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ABSTRACT 
 

The paper deals with the reliability–based design optimization (RBDO) of concrete gravity 

dams subjected to earthquake load using subset simulation. The optimization problem is 

formulated such that the optimal shape of concrete gravity dam described by a number of 

variables is found by minimizing the total cost of concrete gravity dam for the given target 

reliability. In order to achieve this purpose, a framework is presented whereby subset 

simulation is integrated with a hybrid optimization method to solve the RBDO approach of 

concrete gravity dam. Subset simulation with Markov Chain Monte Carlo (MCMC) 

sampling is utilized to estimate accurately the failure probability of dams with a minimum 

number of samples. In this study, the concrete gravity dam is treated as a two–dimensional 

structure involving the material nonlinearity effects and dam–reservoir–foundation 

interaction. An efficient metamodel in conjunction with subset simulation–MCMC is 

provided to reduce the computational cost of dynamic analysis of dam–reservoir–foundation 

system. The results demonstrate that the RBDO approach is more appropriate than the 

deterministic optimum approach for the optimal shape design of concrete gravity dams. 
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1. INTRODUCTION 
 

In the deterministic optimum design, it is usually assumed that there is no uncertainty in 

engineering system and finds the minimum cost of engineering system. The deterministic 

optimum design can lead to a unreliable design and cannot obtaine a balance between cost 

and safety [1–3]. Hence, a otpimal design procedure must reasonably account for the 
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existence of inherent randomness in physical quantities such as element dimensions, 

material properties and external loads. To achieve this purpose, the reliability–based design 

optimization (RBDO) has been proposed. 

Concrete gravity dams have been widely utilized in dam construction and distinguished 

as critical structures because of the high cost of their construction, their size and their 

interactions with the reservoir and foundation. The safety of a dam highly depends on its 

seismic responses and its capacity which are inherently uncertain. The seismic responses 

involve the material properties of dam body and its foundation, the water high of dam 

reservoir and the characteristics associated with ground motions. Hence, the reliability 

concept should be considered to take into account a number of the possible uncertainties. In 

addition, the effects of dam–reservoir–foundation interaction and the nonlinear behavior of 

dam play important roles in the design of new dams and the safety evaluation of existing 

dams subjected to earthquake loads. In dam engineering, the design of the proper shape for a 

dam has been distinguished as great challenging problem [4]. Hence, first, several 

alternative schemes with various patterns should be selected and modified in order to obtain 

a number of feasible shapes. Then, the final shape of dam is selected from among various 

patterns, which considers the economy and safety of design, structural considerations, etc.  

For many years, the optimal shape design of arch dams as an interesting area of research 

has received great deal of attentions by numerous researchers [4–10]. In recent years, few 

attempts have been made for the shape optimization of concrete gravity dams. Salajegheh 

et al. [11] proposed a hybrid of gravitational search algorithm (GSA) and particle swarm 

optimization (PSO) for the shape optimal design of concrete gravity dams including 

hydrodynamic effects. In the work of Slajegheh and Khosravi [12], the shape optimal design 

of concrete gravity dams including the dam–reservoir–foundation rock interaction was 

obtained using the hybrid of GSA and PSO. Khatibinia and Khosravi [13] introduced a 

hybrid approach based on an improved gravitational search algorithm (IGSA) and 

orthogonal crossover (OC) for the optimal shape design of concrete gravity dams. Deepika 

and Suribabu [14] used the differential evolution technique for the optimal design of gravity 

dam. Kaveh and Zakian [15] presented the shape optimization of a gravity dam imposing 

stability and stress constraints. In new recently, Khatibinia et al. [16] introduced the optimal 

shape design of concrete gravity dams considering dam–reservoir–foundation interaction 

and nonlinear effects subject to earthquake. In this study, the geometry and material 

nonlinearity effects of dam were considered in the analysis procedure of dams. 

