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ABSTRACT 
 

Structural design optimization usually deals with multiple conflicting objectives to obtain 

the minimum construction cost, minimum weight, and maximum safety of the final design. 

Therefore, finding the optimum design is hard and time-consuming for such problems. In 

this paper, we borrow the basic concept of multi-criterion decision-making and combine it 

with Particle Swarm Optimization (PSO) to develop an algorithm for accelerating 

convergence toward the optimum solution in structural multi-objective optimization 

scenarios. The effectiveness of the proposed algorithm was illustrated in some benchmark 

reinforced concrete (RC) optimization problems. The main goal was to minimize the cost or 

weight of structures while satisfying all design requirements imposed by design codes. The 

results confirm the ability of the proposed algorithm to efficiently find optimal solutions for 

structural optimization problems. 
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1. INTRODUCTION 
 

In the last few decades, a number of optimization techniques have been developed and used 

in structural optimization problems where the main objectives are to evaluate the merit of a 

design such as minimum construction cost, minimum life-cycle cost, and minimum weight, 

as well as maximum stiffness [1]. Because these are usually conflicting goals, multi-

objective optimization techniques are a highly valuable tool for handling structural 

optimization problems. Furthermore, the RC frames optimum design is known as benchmark 
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examples in the field of difficult and time-consuming optimization problems due to the 

presence of many design variables, large size of the search space, and many constraints [2]. 

More precisely, a reinforced concrete member can be designed with a semi-infinite set of 

member dimensions and different arrangements of reinforcing bars. Besides, in optimization 

of reinforce concrete structures the cost of different materials (i.e. steel, concrete, and 

formwork), which are closely tied together, should be considered.  

Two different research fields exist for solving multi-objective optimization problems 

(MOP): Multiple Criteria Decision Making (MCDM) [3–5] and Evolutionary Multi-

objective Optimization (EMO) [6,7]. Although they address similar problems as 

emphasized, they have different research goals [8]. MCDM supports a human Decision 

Maker (DM) in identifying the most preferred solution. In other words, a DM checks the 

results in every iteration and indicates what kind of changes in the design variables would 

lead to a more preferred solution. In addition, the DM can ignore unfeasible designs or ones 

which obviously cannot result in better optimal solutions before the calculation process. 

Consequently, the computational resources available are not wasted since only such Pareto 

optimal solutions which are interesting to the DM are generated. This method has a strong 

disadvantage in that a human DM must be available and willing to actively participate in the 

solution process and direct it according to the preferences. 

On the other hand, EMO works with a population of individuals and attempts to find a set 

of non-dominated solutions near the Pareto optimal front. Typically, EMO algorithms 

explore the design space thoroughly and do not involve any preference information [9]. 

Many researchers have shown that EMOs perform well for global searching due to their 

capability of exploring and finding promising regions in the search space, but they take a 

relatively long time to converge to an optimum solution [6,7,10,11]. However, EMOs have 

been widely utilized to solve structural optimization problems. Rajeev and Krishnamoorthy 

[12] used a simple Genetic-Algorithm (GA) to optimize a 2D RC frame. Aspects such as 

detailing and placing of reinforcements in beams and columns and other issues related to 

construction were considered in their study. Govindaraj and Ramasmy [13,14] studied 

optimization of continuous beams and also 2D and 3D RC frames using Genetic-Algorithm 

(GA). The detailing of reinforcements in the beam members was carried out as a sub-level 

optimization problem. This reduced the size of the optimization problem and saved 

computational time. Kwak and Kim [15,16] developed an improved optimum design method 

for reinforced concrete (RC) frames using an integrated GA with a direct search method. 

The method proposed in their research used a predetermined section database (DB) when 

determining trial sections for the next iteration. Kaveh and Sabzi [17] applied heuristic big 

bang-big crunch (HBB-BC) and a heuristic particle swarm ant colony optimization 

(HPSACO) to minimize the cost of 2D RC frames while Kaveh and Behnam [18] tried the 

charged system search (CSS) algorithm for the optimization of 3D RC frames. Gholizadeh 

and Aligholizadeh [19] employed the bat algorithm (BA) to optimize 2D RC frames and 

compared the results of BA with those of other meta-heuristics. Gheyratmand, Gholizadeh, 

and Vababzadeh [20] proposed an improved artificial bee colony algorithm to optimize RC 

frames. They also compared the result with other algorithms. 

In this article, an algorithm combining the PSO algorithm with the basic concept of 

multi-criterion decision-making, referred to as DMPSO, is proposed for the optimization of 

engineering structures. Enhancements are also proposed for the algorithm for constrained 
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structural optimization with a new implementation of a constraint handling tool. Also the 

modular sizes of members, standard reinforcement bar diameters, spacing requirements of 

reinforcing bars, architectural requirements and other practical requirements in addition to 

relevant provisions are considered to obtain directly constructible designs without any 

further modifications. Furthermore, three 2D RC benchmark design examples were tested 

using DMPSO. The numerical results show that the proposed DMPSO algorithm performed 

very well in terms of convergence speed and final results achieved. 

 

 

2. FORMULATION OF THE STRUCTURAL OPTIMIZATION PROBLEM 

FOR REINFORCED CONCRETE FRAMES 
 

A general structural optimization problem can be mathematically stated as follows: 

 

 

min
 x∈ℝn

𝑓 𝑥             𝑥 = [𝑥1, … , 𝑥𝑛 ]𝑇

𝑔𝑘 𝑥 ≤ 0,            𝑘 = 1, … , 𝑚

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈

  (1) 

 

where 𝑥 is a vector of n design variables, 𝑓 𝑥 : ℝ𝑛 →  ℝ is the objective function which 

returns a scalar value to be minimized (usually the cost or the weight of the structure), the 

vector function 𝑔 𝑥 : ℝ𝑛 →  ℝ𝑚  returns a vector of length 𝑚 containing the values of the 

inequality constraints evaluated at 𝑥, and 𝑥𝐿, 𝑥𝑈  are two vectors of length 𝑛 containing the 

lower and upper bounds of the design variables, respectively.  The above mathematical 

formulation contains only inequality constraints, as equality constraints are usually not 

found in the case of structural optimization.  

A typical constraint k in structural optimization has the form: 

 
𝑔𝑘 𝑥 =  𝑞𝑘(𝑥) − 𝑞𝑎𝑙𝑙𝑜𝑤 ,𝑘  (2) 

 

where 𝑞𝑘 𝑥  is a response measure for design 𝑥 and 𝑞𝑎𝑙𝑙𝑜𝑤 ,𝑘  is its maximum allowable 

absolute value. 

 

2.1 Objective function 

In structural optimization problems, the objective function is generally described as the 

weight or total cost of structure. For the optimum design of reinforced concrete (RC) 

structures, the cost of structure is more convenient as an objective function, because 

concrete structures involve different materials and in reality, the minimum weight design 

may not be the minimum cost design for especially concrete structures. Considering the fact 

that the unit costs of different materials involved in concrete construction influence the total 

cost of the concrete structures, it is better to formulate the problem in terms of the total cost, 

which includes the costs of concrete, steel and formwork [21]. However, as Cc , Cf  and Cs  are 

user-defined variables, when the optimum weight is needed, the objective function can be 

easily modified by considering different values for these variables. 

