft) 320.61 341.66 325.76 331.54 

H5 (ft) 296.58 309.20 314.16 302.81 

Concrete weight (lb) 9945 10679 10657 9819 

Mean of the best solutions 10275.23 

 

 

9. CONCLUSIONS 
 

An efficient optimization procedure is introduced to find the optimal shapes of concrete 

gravity dams including dam–water–foundation rock interaction and nonlinear effects for 

earthquake loading. The concrete gravity dam body is treated as a two dimensional structure 

involving the geometry and material nonlinearity effects using the Drucker–Prager model 

based on the associated flow rule. The weighted least squares support vector machine 

(WLS–SMV) regression model is utilized to approximate the nonlinear dynamic analysis of 

dam instead of directly performing it by a time consuming finite element analysis.  

The optimum solutions obtained for the dam with the nonlinear and linear effects reveal 

that the nonlinear effects can significantly increase the optimal weight of dam. Therefore, 

the nonlinear effects should been considered in the optimal design of concrete gravity dams. 

The saftey can also be obtained by the optimal design of concrete garvity dams with the 

nonlinear effects. Finally, it is demonstrated that the best solution has been attained by using 

the WLS–SMV regression model, in terms of the accuracy and degree of feasibility of the 

solutions and therefore it can be reliably incorporated into the optimization process of the 

concrete gravity dams subjected to the earthquake loads. 
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