The focus of this paper is on the RBDO of concrete gravity dams subjected to earthquake 

load using subset simulation. In order to achieve this purpose, firstly, a Finite Element (FE) 

model of a concrete gravity dams including the material nonlinearity effects and the dam–

reservoir–foundation rock interaction is constructed for obtaining dynamic responses in time 

domain and generating several accurate sampling points. Secondly, a version of the support 

vector machine (SVM) approach as an efficient metamodel is provided by utilizing these 

sampling points to replace the time consuming dynamic analysis of FE model. At last, this 

approximate model is utilized during the optimum process in order to obtain the final best 

shape of dam considering uncertainties. In the optimization process, the optimal shape of 

concrete gravity dam is found by minimizing the total cost of concrete gravity dam for the 

failure probability of dam as constraint. In this study, subset simulation with Markov Chain 

Monte Carlo (MCMC) sampling as an advance tool in the reliability approach is utilized to 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0ahUKEwiDpZWXnbrJAhWHcBoKHY8JD1sQFggpMAQ&url=http%3A%2F%2Fwww.waterpowermagazine.com%2Fmediapacks%2Fonline%2Fdam-engineering.html&usg=AFQjCNFZEjOJmSDmP-2HEoxdqNP-kTg6oQ&sig2=jGGdTBU85KvB-TmqZvYgtQ&bvm=bv.108194040,d.bGQ
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accurately estimate the failure probability of dam with a minimum number of samples. The 

RBDO problem is solved using the hybrid of IGSA and OC proposed by Khatibinia and 

Khosravi [10]. The results demonstrate that the RBDO approach in comparison with the 

deterministic optimum approach maintain a good balance between the safety and cost in the 

shape optimal design of concrete gravity dams.  

 

 

2. DEFINITION OF THE RBDO PROBLEM 
 

The reliability–based design optimization (RBDO) is considered as a common practice for 

many structural engineering systems. The main aim of the RBDO approach is to minimize 

the total cost whereas ensure a given target reliability is achieved with respect to 

uncertainties in structural parameters and operating conditions. In the RBDO problem, 

variables consist of two vectors: design vector and random vector. The components of the 

design vector X=[x1, x2,… xn] represent the design variables. The random vector Z=[z1, z2,… 

zq] is utilized for the description of uncertain variables (or intervening random parameters). 

The RBDO problems are formulated in several different classifications. Hence, the 

following formulation is a special case that expresses the purposes of this contribution: 
 

,Target

1 2

Minimize : ( , )
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where  ,TC X Z  is the total cost;  ,fP X Z is the system failure probability; Pf, Target is the 

target failure probability; xi represents the ith vector element in X. 

In this study, the constraint are handled by using the the external penalty function as one of 

the most common forms of the penalty function as follows [17–20]: 
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where ,f pf and rp are the modified function, the penalty function, and an adjusting 

coefficient, respectively. Also, Δ
~

 denotes the feasible search space. The penalty function 

based on the violation of normalized constraints is defined as: 
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2.1 Total cost 

The total cost, CT, consists of the initial structural cost (i.e. material costs) and the expected 

failure cost, which is defined by the product of failure cost and failure probability. The 
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failure cost may encompass the costs of repairing or replacing the damaged structure, 

removing the collapsed structure, and compensation for injury or death of general users. 

Thus, the total cost can be expressed as a function of the design vector X and the random 

vector Z as follows: 

 

( , ) ( ) ( , )T I f fC C P C X Z X X Z  (4) 

 

where CI and Cf  are the initial cost of structure and the failure cost, respectively. The initial 

cost of a concrete gravity dam is obtained as: 

 

( )I c cC C gVX  (5) 

 

where ,c cC  and V are the unit cost coefficient of concrete, the mass density of concrete 

and the volume of gravity dam, respectively. g is gravity acceleration. 

 

2.2 The failure probability of concrete gravity dam 

The failure probability  , , ,fP X Z as the probabilistic constraint can be described by the 

performance function [21]: 

 

 ( , ) Pr ( , ) 0fP g X Z X Z  (6) 

 

where Pr[.] is the probability of system failure and ( , )g X Z is the performance function, 

which indicates failure for a given design X and realization of Z when it is less than or equal 

to zero. In other words, the performance function (limit state function) separates the variable 

space into a safe region for which ( , ) 0g X Z  and a failure region where ( , ) 0g X Z . 