Considering the cost of the structure, the objective function becomes 
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𝑓𝑐𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡𝑐 + 𝐶𝑜𝑠𝑡𝑠 + 𝐶𝑜𝑠𝑡𝑓  (3) 

 

where 𝐶𝑜𝑠𝑡𝑐 , 𝐶𝑜𝑠𝑡𝑠 , and 𝐶𝑜𝑠𝑡𝑓  are the cost of concrete, the cost of reinforcing bars, and the 

cost of formwork (includes labor and placement), respectively.  

The costs of components , 𝐶𝑜𝑠𝑡𝑐 , 𝐶𝑜𝑠𝑡𝑠 , and 𝐶𝑜𝑠𝑡𝑓 ,  are calculated by the following 

equations: 

 

𝐶𝑜𝑠𝑡𝑐 = 𝐶𝐶   𝑏𝑖 . 𝑑𝑖 . 𝐿𝑛   𝑐𝑜𝑙𝑢𝑚𝑛 ,𝑖

𝑁𝑐𝑜𝑙

𝑖=1

+  𝑏𝑤  𝑗
. 𝑕𝑗 . 𝐿𝑏𝑒𝑎𝑚  𝑗

𝑁𝑏𝑒𝑎𝑚

𝑗 =1

  (4) 

𝐶𝑜𝑠𝑡𝑠 = 𝐶𝑠 . 𝛾𝑠 .     𝐴𝑆𝑡   𝑗
. 𝐿𝑏𝑎𝑟   𝑗

+ 

𝑁𝑏𝑎𝑟 ,𝑖

𝑗 =1

𝑁𝑐𝑜𝑙

𝑖=1

  𝐴𝑆𝑕   𝑘
. 𝐿𝑡𝑖𝑒  𝑘

+ 

𝑁𝑡𝑖𝑒 ,𝑖

𝑘=1

𝑁𝑐𝑜𝑙

𝑖=1

   𝐴𝑠𝑡 . 𝐿𝑏𝑎𝑟  𝑙

𝑁𝑏𝑎𝑟 ,𝑚

𝑙=1

𝑁𝑏𝑒𝑎𝑚

𝑚=1

+   𝐴𝑆𝑕   𝑛
. 𝐿𝑡𝑖𝑒   𝑛

 

𝑁𝑡𝑖𝑒 ,𝑚

𝑛=1

𝑁𝑐𝑜𝑙

𝑚=1

  

(5) 

𝐶𝑜𝑠𝑡𝑓 = 𝐶𝑓     2 𝑏𝑖 + 𝑑𝑖  . 𝐿𝑛   𝑐𝑜𝑙𝑢𝑚𝑛 ,𝑖
  +

𝑁𝑐𝑜𝑙

𝑖=1

    𝑏𝑤  𝑗
+ 2𝑕𝑗   . 𝐿𝑏𝑒𝑎𝑚  𝑗

  

𝑁𝑏𝑒𝑎𝑚

𝑗 =1

−   𝑏𝑘 . 𝑑𝑘

𝑁𝑐𝑜𝑙

𝑘=1

  (6) 

 

where 𝑁𝑐𝑜𝑙 , 𝑁𝑏𝑒𝑎𝑚 , 𝑏, 𝑑, 𝑏𝑤 , 𝑕, 𝐿, and 𝐿𝑛  are the number of column members, the number of 

beam members, the width of column section, the depth of column section, the width of beam 

section, the height of beam section, the length of the members, and the length of clear span 

measured face-to-face to the supports, respectively; Cc , Cf  and Cs  are unit cost of the 

concrete, the formwork and the steel, respectively; ASt , Lbar , and Nbar  are the Area, the 

length and the number of longitudinal reinforcement bars placed in the member while 

ASh , Ltie , and Ntie  are the area, the length and the number of shear reinforcement bars (ties) 

used in the member respectively. γs  is the density of steel reinforcements (kg/m3). 

It should be noted that the unit costs are different from time to time and also from country 

to country. So, they cannot be fixed and need to be updated for every design problems. 

However, when  Cc , Cf  and Cs  are selected equal to concrete density, one, and zero, 

respectively, the above equations will consider the minimum weight of the structure as the 

objective function. 

 

2.2 Design variables 

A semi-infinite set of member sizes and steel reinforcement arrangements can be considered 

for RC structure elements. In that case, as the dimensions of the design space are very large, 

the computational burden of the optimization process increases [17]. Consequently, in the 

studies available in the literature, a countable number of cross-sections have been employed 

in order to reduce the dimensions of design space as well as the computational cost. 

However, while the DMPSO performs well in terms of convergence speed and does not 

waste the computational resources, no restrictions were applied to the size of sections and 

arrangement of steel reinforcements. More precisely, the algorithm can use all of the 

possible sections in the common practical range to find the best optimum solution for the 
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problem. The only constraints considered for the sections were those derived from the 

design provisions of ACI 318-11 [22]. Eighteen design variables were defined for each span 

of a beam which can enumerate the width and height of a cross section, number and 

diameter of top and bottom continuous bars, number and diameter of top and bottom 

additional bars at left support, number and diameter of top and bottom additional bars at 

midspan, number and diameter of top and bottom additional bars at right support. The 

design variables for the column section were selected as the dimensions of columns in x and 

y directions, the diameter of reinforcement bars at the cross-section of column and numbers 

of reinforcement bars in both sides of the column. 

It is important to emphasize that all the rebars were not considered continuously the 

entire length of the beams. The algorithm calculated the needed bars for each part and placed 

it in the right position. So, the development length of reinforcement, location and length of 

lap splices, and length for bars were calculated exactly according to ACI 318-11 [22]. 

According to the code splices should, if possible, be located away from points of maximum 

tensile stress; so, in the top of the beams the splices are located at the middle of the beam’s 

length and the bottom bars are lapped at a third of the beam’s lengths. A typical beam and a 

typical column with the considered splices details are represented in Fig. 1. 

Some of other considerations, according to the ACI 318-11 [22] code and other 

construction requirements, are enumerated as follows: 

 The lower bound, upper bound, and increments of cross sectional dimensions were 

considered as 200, 1000, and 50 millimeters, respectively.  

 At least 4 bars are used in the four corners of the cross sections.  

 The minimum cover of concrete is taken as tc = 40cm.  

 Minimum diameter of transversal steel is considered as 𝜙10.  

 A symmetrical pattern for bars is considered on opposite sides of the columns sections.  

