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ABSTRACT 

 
Stochastic nature of earthquake has raised a challenge for engineers to choose which record 
for their analyses. Clustering is offered as a solution for such a data mining problem to 
automatically distinguish between ground motion records based on similarities in the 
corresponding seismic attributes. The present work formulates an optimization problem to 
seek for the best clustering measures. In order to solve this problem, the well-known K-
means algorithm and colliding bodies optimization are employed. The latter acts like a 
parameter-less meta-heuristic while the former provides strong intensification. 
Consequently, a hybrid algorithm is proposed by combining features of both the algorithms 
to enhance the search and avoid premature convergence. Numerical simulations show 
competative performance of the proposed method in the treated example of optimal ground 
motion clustering; regarding global optimization and quality of final solutions. 
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1. INTRODUCTION 
 

Dealing with large or non-organaized data is a challenging task for various fields including 
earthquake engineeirng. The related methods are formally called Data Mining [1]. It 
includes pattern recongnition, classification and clustering [2]. Clustering is an unspervised 
method of categorizing a data bank to several clusters so that each entity has the most 
similarity with its own cluster members and the least with the others [1-3]. Some of the steps 
usually considered for a typical clustering are: feature extraction or selection, definition of a 
pattern proximity measure, grouping into clusters and assessment of output [4]. Definition of 
features may differ case by case while some more common measures have already been 
presented in literature. A good clustering aims to find a group of clusters on a given data 
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which lead to the best measure; therefore it can be considered an optimization task. 
Each attribute or feature in the given data matrix may differ from the other ones 

regarding the type and method of assessment. Such attributes address geotechnical and 
seismic data in earthquake engineering and the related applications [5, 6]. Sampling methods 
are of interest to deal with this class of optimization problems. In this regard, metaheuristics 
can be mentioned since they mostly search the design space by extensively sampling it to 
find the global optima. They include single-agent methods such as simulated annealing [7, 
8] and multi-agent methods including genetic and evolutionary algorithms[9], nature 
inspired and swarm-based algorithms [10-13], human and culture inspired algorithms [13] 
and physics-based algorithms [12, 14].  

In the present work, a hybrid method is developed based on combination of two 
algorithms: K-means as the widely-used deterministic algorithm for clustering and Colliding 
Bodies Optimization, CBO as a recently developed meta-heuristic [14-17]. This way, both 
exploraive features and local intensification of these algorithms are combined in the 
proposed method; called ECBO_KM. The method is further utilized for optimal clustering 
of ground motion and applied to a database of real-world earthquakes. Quality of results is 
compared applying three aforementioned methods with variation in the number of clusters. 
Finally, their performance is compared via numerical simulation to declare effect of the 
proposed hybridization in the treated clustering problem. 

 
 

2. OPTIMAL CLUSTERING FORMULATION 
 

Let the database of concern be presented as a matrix with different attributes in its columns 
where each row of the matrix corresponts to an individual entity. For a data matrix with N 
rows and M columns, it is possible to distribute such entities into K clusters provided that K 
is smaller than N. Hence, different ways of dividing the data to a given number of clusters  
exist that construct the search space. 

Every such clustering differ from the others specially in view of a measuring function. 
The optimization problem can thus be formulated to seek a clustering having the best 
measure. Silhuette value as a common cost measure is widely used to evaluate quality of a 
clustering on a given database [18]. It explains how similiar is an entity to its own cluster 
compared to the other clusters. As defined by the following relation it varies between -1 for 
the worst case to 1 for the best clustering. 

 
(e) (e)

( )
max{ (e), (e)}

b a
s e

a b


  (1)

 
in which ( )a e stands for the mean distance of entity, e, to all entities of its own cluster 

whereas ( )b e denotes mean distance of e  to the members in the other culsters. A silhuette 

plot is thus obtained by plotting ( )is e of all ie entities in the ith cluster and then the next one 

provided that they are sorted in decending order of their silhuette value[18].  
Therefore, silhuette value of each entity shows its similarity to its own cluster together 

with its dissimilarity to the others. In this regard a fitness function, F, is defined based on 
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sum of cluster-mean silhuette values over all clusters of the database. Problem formulation 
in the present research is to maximize the following fitness function: 

 
2
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q Q
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K K
     (2)
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1..., NeX x x
 

may be 

associated an integer number between 1 and K to identify its cluster number while Ne is the 
number of rows in the earthquake clustering data matrix.  
Ni is the number of entities in the ith clusters when there is K clusters. The first term in the 
parentheses consitiues a penalty for undesired solutions with q clusters rather than K ones. It 
is indeed designated to force the search to generate solutions including a fixed number of K 
clusters. rp stands for the prescribed penalty coefficient; say in the order of 10.  