In the present study, the behavior and stability constraints are considered as the 

performance function. The behavior performance function consist on the principal stresses in 

the body of gravity dam which is defined as follows [22]: 

 

1 max

T

Tg     
(7) 

 

2 max

C

cg   
 

(8) 

 

where max

T  and max

C are the maximum tensile and compressive principal stresses of dam 

body due to dam–reservoir–foundation system subjected to earthquake load, respectively.

T  and C are the allowable tensional and compressive stresses. 

The stability performance function of a gravity dam are defined in terms of its factors of 

safety against sliding, overturning and uplift pressure, respectively. The factor of safety 

against sliding is equal to the ratio of the total frictional force, VF , which the foundation can 

develop to the force tending, HF , to cause sliding as follows [22]: 
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The factor of safety against overturning about the toe is defined as the ratio of the 

resisting moments, RM , to the overturning moments, OM , which is considered as stability 

constraint. It is expressed as [22]: 
 

4 1
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Furthermore, the safety of concrete gravity dam against uplift pressure force is 

considered as follows [22]: 
 

5 1
6

B
g

e
   (11) 

 

where B and e are the bottom width of the dam eccentricity of the resultant force on the dam 

section, respectively. 

Therefore, the failure probability represented in Eq. (6) is inversely related to the 

reliability of a concrete gravity dam, which is an integrated result of individual component 

reliabilities, assuming series. In a series system, the failure is happened when any of the 

performance functions fails. Thus, the failure probability of a dam is defined as [23]: 
 

( , ) Pr ( , ) 0f i

i

P g
 

  
 

X Z X Z  (12) 

 

 

3. RELIABILITY ANALYSIS 
 

3.1 Subset simulation 

Based on the failure event { : ( ) 0},F g Z Z the probability density function (PDF) of Z is 

defined by fz(Z). Assume 1 2 0mb b b     as a decreasing sequence of the threshold 

values of failure events { : ( ) },k kF g b Z Z ( 1,2,..., )k m shown in Fig. 1. Then the failure 

events satisfy the following relations [24–27]: 
 

1 2 mF F F F     (13) 
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Figure 1. A set of failure events in subset simulation 

 

According to the multiplication theorem and the definition of conditional probability in 

the probability theory, the following equation holds: 
 

1 1 1 1

2

( ) ( | ) ( ) ( ) ( | )
m

f m m m i i

i

P P F P F F P F P F P F F  



      (15) 

 

Eq. (15) expresses the failure probability as a product of a sequence of conditional 

probabilities 1( | ) , ( 2,3,..., )i iP F F i m  and P(F1). The idea of subet simulation is to obtain 

the failure probability Pf by estimating these conditional probability quantities. By defining

1 1 1( ), ( | ),( 2,3,..., ).i iP P F P F F i m  The failure probability in Eq. (15) can be expressed by: 

 

1

m

f i

i

P P


  (16) 

 

Generally, the value of Pf is small in practical engineering and cannot be estimated 

efficiently by a numerical simulation. By choosing the intermediate failure events Fi 

 1,2,..., 1i m   appropriately, conditional probabilities involved in Eq. (16) can be made 

sufficiently large so that they can be evaluated efficiently by simulation procedures.  

 

3.2 Subset simulation with MCMC 

MCMC algorithm has been introduced for computing conditional failure probabilities by 

using Markov chain samples with limiting stationary distribution 1( | )iq F Z (i=2,3, ..., m) . 

For this purpose, the Metropolis–Hastings Criterion is employed to draw the Markov chain 

samples. The subet simulation with MCMC proceeds as in the following [28]: 

1. Generate N1 samples i.e. 
(1)

1( 1,2,..., )k k NZ  of the probability density function (PDE) 

fZ(Z) by direct MCS for i=1. 