 

 
Figure 1. Typical beam and column details 

 

2.3 Constraints  

Constraints derived from design provisions ACI 318-11 [22] for intermediate moment 

frames are strength, serviceability, ductility and other side constraints. More precisely, the 

constraints considered for the RC members can be categorized into two main types. The first 

type comprises constraints on the load-carrying capacities of the sections, clear spacing 
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limits between reinforcing bars, and the minimum and the maximum allowed reinforcement 

of the members. The second type consists of those constraints defining architectural 

requirements, constructible designs, and detailing practices. The minimum and the 

maximum dimensions of the member’s section, the maximum aspect ratio of the section, 

maximum number of reinforcing bars and other reinforcement requirements. The 

constraints, which can be imposed to column groups, beam groups or joint regions, are 

explained and expressed in a normalized form as given below. 

 

2.3.1 Constraints for beam groups 

To avoid repetition, it is necessary to note that in this sub-section 𝑖 represent the number of 

the beam (𝑖th 𝑏𝑒𝑎𝑚); 𝑗 is the load combination type; while 𝑁𝑏𝑒𝑎𝑚  and 𝑁𝑙𝑜𝑎𝑑 −𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛  are 

the total number of the beams and total number of the combination loads, respectively. 𝑏𝑤  

and 𝑑 indicate the width and the distance from extreme compression fiber to centroid of 

longitudinal tension reinforcement of the beam section, respectively; 𝑓 ′
𝑐
 and 𝑓𝑦  denote the 

compressive strength of concrete and the yielding strength of reinforcing steel, respectively. 

Other notations were declared where needed. 

At every section of a flexural member where tensile reinforcement is required by 

analysis, the tension area of longitudinal steel reinforcement ,  𝐴𝑠 ,  should satisfy the 

minimum and the maximum requirements permitted by design specification. It should be 

noted that a minimum and maximum amount of tensile reinforcement is required for both 

positive and negative moment regions; 

 

𝐺𝑏1 𝑥 =
𝐴𝑠,𝑚𝑖𝑛 ,𝑖⁡

𝐴𝑠,𝑖

− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑏𝑒𝑎𝑚  (7) 

𝐺𝑏2 𝑥 =
𝐴𝑠,𝑖

𝐴𝑠,𝑚𝑎𝑥 ,𝑖

− 1 ≤ 0            𝑖 = 1, … , 𝑁𝑏𝑒𝑎𝑚  (8) 

𝐴𝑠𝑚𝑖𝑛 = 𝑚𝑎𝑥

 
 
 

 
 

0.25  𝑓 ′
𝑐

𝑓𝑦
 𝑏𝑤 . 𝑑

 

 
1.4

𝑓𝑦

 𝑏. 𝑑

  (9) 

 

Although the American code specified the maximum percentage of steel as 75 percent of 

balanced reinforcement ratio in the earlier versions, in the most recent version of the code 

the maximum amount of reinforcements is calculated according to the fact that the net 

tensile strain in the extreme tension steel, εt, should be equal to or greater than 0.005 when 

the concrete in compression reaches its assumed strain limit of 0.003. 

A minimum area of shear reinforcement,  𝐴𝑣,𝑚𝑖𝑛,  shall be provided in all reinforced 

concrete flexural members where 𝑉𝑢⁡ exceeds 0.5∅𝑉𝑐; 

 

𝐺𝑏3 𝑥 =
𝐴𝑣,𝑚𝑖𝑛 ,𝑖⁡

𝐴𝑣,𝑖
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑏𝑒𝑎𝑚 (10) 
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𝐴𝑣,𝑚𝑖𝑛 ⁡= 𝑚𝑎𝑥

 
 
 

 
 0.062

 𝑓 ′
𝑐

𝑓𝑦

 𝑏𝑤 . 𝑠

 

0.35 
𝑏𝑤 . 𝑠

𝑓𝑦

  (11) 

 

where s is the spacing between stirrups (ties). 

The minimum clear spacing between parallel bars in a layer should be greater than the 

maximum of the nominal diameter of bars Φ𝑙  and 25 mm. However, for constructional 

requirements, the minimum free distance between the longitudinal bars was considered 

as 𝑆𝑏 = 40𝑚𝑚. In the case that parallel reinforcement was placed in two layers, bars in the 

upper layers were placed directly above bars in the bottom layer with a clear distance 

between layers equal to 25 mm. 

 

𝐺𝑏4 𝑥 =
𝑆𝑏 ,𝑚𝑖𝑛 ⁡

𝑆𝑏 ,𝑖
− 1 ≤ 0            𝑖 = 1, … , 𝑁𝑏𝑒𝑎𝑚 (12) 

 

The spacing between stirrups, 𝑆𝑣 , should satisfy the maximum requirements permitted by 

design specification; 

 

𝐺𝑏5 𝑥 =
𝑆𝑣,𝑖⁡

𝑆𝑣,𝑚𝑎𝑥 ,𝑖⁡
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑏𝑒𝑎𝑚 (13) 

𝑆𝑣,𝑚𝑎𝑥 ⁡

→

 
 
 
 

 
 
 𝑚𝑖𝑛  

𝑑 2 
600𝑚𝑚

           𝐴𝑙𝑜𝑛𝑔 𝑡𝑕𝑒 𝑠𝑝𝑎𝑛 𝑜𝑓 𝑏𝑒𝑎𝑚 𝑚𝑒𝑚𝑏𝑒𝑟𝑠                                                              

𝑚𝑖𝑛  
𝑑 4 

300𝑚𝑚
          𝐴𝑡 𝑡𝑕𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑏𝑒𝑎𝑚 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 𝑤𝑕𝑒𝑟𝑒 𝑣𝑠 𝑒𝑥𝑐𝑒𝑒𝑑𝑠 0.33 𝑓′𝑐𝑏𝑤𝑑

𝑚𝑖𝑛  

𝑑 4 
300𝑚𝑚

8Φ𝑙

24Φ𝑣

          𝐴𝑡 𝑡𝑕𝑒 𝑙𝑒𝑓𝑡 𝑎𝑛𝑑 𝑟𝑖𝑔𝑕𝑡 𝑒𝑛𝑑𝑠 𝑜𝑓 𝑏𝑒𝑎𝑚 𝑚𝑒𝑚𝑏𝑒𝑟𝑠                                       

  
(14) 

 

where Φ𝑙   denotes the diameter of longitudinal reinforcing bars, and Φ𝑣= the diameter of 

shear reinforcing bars (ties). 

Also, the minimum spacing between stirrups ,  𝑆𝑣 ,  is limited to 50mm because of 

constructional requirements; 

 

𝐺𝑏6 𝑥 =
𝑆𝑣,𝑚𝑖𝑛 ⁡

𝑆𝑣,𝑖
− 1 ≤ 0           𝑖 = 1, … , 𝑁𝑏𝑒𝑎𝑚 (15) 

 

The height of the beams, 𝑕, should be greater than the allowable minimum height for 

beams,  𝑕𝑚𝑖𝑛 , and less than the maximum height limit value given for beams,  𝑕𝑚𝑎𝑥 ; 

 

𝐺𝑏7 𝑥 =
𝑕𝑚𝑖𝑛 ,𝑖⁡

𝑕𝑖
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑏𝑒𝑎𝑚  (16) 

𝐺𝑏8 =
𝑕𝑖

𝑕𝑚𝑎𝑥 ,𝑖
− 1 ≤ 0                 𝑖 = 1, … , 𝑁𝑏𝑒𝑎𝑚  (17) 
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𝑕𝑚𝑖𝑛 →  

𝐿𝑛

21
                     𝑓𝑜𝑟 𝑏𝑜𝑡𝑕 𝑒𝑛𝑑 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠  

𝐿𝑛

18.5
                     𝑓𝑜𝑟 𝑜𝑛𝑒 𝑒𝑛𝑑 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠    

  (18) 

 

where 𝐿𝑛  𝑖𝑠 the length of clear span measured face-to-face to the supports. The maximum 

height limit value should be defined for each problem separately according to its 

architectural requirements.  