 
 

3. UTILIZED ALGORITHMS FOR CLUSTERING 
 

3.1 K-means algorithm 

K-means is a popular method of clustering which is also referred to as Lloyd’s algorithm 
[20]. It aims to quantize a signal set or partition a set of n observations, , 1,...,jX j n , into 

K clusters, 1{ ,..., }KC C , so that the sum over distances of each cluster’s members with respect 

to their mean be minimized for the entire data. In another word, the algorithm solves the 
following problem. 
 

1
1

min ({ ,..., })
K

K i
i

f C C WCSS


   (3)

 
inwhich Within-Cluster Sum of Squares, WCSS, for every ith

 cluster is calculated as: 
 

2

i

i i
X C

WCSS X 


   (4)

 
Starting from a set of prescribed centers, K-means works in an iterative manner to 

improve their positions and the K cluster sets, to achive the problem objective. The standard 
K-means algorithm starts by a given set of means (1)

1{ ,..., }K   and then iteratively switches 

between the following two steps: 
Assignment Step: every obesrvation jX is assigned to the nearest mean based on the least 

Euclidean space; 
2

,j iX j id X   . 

Repair Step: Update position of every cluster’s mean based on its members positions 
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( ),i j j i
j

mean X X C    (5)

 
The above steps are repeated until either of the following termination condition is 

satisfied: 
1. Iterations of the algorithm reach a prescribed number.  
2. Variation in position of every cluster mean during the last two iterations is negligible.  
3. No further membership changes in the clusters occur 

It is worth mentioning that although K-means is a straight-forward deterministic 
algorithm, it suffers from dependency to initial guess of means and sensitive efficiency to 
the size of data matrix [23]. 
 
3.2 Colliding bodies optimization 

Colliding Bodies Optimization, CBO, is a recent meta-heuristic algorithm represented by 
Kaveh and Mahdavi [14, 15]. In this method, one object collides with the other object and 
they move towards a minimum energy level. The CBO does not rely on any internal 
parameter and remarkably is simple. Every ith colliding body, CBk, has a specified mass that 
is calculated as: 
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m
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
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(6)

 
inwhich n  stands for the total number of CB’s and ()F is the fitness function to be 

maximized. It may be selected as inverse of a cost function. 
Half of the population members are denoted as Moving CB’s which cane move toward 

Stationary ones (the better/upper CB’s after sorting the population in decendeing order of 
masses). Before collision, stationary CB’s have zero velocities. 
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2i

n
V i   (7)

 
In this stage, velocity of every moving CB is determined by: 
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After collision, new maximum velocities of colliding bodies are updated due to laws of 

kinematic energy and momentum conservation by: 
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inwhich   stands for the coefficient of resistution defined as the reatio of relative 

velocity between CB’s after collision to such a relative velocity, before collision; e.g.: 
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Then position of CB’s are updated as: 
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Figure 1. Moving and stationary groups of CB’s 

 
Kaveh and Ilchi Ghazaan offered an Enhanced Colliding Bodies Optimization, ECBO 

using an auxiliary memory called Colliding Memory, CM[17, 18]. In ECBO, a number of of 
best CB’s during search is saved and replaced by the worst CB’s in the current population. 
Mutation of each design variable by a prescribed probability is also included in ECBO to 
improve for a better explorative search. For every component of any ith CB vector, If a 
random number falls below the prescribed probability, Pm, the corresponding j-th design 
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variable is mutated as: 
 

( )LB UB LB
ij j j jX X rand X X     (14)

 
where LBX  and UBX  are lower and upper bounds on the design vector. In this study, a 

random number generator such as rand  produce continuous values in range [0,1]. 
 