2. Compute the corresponding response value 
(1)

1( )( 1,2,..., ).kg k NZ The first intermediate 

threshold value b1 is adaptively chosen as the (p0N1)th (p0 is a pre–established conditional 
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probability level, such that 0 0.1p  , and p0N1 should be chosen as an integer value in the 

descending list of N1 response values. Then the first intermediate failure event is defined 

by 1 1{ : ( ) }F g b Z Z . So failure probability 1 1( )P P F can be estimated by 1 0P p . 

3. Start from these p0Ni–1 conditional samples that lie in Fi–1 for ith level ( 2,..., )i m . 

MCMC simulation is used to generate 0 1( )i iN p N  additional conditional samples 

following the conditional PDF 1( ).iq F Z| Then, a total Ni conditional samples 

( ) ( 1,2,..., )i
k ik NZ are made up for the ith level ( 2,..., )i m . 

4. Compute the corresponding response values ( )( 1,2,..., ).i
k ig k NZ  The intermediate 

threshold value bi is adaptively chosen as the (p0Ni)th value in the descending list of Ni 

response values. Then the next intermediate failure event is defined by 

{ :g( ) }.i iF b Z Z The conditional failure probability 1( | )i i iP P F F  can be estimated 

by 0 ,iP p and the estimator of the failure probability 1( )iP F  is given by
1

1 1
( ) .

i

i jj
P F P



 
  

5. Repeat the steps (3) and (4) until the mth adaptively chosen threshold value bm is less 

than zero. Then, assume 0,mb   and the target failure probability level ( ) ( )mP F P F  is 

reached. The conditional failure probability 1( | )m m mP P F F   can be estimated by 

/ ,m f mP N N  where Nf is the number of samples that lie in the target failure event 

mF F . The target failure probability ( ) ( )f mP P F P F   can be estimated by: 

 

( 1)

0

m f
f

m

N
P p

N

   (17) 

 

 

4. GEOMETRICAL MODEL OF CONCRETE GRAVITY DAMS 
 

In order to optimize the shape of a concrete gravity dam depicted in Fig. 2, the geometrical 

model of a dam can be assigned by the seven parameters as follows: 
 

1 2 3 2 4 5{ }B B B B H H HX  (18) 

 

where B  and 1H  are two parameters required to defined crest and free board of gravity 

dam, respectively. H3 depends on H4 and reservoir water level (H).  

 

 

5. FORMULATION OF DAM–RESERVOIR–FOUNDATION SYSTEM 
 

The formulation of the coupled dam–reservoir–foundation based on the finite element 

method (FEM) approach is impelimented according to Refs [13, 29, 30]. In this approach, 

displacements are selected as the variables in both fluid and structure (i.e. dam and 

foundation) domains. Fluid is assumed to be linearly elastic, inviscid and irrotational. In this 
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study, the dam–water–foundation system is simulated as a 2–D model. The nonlinear 

behavior of dam concrete is idealized as an elasto–plastic material via the associative 

Drucker–Prager model [31, 32]. This model with angle of internal friction (ϕ) and cohesion 

factor (C) has been proposed for frictional materials such as concrete and utilized for an 

approximation to the Mohr-Coulomb law. In the analysis phase of concrete gravity dam, 

first, a static analysis of concrete gravity dam–reservoir–foundation system is initially 

implemented under a gravity load and a hydrostatic pressure, and then the nonlinear 

dynamic analysis of dam–reservoir–foundation system is performed using Newmark–Beta 

integration method [33]. After that, the principal stresses at elements of the dam body are 

evaluated using nodal relative displacement of the gravity dam. 