For each section of the beams, the negative and the positive reduced moment strength of 

the section  ∅𝑀𝑛 ,  should be greater than the factored moment force at the section , 𝑀𝑢 . 

Besides, the positive moment strength at any end (support) of the beams, 𝑀𝑛 ,𝑒𝑛𝑑
+, should be 

not less than one-third the negative moment strength , 𝑀𝑛 ,𝑒𝑛𝑑
− . Furthermore, neither the 

negative nor the positive moment strength at any section along the length of the 

beam , 𝑀𝑛
+, 𝑀𝑛

−, should be less than one-fifth the maximum moment strength at the ends of 

the beams, 𝑀𝑛 ,𝑒𝑛𝑑 ; 

 

𝐺𝑏9 =
 𝑀𝑢(𝑖,𝑗 ,𝑘) 

 ∅𝑀𝑛 ,𝑖 
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑏𝑒𝑎𝑚                𝑗 = 1, … , 𝑁𝑙𝑜𝑎𝑑 −𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛           𝑘 = 1,2 (19) 

𝐺𝑏10 =
 
1
3

𝑀𝑛 ,𝑒𝑛𝑑 ,𝑖

−

 

 𝑀𝑛 ,𝑖
+ 

− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑏𝑒𝑎𝑚  (20) 

𝐺𝑏11 =
 
1
5

𝑀𝑛 ,𝑒𝑛𝑑 ,𝑖 

 𝑀𝑛 ,𝑖
+ 

− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑏𝑒𝑎𝑚  (21) 

𝐺𝑏12 =
 
1
5

𝑀𝑛 ,𝑒𝑛𝑑 ,𝑖 

 𝑀𝑛 ,𝑖
− 

− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑏𝑒𝑎𝑚  (22) 

 

where k represents the negative moment and positive moment situations. 

For each section of the beams, the shear force capacity,  ∅𝑉𝑛 , should be greater than the 

factored shear force at the section,  𝑉𝑢 . In addition, the factored shear force at the section,  𝑉𝑢 , 
should be less than allowed maximum shear force capacity, 𝑉𝑚𝑎𝑥 . Furthermore, ∅𝑉𝑛  of beams 

resisting earthquake effect, E, should be greater than the allowed minimum shear force 

capacity, 𝑉𝑚𝑖𝑛 ; 

 

𝐺𝑏13 =
 𝑉𝑢(𝑖,𝑗 ) 

 ∅𝑉𝑛 ,𝑖 
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑏𝑒𝑎𝑚                𝑗 = 1, … , 𝑁𝑙𝑜𝑎𝑑 −𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛  (23) 

𝐺𝑏14 =
 𝑉𝑢 ,𝑖,𝑗  

 ∅𝑉𝑚𝑎𝑥  
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑏𝑒𝑎𝑚                𝑗 = 1, … , 𝑁𝑙𝑜𝑎𝑑 −𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛  (24) 

𝐺𝑏15 =
 𝑉𝑚𝑖𝑛  

 ∅𝑉𝑛 ,𝑖 
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑏𝑒𝑎𝑚  (25) 

 

2.3.2 Constraints for column groups 

To avoid repetition, it is necessary to note that in this sub-section 𝑖 represent the number of 

the column ( 𝑖th 𝑐𝑜𝑙𝑢𝑚𝑛) ; 𝑗  is the load combination type; while 𝑁𝑐𝑜𝑙𝑢𝑚𝑛  and 
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𝑁𝑙𝑜𝑎𝑑 −𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛  are the total number of the columns and total number of the combination 

loads, respectively. 𝑏  and 𝑑  indicate the width and height of the column section, 

respectively; 𝑓 ′
𝑐

 and 𝑓𝑦  denote the compressive strength of concrete and the yielding 

strength of reinforcing steel, respectively. Other notations were declared where needed. 

The width, 𝑏, and the height, 𝑕, of a column section should not be less than the minimum 

dimensions limit value given for columns; 

 

𝐺𝑐1 𝑥 =
𝑏𝑚𝑖𝑛 ,𝑖⁡

𝑏𝑖
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑐𝑜𝑙𝑢𝑚𝑛  (26) 

𝐺𝑐2 𝑥 =
𝑕𝑚𝑖𝑛 ,i⁡

𝑕𝑖
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑐𝑜𝑙𝑢𝑚𝑛  (27) 

 

The minimum width , b𝑚𝑖𝑛 ,  and height , 𝑕𝑚𝑖𝑛 ,  should be defined for each problem 

separately according to its architectural requirements.  

Area of longitudinal reinforcement , 𝐴𝑠𝑡 , in a column section should be between the 

minimum and maximum limits, 𝐴𝑠𝑡 ,𝑚𝑖𝑛 , permitted by design specification;  

 

𝐺𝑐3 𝑥 =
𝐴𝑠𝑡 ,𝑚𝑖𝑛 ,𝑖⁡

𝐴𝑠𝑡 ,𝑖
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝐶𝑜𝑙𝑢𝑚𝑛  (28) 

𝐺𝑐4 𝑥 =
𝐴𝑠𝑡 ,𝑖

𝐴𝑠𝑡 ,𝑚𝑎𝑥 ,𝑖
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝐶𝑜𝑙𝑢𝑚𝑛  (29) 

𝐴𝑠𝑡 ,𝑚𝑖𝑛 = 0.01 𝐴𝑔  (30) 
𝐴𝑠𝑡 ,𝑚𝑎𝑥 = 0.08 𝐴𝑔  (31) 

 

where  Ag  is the gross area of concrete section. 

The spacing between longitude steel reinforcements, 𝑆𝑐 , should satisfy the minimum and 

maximum requirements permitted by design specification,  𝑆𝑐 ,𝑚𝑖𝑛 ⁡and 𝑆𝑐 ,𝑚𝑎𝑥 ,  as well as 

constructional limits (𝑆𝑐 ,𝑚𝑖𝑛 ⁡= 40𝑚𝑚); 

 

𝐺𝑐5 𝑥 =
𝑆𝑐 ,𝑚𝑖𝑛 ⁡

𝑆𝑐 ,𝑖
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑐𝑜𝑙𝑢𝑚𝑛  (32) 

𝐺𝑐6 𝑥 =
𝑆𝑐 ,𝑖⁡

𝑆𝑐 ,𝑚𝑎𝑥
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑐𝑜𝑙𝑢𝑚𝑛  (33) 

 

A minimum area of shear reinforcement,  𝐴𝑠𝑕 ,𝑚𝑖𝑛 , should be provided in all reinforced 

concrete flexural members where factored shear force at section, 𝑉𝑢,  exceeds 0.5∅𝑉𝑐 

 

𝐺𝑐7 𝑥 =
𝐴𝑠𝑕 ,𝑚𝑖𝑛 ,𝑖⁡

𝐴𝑠𝑕 ,𝑖
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑐𝑜𝑙𝑢𝑚𝑛  (34) 

 

where 𝑉𝑐  denotes nominal shear strength provided by the concrete and 𝐴𝑠𝑕  is the area of the 

shear reinforcements. 