3.3 The proposed hybrid colliding bodies optimization and k-means 

The present work utilizes a hybrid algorithm to combine global and local search features in 
the aforementioned algorithms. The method is called ECBO_KM and is introduced via the 
following steps:  
 
1) Initialization 

Generate a randomly distributed population of CB’s by the following relation 
 

0 ( ), 1,...,LB UB LB
iX X rand X X i n      (15)

 
Fitness of any ith CB is then evaluated using Eq. (2) and its mass is calculated by Eq. (6). 

After sorting population of CB’s in decsending order of their masses, an auxiliary Colliding 
Memory, CM is initiated that includes the first CMS solutions in such a sorted sequence. 
 
2) Main phase 

Repeat the following steps for 1, 2,...., MaxIteriter N , except for the iterations

MaxIteriter N  where the enrichment phase is called instead for prescribed

 1 2, ,..., L    . 

2-1) identify moving and stationary CB’s in the main population and update their 
velocities using Eqs. (7)~(10). In this process use the following coefficient of resistution in 
every iteration iter: 

 

1
MaxIter

iter

N
    (16)

 
2-2) Update position of CB’s using Eqs. (12) ~ (14). 
2-3) Evaluate their masses by Eq. (5). 
2-4) Generate and sort a temporaily population by adding CM to the current population 

of CB’s. Leave out the CMS number of the worst CB’s; then update the population and take 
its best CMS number of CB’s as the new CM. 
 
3) Enrichment phase 

Regarding the best-so-far CB which has been already found in the previous phase 
centroids of such clusters are calcluated using Eq. (5) and employed as the start of K-means. 
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This algorithm acts as a local search to further improve the design vector for a number of 
inner iterations. Such an enriched clustering solution is then replaced by the worst CB of the 
population of the main phase. 
 
4) Convergence check 

As soon as the population of colliding bodies is updated via the enrichment phase; 
control of the algorithm returns back to the main phase. The whole process is repeated until 
convergence; i.e. reaching a prescribed number of iterations MaxIterN .  

Note that since each component of the design vector is a cluster ID, it should be rounded 
to an integer number between e 1LBX   and UBX K in Eqs (12)~(15). Fig. 2 

denomstrates flowchart of the proposed hybrid algorithm. 
 

 
Figure 2. Flowchart of the proposed ECBO-KM 

 
 

4. NUMERICAL SIMULATION 
 

For strong ground motion clustering a data matrix should be first provided. It includes Ne 
rows each one corresponding an earthquake in the available database. Henceforth, every 
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column of such a matrix represents an attribute of the entities (earthquakes). 
Consequently, 50 earthquakes are extracted from the PEER catalogue [24] with the 

magnitude of at least 5 Richter, recorded at less than 20 kilometers from the epicenter. Other 
attributes include regional features such as soil type, faulting mechanizm, duration of quake, 
peak ground motion acceleration, displacement and velocity. In addition, Arias intensity and 
Housner Intensity are considered as attributes relating to the earthquake input energy. The 
significant method is applied here for measuring effective duration of earthquakes [25]. The 
provided datamatrix with such 10 attributes, is further used for clustering of its earthquakes 
by the three aforementioned algorithms.  

Each algorithm is run for 8 different cases of cluster numbers from 4K   to 11K  . 
Table 1 gives the applied control parameters. It reports different population size values, n, 
for different cases of K, when CMS is taken about 30% of n in each case.  
 

Table 1: Control parameters applied for the optimal clustering problem 

n  CMS  mP  
MaxIterN   l  

16~24 0.3n 0.2~0.3 1500 {0.67} 

 
Table 2 compares the corresponding results of the silhuette sum Q and the best fitness 

obtained by K-means, ECBO and ECBO-KM methods. As can be realized from Table 2 and 
Fig. 4, quality of final solution by K-means mostly falls below the ECBO or ECBO-KM. 
The latter methods have comparable results, however, in most cases ECBO-KM has been 
the best. The matter is observed specially for larger values of K.  

Sample behavior of ECBO-KM is compared with ECBO for two cases of 8K   and
9K   in the Fig. 5 and Fig. 6, respectively. It is realized that the proposed ECBO-KM has 

got capability to escape from premature convergence by applying the enrichment phase at 

iteration 1000; i.e. for 
1

2

3
  . Note that in the present study, memory enrichment has been 

employed only once in the ECBO-KM for the sake of more efficiency. By similar reasoning, 
more quality improvements might be possible if the enrichement is repeated more, however, 
with the charge of higher total computational effort. 