 

 
Figure 2. Geometrical model of concrete gravity dam 

 

 

6. THE METAMODEL TECHNIQUE FOR RELIABILITY ANALYSIS 
 

In the RBDO problem of structures the computational effort becomes excessive due to the 

enormous sample size required for the reliability analysis. This drawback can increase when 

the dynamic responses of structure obtained using FEM are required in the reliability 

analysis. In order to reduce the computational effort, metamodel techniques have been 

developed to predict structural responses in reliability process [2, 3]. Hence, approximating 

the structural responses can effectively reduce the computational burden. In this study, 

instead of the FE dynamic analysis of dam–reservoir–foundation system the weighted least 

squares support vector machine (WLS–SVM) as a metamodel technique is utilized to predict 

the maximum principle stresses of concrete gravity dams in the RBDO process. The 

successfull applications of the WLS–SVM approach have been reported in Refs. [2, 3, 11–

13, 34].  

 

6.1 Theory of the WLS–SVM 

The WLS–SVM approach introduced by Suykens et al. [35] has been proposed for modeling 

the high non–linear system based on small sample. The WLS–SVM is presented as the 

optimization problem in primal weight space as follows [35]: 
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with 
n

iii y 1},{ x  a training data set, input data 
nRix  and output data Ryi  . 

dn RR :(.) is a function which maps the input space into a higher dimensional space. 

The vector 
dRω represents weight vector in primal weight space.  

The symbols Ri   and Rb  represent error variable and bias term, respectively. The 

Lagrange multiplier method is utilized for solution of the dual problem (i.e. Eq. (19)) as: 
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Based on the Karush–Khun–Tucker (KKT) conditions, after optimizing Eq. (20) and 

eliminating ω and ξ, the solution is given by the following set of linear equation: 
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where }/1,...,/1{ 1 nvvdiag  V ; Ω is n×n Hessian vector, which expression is:

),()(),(, jiHjiji K xxxx   . .),(.K is a kernel, which in this study, radial basis 

function (RBF) is selected as the kernel function of WLS–SVM as follows: 
 

)
2

(exp),(
2
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
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jiK
xx

xx

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Therefore, the resulting WLS–SVM model for the prediction of functions becomes: 
 





n

i

ii bKy
1

),()( xxx   (23) 

 

Here, α  and b is the solution to the problem (21). The parameters represent the high 

dimensional feature spaces that is non–linearly mapped from the input space x. Furthermore, 

predicting value of x is obtained by the model peresented in Eq. (23). The structure of the 

WLS–SVM metamodel is shown in Fig. 3. 
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Figure 3. The structure of the WLS–SVM metamodel 

 

6.2 Designing of the WLS–SVM for predicting the dynamic responses of dam 

In order to employ the WLS–SVM metamodel during the RBDO process, the WLS–SVM 

metamodel is trained by using a randomly generated database which consists of the 

combinations of the design variables, the random variables and the seismic responses of 

concrete gravity dams. In this case, the design variables and the random variables as inputs of 

the WLS–SVM are considered as follows: 
 

 nSVMWLSI )Z,X(...,,)Z,X(,)Z,X( 21
 (24) 

 

and the maximum tensile and compressive principle stresses of concrete gravity dams as 

outputs of the WLS–SVM are selected as: 

 

 

 n
CTCTCT

SVMWLSO ),(...,,),(,),( maxmax2maxmax1maxmax   (25) 

 

In this study, the WLS–SVM with the 10–fold cross–validation (CV) is employed to find 

the optimal values of   and   for training the WLS–SVM model. For training and testing 

of the WLS–SVM based on the RBF kernel function, the following process is implemented: 

(1) A database for training and testing the WLS–SVM model defined Eq. (24) is randomly 

generated. 

(2) For each concrete gravity dam corresponding to a input vector in database FEA is performed, 

and the maximum tensile and compressive principle stresses of dams as the seismic responses 

of dam are obtained. The seismic responses is considered as the output of the WLS–SVM. 

(3) The provided database is divided to training and testing sets on a random basis.  

(4) Two WLS–SVM models are trained and tested based on the generated sets for predicting the 

maximum tensile and compressive principle stresses of dams.  

To validate the performance of the WLS–SVM model, the mean absolute percentage error 

(MAPE), the relative root–mean–squared error (RRMSE) and the absolute fraction of 

variance (R2) arose during tesing process of the WLS–SVM are calculated as: 
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(28) 

 

where a and p are the actual value and the predicted value, respectively; and nt is the number 

of testing samples. It is noted that the smaller RRMSE and MAPE and the larger R2 are 

indicative of better performance generality.  