The spacing between stirrups, 𝑆𝑐𝑣 , should satisfy the maximum requirements permitted by 

design specification, 𝑆𝑐𝑣 ,𝑚𝑎𝑥 . Also, the minimum spacing between stirrups of the columns, 

𝑆𝑐𝑣 ,𝑚𝑖𝑛 ⁡, is limited  to 50mm because of constructional requirements; 
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𝐺𝑐8 𝑥 =
𝑆𝑐𝑣 ,𝑖⁡

𝑆𝑐𝑣 ,𝑚𝑎𝑥 ,𝑖⁡
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑐𝑜𝑙𝑢𝑚𝑛  (35) 

𝐺𝑐9 𝑥 =
𝑆𝑐𝑣 ,𝑚𝑖𝑛 ⁡

𝑆𝑐𝑣 ,𝑖
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑐𝑜𝑙𝑢𝑚𝑛  (36) 

𝑆𝑐𝑣 ,𝑚𝑎𝑥 ⁡

→

 
 
 
 
 
 

 
 
 
 
 

𝑚𝑖𝑛  

(min 𝑏, 𝑑 ) 2 

600𝑚𝑚
16Φ𝑙

48Φ𝑣

              𝐴𝑙𝑜𝑛𝑔 𝑡𝑕𝑒 𝑠𝑝𝑎𝑛 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛 𝑚𝑒𝑚𝑏𝑒𝑟𝑠                                                              

𝑚𝑖𝑛  

(min 𝑏, 𝑑 ) 4 

300𝑚𝑚
16Φ𝑙

48Φ𝑣

              𝐴𝑡 𝑡𝑕𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 𝑤𝑕𝑒𝑟𝑒 𝑣𝑠 𝑒𝑥𝑐𝑒𝑒𝑑𝑠 0.33 𝑓′𝑐𝑏𝑤𝑑

𝑚𝑖𝑛  

(min 𝑏, 𝑑 ) 4 

300𝑚𝑚
8Φ𝑙

24Φ𝑣

              𝐴𝑡 𝑡𝑕𝑒 𝑏𝑜𝑡𝑕 𝑒𝑛𝑑𝑠 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 𝑜𝑣𝑒𝑟 𝑡𝑕𝑒 𝑙𝑒𝑛𝑔𝑡𝑕 𝑜𝑓 𝑙0                 

  
(37) 

𝑙0 →  
𝐿𝑛 ,𝑐𝑜𝑙𝑢𝑚𝑛 6 

max 𝑏, 𝑑 
450 𝑚𝑚

  (38) 

 

where Φ𝑙  and Φ𝑣  are the diameter of longitudinal  reinforcing bars and the diameter of 

stirrups (ties). 𝐿𝑛 ,𝑐𝑜𝑙𝑢𝑚𝑛  is the length of clear span of the column measured face-to-face to the 

supports. 

For each section of the columns, the strength capacity of the section, 𝜎𝑛 , should be greater 

than the stress of the applied force, 𝜎𝑢 . 

 

𝐺𝑐10 𝑥 =
 𝜎 𝑢(𝑖,𝑗 )⁡ 

 𝜎𝑛 ,𝑖⁡ 
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑐𝑜𝑙𝑢𝑚𝑛                𝑗 = 1, … , 𝑁𝑙𝑜𝑎𝑑 −𝑐𝑜𝑚𝑏 𝑖𝑛𝑎𝑡𝑖𝑜𝑛  (39) 

 

The strength of the columns should be obtained by the P-M interaction curve. For each 

section of the column, the P-M point from the applied force should lies within the 

interaction curve. In this study, to approximate the curves with acceptable accuracy, 11 

interaction points for each curve was considered. A typical interaction diagram is shown. 

Fig. 1. Furthermore, according to the ACI code [22], for compression members not braced 

sideways, the slenderness effects can be neglected, when klu/r < 22. And when slenderness 

effects are not neglected as permitted above, the design of compression members, restraining 

beams, and other supporting members shall be based on the factored forces and moments 

from a second-order analysis. To satisfy this obligation, the Second-order effects are 

considered along the length of compression members in this study. 

For each section of the column, the shear force capacity,  ∅𝑉𝑛 , should be greater than the 

factored shear force at the section,  𝑉𝑢 . In addition, the factored shear force at the section,  𝑉𝑢 , 
should be less than allowed maximum shear force capacity , 𝑉𝑚𝑎𝑥 .  Furthermore,  ∅𝑉𝑛  of 

columns resisting earthquake effect, 𝐸, should be greater than the allowed minimum shear 

force capacity, 𝑉𝑚𝑖𝑛 ; 

 

𝐺𝑏11 =
 𝑉𝑢(𝑖,𝑗 ) 

 ∅𝑉𝑛 ,𝑖 
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑐𝑜𝑙𝑢𝑚𝑛𝑠                𝑗 = 1, … , 𝑁𝑙𝑜𝑎𝑑 −𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛  (40) 
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𝐺𝑏12 =
 𝑉𝑢 ,𝑖 ,𝑗  

 ∅𝑉𝑚𝑎𝑥  
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑐𝑜𝑙𝑢𝑚𝑛                𝑗 = 1, … , 𝑁𝑙𝑜𝑎𝑑 −𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛  (41) 

𝐺𝑏13 =
 𝑉𝑚𝑖𝑛  

 ∅𝑉𝑛 ,𝑖 
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑐𝑜𝑙𝑢𝑚𝑛  (42) 

 

 
Figure 1. A Typical φPn, φMn interaction curve 

 

2.3.3 Constraints for joints 

At frame joints, the width of beams, 𝑏𝑤 , should be smaller than the corresponding 

dimensions of intersected columns, 𝑑𝑐 . Furthermore, at the joints with two columns, the 

cross-sectional dimension of bottom column,  𝑏𝑏𝑎𝑛𝑑 𝑑𝑏  , should be equal or greater than the 

corresponding cross-sectional dimension of the top column, 𝑏𝑡⁡𝑎𝑛𝑑  𝑑𝑡 . 