 
Table 2: Best fitness achieved by different methods in the ground motion clustering 

K 
K-means 

Q 
K-means 

F 
ECBO 

Q 
ECBO 

F 
ECBO-KM 

Q 
ECBO-KM 

F 
4  29.6849 0.5937 35.1666 0.7033 36.5704 0.7314 
5  30.2925 0.6059 33.8688 0.6774 31.7454 0.6349 
6 32.8706 0.6574 33.8688 0.6774 32.5539 0.6511 
7 30.4075 0.6082 30.0581 0.6012 32.1155 0.6423 
8  27.2517 0.5450 28.3075 0.5661 32.1185 0.6424 
9  29.5414 0.5908 32.8150 0.6563 34.3268 0.6865 

10 29.3684 0.5874 30.1271 0.6025 34.3456 0.6869 
11 30.7413 0.6148 28.8422 0.5768 34.3485 0.6870 
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Figure 3. Comparison of the best mean silhouette obtained for different K values 

 
In order to compare quality of clustering between the treated algorithms, silhuette plots 

are provided in Fig. 6 for their best results in the case of 9K  . A good clustering contains 
proper silhuette values; i.e. values closer to +1 and a bad clustering contains negative values 
near -1. Hence, it is evident from Fig. 6 that the best clustering is resulted by ECBO-KM 
with positive and near 1 silhuette values. ECBO has some negative s values between -0.05 
and 0.00 for some of the earthuqakes, but the worst result belongs to the K-means which 
includes some silhuette of -0.20 and even lower.  

Differences in clustering may also be observed from amother point of view; that is how 
uniform is the number of entities in the resulted clusters. In this regard, it can be realized 
from Fig. 6 that ECBO-KM has been superior to ECBO and K-means. Note that silhuette 
values for all of the earthquakes in a single cluster are binded close to each other and 
demonstrated in a sorted manner in the silhuette plot. So the height of every such cluster in 
this plot is more when it has more members. 

 

 
Figure 4. Convergence history of ECBO and ECBO-KM in partitioning the earthquakes into 8 

clusters 
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Figure 5. Convergence history of ECBO and ECBO-KM in partitioning the earthquakes into 9 

clusters 
 

 
Figure 6. Silhouette plots for K-means, ECBO and ECBO-KM in partitioning the earthquakes 

into 9 clusters 
 
 

5. CONCLUSION 
 

Due to probabilistic nature of strong ground motions, it will be useful to study them by 
taking similar observations in different categories. As an unsupervised solution, clustering of 
earthquakes is concerned in this paper. It is further formulated as an optimization problem 
using the silhuette sum in the fitness function combined with a utilized penalty to avoid null 
clusters.  

The problem is then treated by three algorithm: K-means as a common deterministic 
clustering algorithm besides to nondeterministic ECBO and ECBO-KM. It is observed that 
K-means can lead to considerably negative silhuette for some of the earthquakes. It acts as a 
rapid local search method which depends on its starting point. In the other hand, stochastic 
search in ECBO resulted in better positive silhuette values. However, in some cases of K 
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(number of clusters), K-means was better than ECBO.  
Henceforth, a hybrid ECBO-KM is proposed in this study to combine suitable features of 

both K-means and ECBO for the clustering problem; i.e. local search capability of K-means 
with stochastic search of ECBO. In the ECBO-KM, the best solution via a partial main 
phase is employed as an enhanced starting point for K-means to perform a search 
refinement. The resulting enriched solution is then substituted in the population of coliding 
bodies to improve the remainder of such a meta-heuristic search.   

As a result, it is observed that ECBO-KM has the capability of escaping from premature 
convergence toward higher quality solutions; i.e. higher sum of silhuette in its final 
clustering. In addition, ECBO-KM has resulted in more uniform clusters than K-means and 
ECBO regarding the number of earthquakes in each group. The proposed algorithm can thus 
be recommended as an enhanced earthquake clustering method which takes benefit of both 
deterministic refinement and stochastic exploration. 
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