 

 

7. NUMERICAL RESULTS 
 

In the present study, the RBDO of Pine Flat dam located on King's River near Fresno 

California as a real–world structure is investigated in order to obtain its optimal shape 

subjected to earthquake loads using subset simulation. The properties of the dam structure 

are 400 ft height with a crest length of 1840 ft and its construction about 9491.94 kip 

concrete [36]. The lower and upper bounds of the design variables (X) defined in Section (4) 

are considered to find the optimal shape of the Pine flat dam. The bounds of the variables are 

shown in Table 1 [36]: 

 
Table 1: The lower and upper bounds of design variables 

Design variable Lower bound (ft) Upper bound (ft) 
B  16.67 39.34 

B1 30.232 34.166 

B3 28.413 34.727 

B4 210.6 257.4 

H2 12.6 15.4 

H4 302.32 341.66 

H5 270 330 

 

The optimal shape of this dam is found subjected to the S69E component of Taft Lincoln 

School Tunnel during Kern country, California, earthquake (July 21, 1952) [36]. This 

component of the recorded ground motion is shown in Fig. 4. 

To demonstrate the effect of the RBDO approach in the optimal shape of the selected 

dam, two cases of optimization by considering the nonlinear effects of dam–reservoir–

flexible foundation rock interaction are considered and compared as follows: 

Case 1: The optimal shape of the dam based on the RBDO approach. 

Case 2: The optimal shape of the dam based on the deterministic optimum approach. 
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Figure 4. Ground motion at Taft Lincoln Tunnel; Kern country, California, 1952 

 

7.1 Validation of coupled dam–reservoir–foundation rock system 

In order to obtain the dynamic responses of the dam in time domain and the RBDO process 

of the dam, a FE model of the dam including the material nonlinearity effects and the dam–

reservoir-foundation rock interaction is required. For achieving this purpose, an idealized 

model of Pine Flat gravity dam–reservoir–foundation rock system for full reservoir is 

constructed using FEM and depicted on Fig. 5. 

 

 
Figure 5. The FE model of Pine Flat dam with reservoir and foundation rock 

 

The properties of concrete of dam body, water and foundation are given in Table 2 [36]. 

In order to validate the FE model of the dam–reservoir–foundation rock system with the 

employed assumptions in this study, the first natural frequency of the FE model of Pine Flat 

dam for four cases are obtained. The results of the FE model are compared with those 

reported by Chopra and Chakrabarti [36] and given in Table 3. 
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Table 2: The material properties of the dam, water and foundation rock 

Value Property Material 
  Concrete 

3.25106 Modulus of elasticity (psi) 
 0.2 Poisson's ratio 

155 Mass density (lb/ft3) 
  Water 

62.4 Mass density (lb/ft3) 
 4720 Wave velocity (ft/sec) 

0.817 Wave reflection coefficient 
  Foundation 

107 Moulus of elasticity (psi) 
 

0.33 Poisson's ratio 
 

As observed from the results of Table 3, a good conformity has been achieved between 

the results of the present study with those reported in the literature.  
 

Table 3: A comparison of the first natural frequencies from the literature with FEM 

Natural frequency (Hz) 

Water 
Foundation rock 

condition 
Case 

Error (%) 
The present 

study 

Chopra and 

Chakrabarti [36] 

0.082 3.152 3.1546 Empty Rigid 1 

0.242 2.525 2.5189 Full Rigid 2 

0.085 2.93 2.9325 Empty Flexible 3 

2.18 2.383 2.3310 Full Flexible 4 
 

It can also be observed from Table 3 that when the reservoir is empty and the foundation 

is rigid (Case 1) the first frequency of the dam is maximal. Furthermore, a minimum value 

for the first frequency is obtained when the dam–water–foundation rock interaction (Case 4) 

is considered. 