 

𝐺𝑗1 𝑥 =
𝑏𝑤 ,𝑖⁡

𝑑𝑐 ,𝑖⁡
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑗𝑜𝑖𝑛𝑡  (43) 

𝐺𝑗2 𝑥 =
𝑏𝑡 ,𝑖⁡

𝑏𝑏 ,𝑖⁡
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑗𝑜𝑖𝑛𝑡  (44) 

𝐺𝑗3 𝑥 =
𝑑𝑡 ,𝑖⁡

𝑑𝑏 ,𝑖⁡
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑗𝑜𝑖𝑛𝑡  (45) 

 

where 𝑁𝑗𝑜𝑖𝑛𝑡  is the total number of joints of the frame. 

The design story drift, ∆, should not exceed the allowable story drift, ∆𝑎 . 
 

𝐺𝑗4 𝑥 =
∆ 𝑖⁡

∆𝑎 ,𝑖⁡
− 1 ≤ 0          𝑖 = 1, … , 𝑁𝑠𝑡𝑜𝑟𝑦  (46) 

 

where 𝑁𝑠𝑡𝑜𝑟𝑦  is the total number of stories in the frame. 

In this study, the elastic drifts were determined using seismic design forces based on the 

Ø
 P

n

Ø Mn
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exact computed fundamental period of the structure without any upper limit according to 

ASCE 7-10 [23]. 
 

 

3. A BRIEF DESCRIPTION THE PROPOSED ALGORITHM 
 

In a PSO formulation, multiple candidate solutions, called particles, fly through the problem 

search space looking for the optimal position. Each particle has a position and a velocity in 

the multidimensional design space. Additionally, it has a fitness value which is evaluated by 

the objective function at its current location. A particle by itself has almost no power to 

solve any problem; progress occurs only when the particles interact. Consequently, each 

particle communicates with other particles to determine its movement through the search 

space and adjusts its velocity and position according to the best solution it has achieved so 

far as well as the best point found by any member of its neighborhood. The next iteration 

takes place after all particles have been moved. This is expected to move the swarm toward 

the best solutions. However, metaheuristics such as PSO do not guarantee an optimal 

solution is ever found. On the other hand, RC frames optimum problems are well known for 

their time-consuming process due to the presence of many design variables, large size of the 

search space, and various constraints which must be satisfied simultaneously. Consequently, 

in this study, a supplementary algorithm was developed based on the concept of multi-

criterion decision-making and was combined by the PSO algorithm to accelerate 

convergence toward the optimum solution in structural multi-objective optimization 

problems. 

The DM algorithm plays three major roles in the DMPSO algorithm. First, it checks the 

results in each iteration and indicates what kind of changes in the design variables would 

lead to a more preferred solution. Therefore, the DMPSO adjusts its velocity and position 

according its own experience, the experience of neighboring particles, and the preference of 

the decision maker. Furthermore, the DM algorithm can ignore a solution at any point of the 

calculation process where perceives that it cannot produce a better fitness. Consequently, the 

computational resources available are not wasted since only such Pareto optimal solutions 

which are interesting to the DM are generated. Finally, the basic PSO is easily trapped into a 

local minimum. Considering that, the DM maker imposes its preference to intelligently 

escape from the local minimum. 

The flowchart of the optimization by DMPSO algorithm is shown schematically in Fig. 2. 
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Figure 2. Flowchart of the optimization by DMPSO algorithm 

 

3.1 Mathematical formulation of DMPSO 

The velocity and position of the particle are updated in a stochastic way as follows: 
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𝑣𝑗  𝑡 + 1 = 𝑤𝑣𝑗  𝑡 + 𝑐1𝑟1 ∘  𝑥𝑃𝑏 ,𝑗 − 𝑥 𝑗  𝑡  + 𝑐2𝑟2 ∘  𝑥𝐺𝑏 ,𝑗 − 𝑥 𝑗  𝑡  + 𝑐3𝑟3 ∘  𝑥𝐷𝑀 ,𝑗 − 𝑥 𝑗  𝑡   (47) 

𝑥 𝑗  𝑡 + 1 = 𝑥 𝑗  𝑡 + 𝑣𝑗  𝑡 + 1  (48) 

 

where vj t  and  xj t  represent the velocity and the position vectors of particle 𝑗 at time 𝑡, 
respectively. The term 𝑤 is the inertia weight, a scaling factor employed to control the 

exploration abilities of the swarm. Vector xPb ,j  denotes the personal best position which is 

recorded by particle j, vector xGb ,j  is the global best position obtained by the entire swarm up 

to the current iteration, and vector xDM ,j indicates the position of preference of the decision 

maker in the search space. The acceleration coefficients c1 and c2, and c3 are coefficients 

which control the impact of the particle's own experiences, the other particles' experiences 

and the decision maker’s preference on the trajectory of each particle, respectively. r1, r2,
r3 are three random vectors with numbers uniformly distributed in the interval [0, 1]. The 

symbol “∘” is the element-wise product of two vectors.  

Particles’ velocities in each dimension  𝑖 (𝑖 =  1, . . . , 𝑛)  are restricted to a maximum 

velocity  𝑣𝑖
𝑚𝑎𝑥 . The vector  𝑣𝑖

𝑚𝑎𝑥  determines the maximum change each dimension can 

undergo in its positional coordinates during an iteration. It is more appropriate to use a 

vector rather than a scalar, as in the general case different velocity restrictions can be applied 

for different dimensions of the particle [24]. However, providing that the particle moves 

outside the bounds for a dimension 𝑖  after the position update, 𝑥𝑖 ≤ 𝑥𝐿  𝑜𝑟 𝑥𝑈 ≥ 𝑥𝑖 ,  the 

design variable 𝑥𝑖  limits the closest bound, 𝑥𝑖 = 𝑥𝐿  𝑜𝑟 𝑥𝑖 = 𝑥𝑈 . 
 

3.2 Constraint handling 

The PSO algorithm mainly focuses on finding an optimum solution in unconstrained 

problems. While most real-world applications have constraints, there has been relatively 

little work related to the incorporation of constraints into the PSO algorithm [26]. However, 

several methods have been previously proposed for handling constraint by EAs in general 

for optimization problems. They can be grouped into four categories: (i) methods based on 

preserving feasibility of the solutions; (ii) methods based on penalty functions; (iii) methods 

that search for feasibility; (iv) other hybrid methods [25].  

One of the simplest methods is to generate feasible solutions in a random way. In this 

approach, the algorithm recalculates the velocity vector for an infeasible individual using 

new random numbers r1 and r2, until all of the constraints become satisfied [26, 27]. While 

it guarantees the feasibility of the final optimum design, it may have a very high 

computational cost in some cases. Besides, finite element analyses, which are needed for 

calculations of most constraint functions in structural engineering applications, require a 

huge computational cost. As a result, it is impractical to use this handling procedure for such 

constraints. Furthermore, in most structural optimization problems, because of numerous 

design variables and large size of the search space, even the generation of one million 

random points was insufficient to produce a single feasible solution. However, it can be used 

to handle a few of basic constraints in cooperation with other handling approaches.  

Another approach is to eliminate unfeasible solutions from a population which is 

equivalent to applying a very severe penalty to every unfeasible design. This may work 

reasonably well when the feasible search space constitutes a reasonable part of the whole 

search space. More precisely, for structural optimization problems where the ratio between 
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the sizes of feasible search space and whole search space is small, an initial population may 

consist of no feasible individuals. It might be essential a search over the unfeasible region 

and improve unfeasible individuals rather than reject them [28]. 

The most common method to handle constraints in optimization problems is to use 

penalty functions, which penalize infeasible solutions by reducing their fitness values in 

proportion to their degrees of constraint violation [29–34]. The penalty function is an 

effective auxiliary tool to deal with constrained problems in general and has been a popular 

approach because of its simplicity and ease of implementation[24]. 

This study proposes a nonlinear penalty approach in which some levels of violation for 

each constraint are defined. If any of the constraints are violated, a penalty, whose value is 

related to the degree of violated constraint, is applied to the objective function; 

 

𝛷 =  𝜑𝑘 𝑥 

𝑁𝑡𝑜𝑡𝑎𝑙

𝑘=1

 (49) 

𝜑𝑘 𝑥 = 𝑐 × (𝐺𝑘(𝑥))2 (50) 

𝑐 →

 
 

 
0                                       𝑖𝑓 𝐺𝑖 𝑥 ≤ 0                 

1                                       𝑖𝑓 0 < 𝐺𝑖 𝑥 ≤ 0.01   

2                                       𝑖𝑓 0.01 < 𝐺𝑖 𝑥 ≤ 0.1

10                                     𝑖𝑓 𝐺𝑖 𝑥 > 0.1               

  (51) 

 

where 𝛷  is the total penalty value, 𝑁𝑡𝑜𝑡𝑎𝑙  denotes the total number of members, 𝜑𝑥  

represents the penalty function, 𝐺𝑘(𝑥) is the typical constraint 𝑘. 

Considering the fact that much of the computing time belongs to the structural 

calculations, DMPSO firstly check the constraints which do not need finite element analysis 

for their calculation and simultaneously computes the penalty of the unsatisfied constraints. 

In each step, the DM checks the possibility of obtaining better fitness. Whenever it perceives 

that the penalized objective function cannot obtain a better value compared to the local 

optimum,  𝑃𝑏 , found by the entire swarm until iteration t, it will ignore the rest of the 

calculation and will assign a value which is greater than the local best, 𝑃𝑏, and the global 

best, 𝐺𝑏, to the fitness. This assures that the fitness of this particle will not be taken into 

account in the calculation of  𝑃𝑏  or  𝐺𝑏 . As a consequence, a plethora of calculations for 

particles which do not satisfy the code’s requirements or are not likely to have a better 

fitness are avoided. Otherwise, the corresponding objective function value is computed and a 

finite element analysis is performed for the constraints check. As long as no violation is 

detected, no penalty will be imposed on the objective function f (x).  

 

 

4. DESIGN EXAMPLES 
 

To evaluate the performance of the proposed optimization algorithm, three benchmark test 

examples were examined. These are a three-bay four-story, a three-bay eight-story, and a 

three-bay twelve-story RC frames found in the literature [17,19,20]. Design examples with 

different design variable numbers were selected to show the efficiency of the DMPSO 

algorithm. The design examples were solved three times and among the optimum frames 

obtained for each set, the best one was taken as the optimum design.  
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The examples are three benchmarks with the following structural characteristics: service 

dead load of D=22.3 kN/m, uniform service live load of L=10.7 kN/m, compressive strength 

of concrete f’c =23.5 MPa, yield strength of steel reinforcements fy =392 MPa, Cc=105 

$/m3, Cs=0.9 $/kg, Cf=92 $/m2 and s=7850 kg/m3. Furthermore, six different factored load 

combinations are considered as suggested in ACI 318-11 [22] design code [16] as follows: 

 
𝑈1 = 1.2𝐷 + 1.6𝐿 (52) 

𝑈2 = 1.2𝐷 + 1.0𝐿 ± 1.4𝐸 (53) 
𝑈3 = 0.9𝐷 ± 1.4𝐸 (54) 

 

where D, L and E are the assumed dead, live and lateral loads, respectively. 

Furthermore, in order to consider the effect of cracking, the moment of inertia of the 

cross section for each member is calculated according  to ACI 318-11 code [22] using the 

following relationships: 
𝐼𝐵𝑒𝑎𝑚 = 0.35 𝐼𝑔 (55) 
𝐼𝐶𝑜𝑙𝑢𝑚𝑛 = 0.7 𝐼𝑔  (56) 

 

where 𝐼𝑔  is the gross moment of inertia of the section of the beam or column.  

A population size of 100 is used for four-story and eight-story RC frames and a 

population size of 150 is used for the twelve-story RC frame to assure the best results for 

stochastic decline. 

 

4.1 Example 1. The three bay, four-story reinforced concrete frame 

The three-bay four-story reinforced concrete frame whose geometry, loading and grouping 

details are shown in Fig. 4 was designed by HBB-BC, HPSACO [17], bat [19], and 

improved artificial bee colony, IABC, algorithms, [20]. This frame has a total of 28 

members, 12 beams and 16 columns, which are   arranged into four groups; two groups for 

beams and two groups for columns. In this design example, there are 46 design variables, 36 

of which are for beams (18 for each beam design group) and the remaining 10 is for columns 

(5 for each column design group). Beams and columns are grouped to satisfy the uniformity 

of members subject to close design forces and have similar behaviors according to their 

place in the frame and loading conditions.  

 

 
Figure 3. Convergence rate for the three-bay four-story reinforced concrete frame 
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Figure 4. The three-bay, four-story reinforced concrete frame 

 

The minimum cost of the optimum design was $20,090 after 5,400 structural analyses. 

Another DMPSO feature to consider is its convergence rate. As it is obvious from Fig. 3, 

DMPSO found the best optimum solution after 5,400 structural analyses. The best design 

obtained by DMPSO presented in Table 1. Because no considerable limits were imposed to 

the design variables, the algorithm used the best section for the optimum solution.  Table 2 

demonstrates the maximum values of demand/capacity ratio under the critical loading case 

for member groups in the optimum solutions obtained by the algorithm. 

 

4.2 Example 2. The three-bay eight-story reinforced concrete frame 

The second test example was a three-bay eight-story reinforced concrete frame which 

comprised 56 elements, 24 beams and 32 columns. These elements were divided into three 

beam groups and four column groups. Consequently, 74 design variables exist in the 

problem, 54 for beams and 20 for columns. The structure geometry with its lateral loading 

and grouping details is depicted in Fig. 6. 