 

7.2 Intervening random parameters 

In this study, the properties of concrete, the water level of the reservoir and the friction 

cofficient between the dam and its foundation are considered as the intervening random 

parameters for the RBDO of the selected dam. The probability density function (PDE), mean 

value and standard deviation for the water level of the reservoir (H), the allowable tensional 

stress ( ),T the allowable compressive stress ( )C and the friction cofficient ( ) are listed in 

Table 4. The PDE, the maximum and minimum values for the angle of internal friction (ϕ ), 

the cohesion factor (C) and the Modulus of elasticity (E) for concrete of the dam are also 

given in Table 5. It is noted that theses uncertain properties of the parameters are selected 

from the studies reported in the literature [38, 39]. 
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Table 4: The PDE, mean and standard deviation of the random parameters 

 
Table 5: The PDE, the minimum and maximum values mean of the random parameters 

 

7.3 Generation of a database 

In order to train and test the WLS-SVM metamodel, a discrete database should be generated 

randomly. This database is considered as input of the WLS–SVM. The output of the WLS–

SVM consists of the maximum tensile and compressive principal stresses of dam body due 

to dam–reservoir–foundation system subjected to earthquake load. To achieve this purpose, 

first, 200 combinations of the design variables (X) shown in Table 1 and the intervening 

random variables (Z) reported in Tables 3 and 4 are generated using Latin Hypercube 

Design (LHD) sampling proposed for computer experiments [40]. Then, the nonlinear 

dynamic analysis of dam–reservoir–foundation system using FEA is performed for each of 

the combinations, and the maximum tensile and compressive principal stresses of dam body 

are obtained. 

 

7.4 Training and testing the metamodel 

To predict the maximum tensile and compressive principal stresses of dam body during the 

RBDO process of the selected dam, two metamodels are trained based on the generated 

database. To achieve this purpose, the samples are selected on a random basis and from 

which 70% and 30% samples are employed to train and test the WLS–SVM metamodel. The 

results of testing the performance generality of the WLS–SVM models based on the 

statistical values of MAPE, RRMSE and R2 are reported in Table 6: 

 
Table 6: The statistical values for the WLS–SVM model in testing mode. 

The WLS–SVM metamodel 
Statistical values 

MAPE RRMSE R2 

For the maximum tensile principal stress 4.71 0.0560 0.9984 

For the maximum compressive principal stress 10.07 0.3273 0.9397 

 

All of the statistical values in Table 6 demonstrate that the WLS–SVM metamodels 

achieve a good performance generality in predicting the time history responses of the gravity 

Variable PDE Mean value Standard deviation 

H (ft) Normal 381 1.64 
2( / )T Klb ft  Normal 31.33 1.25 

2( / )C Klb ft  Normal 261.06 20.88 
  Normal 0.75 0.03 

Variable PDE Minimum value Maximum value 
2( / )C Klb ft  Uniform 14.62 18.8 

  Uniform 32 45 

2( / )E Klb ft  Uniform 438594 480365 
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dam samples. Thus, the WLS–SVM metamodels instead of the original time consuming 

dynamic analysis of FE model not only are efficiently replaced during the RBDO proces of 

the gravity dam but also significantly can reduce the computation cost of the RBDO process. 

Figs. 6 and 7 also show the agreement between the actual responses and those predicted with 

the WLS–SVM metamodel. 

 

 
Figure 6. Absolute percentage errors associated with the maximum tensile principal stress 

 

 
Figure 7. Absolute percentage errors associated with the maximum compressive principal stress 

 

The displayed results in these figures demonstrate that the WWLS–SVM models achieve 

a good performance generality in predicting the dynamic responses of the dam samples. 

 

7.5 The results of the RBDO approach 

In this study, the IGSA–OC algorithm proposed by Khatibinia and Khosravi [13] is utilized 

for the RBDO process. The parameters of the IGSA–OC algorithm are also selected based 
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on the values proposed in the work of Khatibinia and Khosravi [13]. The parameters of the 

subset simulations are chosen as 
1 1000N   and 

0 0.1.p   The unit cost coefficient of 

concrete (Cc) is assumed to be 60$/Klb and the failure cost (Cf) is estimated to be 5 106$.  