 
Table 1: The results of optimum design form MDPSO  

   PROPOSED ALGORITHM 

   
Sectional 

dimensions 
Reinforcements 
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B
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left 

B
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m
id

d
le 

B
o
t. 

rig
h
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Beam B1 300 350 
3-D25 

3-D18 
2-D18 

3-D25 

3-D18 

1-D22 

2-D18 

3-D22 

2-D18 

1-D22 

2-D18 

Beam B2 300 350 
3-D25 

3-D18 
2-D18 

3-D25 

3-D18 

1-D22 

2-D18 

3-D22 

2-D18 

1-D22 

2-D18 

Column C1 450 300 12-D18 

Column C2 350 300 6-D22 

Frame cost 20090$ 

Number of Structural analysis 5400 

Max demand/capacity ratio for 

beams 
0.988 

Max demand/capacity ratio for 

Columns 
0.986 
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Table 2: Maximum strength ratio for the member groups in the three-bay four-story reinforced 

concrete frame 

Beams Columns 

Type 

classification 

Strength 

ratio 

Critical load 

combination 

Type 

classification 

Strength 

ratio 

Critical load 

combination 

B1 0.990 𝑈1 C1 0.965 𝑈1 

B2 0.997 𝑈1 C2 0.985 𝑈1 

 

 

 

Figure 6. The three-bay, eight-story reinforced 

concrete frame 

Figure 7. Convergence history for DMPSO for the 

three-bay four-story reinforced concrete frame 

 

For this problem, DMPSO needed 8,630 finite element structural analyses to converge to 

an optimum cost of $45,555. Figure depicts the convergence history for the DMPSO. 

Table 3 shows the results of optimum design from the DMPSO algorithm. As well, Table 

4 illustrates the maximum values of demand/capacity ratio under the critical loading case for 

member groups in the optimum solutions obtained by the DMPSO algorithm.  

 

4.3 Example 3. The three-bay twelve-story reinforced concrete frame 

The third test example is a three-bay twelve-story RC frame with 84 members, shown in Fig. 

8. This is one of the largest planar benchmarks in the field of RC optimization, which has 

the most design variables. As it can be seen, the members are collected in three beam groups 

and six column groups. Consequently, this problem has 84 design variables, 54 of which are 

for beams and the rest for columns. 
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Figure 8. Three-bay, twelve-story reinforced 

concrete frame 

Figure 9. Convergence rate for DMPSO, HBB-BC, 

HPSACO, BA, and IABC for the three-bay 

Twelve-story reinforced concrete frame 

 

The convergence history of the DMPSO is illustrated in Fig. 9. The DMPSO needed 

40,300 structural analyses to reach an objective function value of $75,735. 

Table 5 shows the results of optimum design from the DMPSO algorithm. Table 6 

illustrates the maximum values of demand/capacity ratio under the critical loading case for 

member groups in the optimum solutions obtained by the DMPSO algorithm. 

 
Table 3: The results of optimum design form MDPSO  

  Optimization Results 

   Proposed Algorithm 
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Reinforcements 
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Beam B2 300 400 

3-D25 

1-D22 

2-D18 

2-D18 

3-D25 

1-D22 

2-D18 

3-D18 
4-D18 

1-D22 
3-D18 

Beam B3 300 350 
3-D25 

3-D18 
2-D18 

3-D25 

3-D18 
3-D18 

3-D18 

2-D25 
3-D18 

Column C1 550 350 6-D25 

Column C2 450 400 14-D25 

Column C3 550 300 10-D18 

Column C4 450 300 4-D22 

Frame cost 45555$ 

Number of Structural 

analysis 
8630 

Max demand/capacity ratio 

for beams 
0.996 

Max demand/capacity ratio 

for columns 
0.997 

 

Table 4: Maximum strength ratio for member groups in the three-bay eight-story reinforced 

concrete frame 

Beams Columns 

Type 

classification 

Strength 

ratio 

Critical load 

combination 

Type 

classification 
Strength ratio 

Critical load 

combination 

B1 0.988 𝑈2 C1 0.997 𝑈2 

B2 0.991 𝑈2 C2 0.988 𝑈2 

B3 0.996 𝑈1 C3 0.929 𝑈2 

   C4 0.950 𝑈1 

 

This excellent performance can be explained by the feature of DMPSO that considers the 

preference of DM. As a consequence, it tries to escape from the local minimum so it would 

not be easily trapped into a local value. Because the DMPSO has almost no restrictions for 

selecting sections, it used the most useful ones; so, the constraints were achieved when it 

was almost equal to the threshold values. Especially in beams, where the rebar was not 

continuous the entire length, the algorithm only used the needed adequate rebar.  

 
Table 5: The results of optimum design form MDPSO  

  Optimization Results 

   Proposed Algorithm 

   
Sectional 

dimensions 
Reinforcements 
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Beam B1 300 450 300 500 
3-D25 

4-D18 
3-D18 

3-D25 

4-D18 
3-D18 
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Beam B2 300 400 300 500 
3-D25 

4-D18 
3-D18 

3-D25 

4-D18 
3-D18 

Beam B3 300 350 300 400 
3-D25 

4-D18 
3-D18 

3-D25 

4-D18 
3-D18 

Column C1 650 400 16-D18 

Column C2 700 750 16-D22 

Column C3 500 300 12-D22 

Column C4 500 450 16-D18 

Column C5 450 300 12-D18 

Column C6 450 300 8-D22 

Frame cost 75735$ 

Number of 

Structural 

analysis 

40300 

Max 

demand/capacity 

ratio for beams 

0.999 

Max 

demand/capacity 

ratio for columns 

0.998 

* The best result among the mentioned studies from the literature is obtained by IABC [20]. 

 
Table 6: Strength ratio for member groups in the three-bay twelve-story reinforced concrete 

frame 

 

 

5. CONCLUSIONS 
 

This article introduces an algorithm for optimization of reinforced concrete frames based on 

the multi-criterion Decision-Making and Particle Swarm Optimization algorithm. The main 

objective was to minimize the material and construction cost of reinforced concrete while 

satisfying the limitations and specifications of the ACI 318-11 [22] Code. The limitations 

and specifications are formulated as a series of constraints to the optimization problem and 

applied as penalties on the fitness function of the algorithm. Moreover, an efficient 

constraint handling technique, which demonstrated excellent performance, is proposed. It 

always led to feasible optimal designs, while also taking advantage of infeasible designs 

Beams Columns 

Type 

classification 
Strength ratio 

Critical load 

combination 

Type 

classification 

Strength 

ratio 

Critical load 

combination 

B1 0.999 𝑈2 C1 0.998 𝑈2 

B2 0.997 𝑈2 C2 0.903 𝑈2 

B3 0.996 𝑈1 C3 0.942 𝑈2 

   C4 0.980 𝑈2 

   C5 0.968 𝑈2 

   C6 0.963 𝑈2 
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during the optimization procedure. Furthermore, DMPSO not only considers the design code 

requirements but also constructional, architectural, and reinforcement detailing constraints. 

As a result, the optimum design obtained by DMPSO is ready for practical application 

without the need of any further process. The numerical results demonstrated the sound 

performance of the DMPSO algorithm, in terms of efficiency and the convergence rate, for 

finding optimum cost of RC structures. Based on the present work, it can be concluded that 

DMPSO, which accelerates and simplifies the process of the optimization process, provides 

an ideal technique to model practical design by considering the variations in cross-sectional 

dimensions of concrete frame members as well as detailing the combinations and placement 

of reinforcement bars to find  realistic design solutions which are directly constructible. 
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