In order to consider the stochastic nature of the optimization process, ten independent 

optimization runs are performed for the selected dam and the four best solutions are reported 

in Table 7.  

 
Table 7: Optimal solutions of concrete gravity dam based on the RBDO approach 

Variables Optimization design 

Case 1 Case 2 Case 3 Case 4 

B (ft) 36.44 39.34 36.65 34.97 

B1 (ft) 33.70 34.16 33.73 32.16 

B2 (ft) 32.22 34.37 33.76 33.37 

B3 (ft) 256.20 257.40 248.88 255.83 

H2 (ft) 14.58 14.71 15.08 13.31 

H4 (ft) 327.28 332.15 330.02 326.13 

H5 (ft) 323.55 312.43 326.59 322.41 

Concrete weight (Klb) 11261 11359 11246 11158 

Mean of the best solutions 11256 

 

To demonstrate the promising results of the RBDO procedure, the optimal shape of 

the dam is implemented based on the deterministic optimum approach involving the 

material nonlinearity effects and dam–reservoir–foundation interaction. The results of the 
deterministic optimum approach is given in Table 9. It is noted that the results has been 

reported in the work of Khatibinia et al. [16]. 

 
Table 8: Optimal solutions of concrete gravity dam for the deterministic optimum approach 

Variables Optimization design 

Case 1 Case 2 Case 3 Case 4 

B (ft) 34.67 33.49 38.76 33.69 

B1 (ft) 34.16 34.16 34.17 34.17 

B2 (ft) 33.60 34.73 32.96 32.6418 

B3 (ft) 257.40 250.86 248.31 257.40 

H2 (ft) 15.40 15.40 15.40 15.18 

H4 (ft) 336.33 341.66 338.00 341.66 

H5 (ft) 312.90 320.45 312.64 311.79 

Concrete weight (Klb) 11049 11058 11047 10928 

Mean of the best solutions 11020.5 

 

For the best result of the RBDO approach and the deterministic optimum (DO) approach 

given in Tables 7 and 8, the failure probability (Pf), the initial cost (CI), the failure cost (CR) 

and the total cost (CT) of the selected dam are listed in Table 9. 
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Table 9: Optimal solutions of concrete gravity dam for the nonlinear effects 

Case Pf CI ($) CR ($) CT ($) 

RBDO approach 0.00017 669480 850 670330 

DO approach 0.00650 655680 32500 688180 

 

By comparing the optimum solution based on the RBDO approach with that of the DO 

approach, not only the total cost of the optimum solution based on the RBDO approach is 

less than that of the DO approach, but also the safety of the dam is considerably increased. 

In other words, the RBDO process of the dam can efficiently obtains a balance between the 

total cost and safety of the dam. 

 

 

9. CONCLUSIONS 
 

This contribution has introduced the RBO approach of concrete gravity dams subjected to 

earthquake load using subset simulation. The RBDO problem is formulated such that the 

optimal shape of concrete gravity dam described by a number of variables is obtained by 

minimizing the total cost of concrete gravity dam for the failure probability of dam as 

constraint. In order to achieve this purpose, firstly, a model of dam–reservoir–foundation 

rock interaction with the material nonlinearity effects is constructed based on FEM. 

Secondly, the WWLS–SVM approach as an efficient metamodel is trained and tested to 

replace the time consuming dynamic analysis of the FE model in the RBDO process. Subset 

simulation with MCMC sampling is utilized to estimate accurately the failure probability of 

dams with a minimum number of samples. 

The optimal results show that the RBDO approach is a more rational method and 

maintain a good balance between the safety and cost of dam. Thus, the probabilistic 

approach is more appropriate than a deterministic approach for the design and optimization 

of concrete gravity dams that rely on dam–reservoir–foundation rock interaction. It is noted 

that further research efforts will focus on the characteristics associated with ground motions 

in the RBDO approach of concrete gravity dams. 
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