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ABSTRACT 
 

Tuned mass dampers (TMDs) are as a efficient control tool in order to reduce undesired 

vibrations of tall buildings and large–span bridges against lateral loads such as wind and 

earthquake. Although many researchers has been widely investigated TMD systems due to 

its simplicity and application, the optimization of parameters and placement of TMD are 

challenging tasks. Furthermore, ignoring the effects of soil–structure interaction (SSI) may 

lead to unrealistic desig of structure and its dampers. Hence, the effects of SSI should be 

considered in the design of TMD. Therefore, the main aim of this study is to optimize 

parameters of TMD subjected to earthquake and considering the effects of SSI. In this 

regard, the parameters of TMD including mass, stiffness and damping optimization are 

considered as the variables of optimization. The maximum absolute displacement and 

acceleration of structure are also simultaneously selected as objective functions. The multi–

objective particle swarm optimization (MOPSO) algorithm is adopted to find the optimal 

parameters of TMD. In this study, the Lagrangian method is utilized for obtaining the 

equations of motion for SSI system, and the time domain analysis is implemented based on 

Newmark method. In order to investigate the effects of SSI in the optimal design of TMD, a 

40 storey shear building with a TMD subjected to the El–Centro earthquake is considered. 

The numerical results show that the SSI effects have the significant influence on the 

optimum parameters of TMD. 
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1. INTRODUCTION 
 

Due to flexibility and low damper ratio, tall buildings are highly susceptible to wind and 
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earthquake loads. By an appropriate design and under normal conditions, the response of the 

structure remains safe. However, when structure is exposed to earthquakes and strong winds, 

there is no guarantee that the structure has responses in safe area. For achieving this purpose, 

effective controlling devices are required in structures. Tuned mass dapmer (TMD) is one of 

the most reliable and conventional controlling device. A TMD system consists of a mass–

spring–dashpot system attached to a primary structure [1]. The system dissipates the energy 

of vibration by the combined action of the inertial force caused by the movement of the 

mass, and the damping effect induced by this device. 

In seismic design of strucrures, it is assumed that structures are fixed to their base, which 

may considered as a realistic hypothesis only when these are founded on relatively solid 

rock or very stiff soil. The seismic responses of a structure constructed on deformable soil 

may differ significantly compared to the fixed base a ssumption. In fact, the seismic 

excitation experienced by a structure is a function of local site effect and dynamic soil–

structure interaction (SSI) influences. Thus, the SSI effects have important role in the 

seismic assessment and desing of structures constructed on relatively soft soil [2–4]. 

Several studies have highlighted the effects of elastic dynamic SSI on the structural 

response [5–8]. Xu and Kwak [9] investigated the wind–induced motion of tall/slender 

structures equipped with TMD considering SSI. A transfer matrix formulation was used to 

analyse the soil–structure–mass damper interaction in the frequency domain. The results of 

this study show that soil compliancy affect structural responses and the effectiveness of 

TMDs. Wu et al. [10] presented how SSI affects the seismic performance of TMDs installed 

on flexibly based structures. In this study, a generic frequency–independent model was used 

to represent a general soil–structure system, whose parameters cover a wide spectrum of soil 

and structural characteristics. Liu et al. [11] developed a mathematical model for predicting 

wind–induced oscillations of a high–rise building with a TMD considering the SSI effects. 

The results of this study indicated that this model can simulate the effects of soil well and it 

is much more accurate than the model with a fixed base.  

Three main and effective parameters consisting of mass, damping and stiffness are 

considered in the design of TMDs. For the first time, the optimum design of parameters 

were considered by Den Hartog [12], where an undamped single degree of freedom (SDOF) 

system was subjected to the harmonic loading. Later, the main system with damping 

investigated by several researches. Using numerical searching technique, the optimum 

parameters of TMD system attached to a viscously damped single degree–of–freedom main 

system were derived for various combinations of excitation and response parameters [13]. 

Wang et al. [14] presented a two–stage optimum design procedure for passive tuned mass 

dampers (PTMDs) in order to reduce structural dynamic responses with the limitation of 

PTMD stroke. Marano et al. [15] introduced the optimum mass ratio of TMD which was 

considered as a preselected parameter in previous studies. Arfiadi and Hadi [16] utilized 

genetic algorithms in order to optimize the location and properties of TMD. In the study of 

Bekdas and Nigdeli [17], harmony search (HS) algorithm was employed as an optimization 

technique to find the optimum parameters of TMD subjected to harmonic loading. The 

results of this study show that the structural responses have a significant reduction, however, 

these results discussed by Miguel et al. [18] and Bekdas and Nigdeli [19]. Nigdeli and 

Bekdas [20] utilized HS in order to find the optimum parameters of TMD for preventing 

brittle fracture by reducing shear force. Farshidianfar and Soheili [21, 22] investigated the 
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optimal parameters of TMDs involving SSI effects. Althought, Rahai et al. [23] have 

recenlty demonstrated that the formulation of the SSI model proposed by Farshidianfar and 

Soheili [21, 22] is not accurate enough. Xiang and Nishitain [24] introduced the optimal 

design of a non–traditional TMD that is directly connected to the ground by a dashpot and 

adopted to mitigate the resonant behavior of a structure. Salvi and Rizzi [25] proposed the 

optimum tuning of the free parameters of a passive TMD applied to sample frame structures 

subjected to selected seismic excitations. In the work of Mohebbi et al. [26], the optimal 

design and assessment of multiple TMDs capability in mitigating the damage of nonlinear 

steel structures subjected to earthquake excitation were investigated. Recently, using 

charged system search method, Kaveh et al. [27] have investigated the optimum parameters 

of TMD under seismic excitations. Kaveh et al. [28] have also presented the efficacy of an 

optimized fuzzy controller for reducing the responses of a building structure with semi–

active TMD under earthquake excitations. 

This study persents the optimal parameters of TMD subjected to earthquake considering 

the effects of SSI. In order to acheive this purpose, the parameters of TMD including mass, 

stiffness and damping optimization are considered as variables of optimization. Furthermore, 

the maximum absolute displacement and acceleration of structure are simultaneously 

adopted as objective functions in the framework of the multi–objective optimization 

problem. The multi–objective particle swarm optimization (MOPSO) algorithm is selected 

to find the optimal parameters of TMD. In this study, the Lagrangian method [29] is utilized 

for obtaining the equations of motion for SSI system. To solve this equations of motion, the 

time domain analysis based on the Newmark method is employed. In order to show the 

effects of SSI in the optimal design of the TMD parameters, the optimal parameters of TMD 

for a 40 storey shear building subjected to the El–Centro earthquake are investigated with 

and without the SSI effects. The optimum results demonstrate that the SSI effects have the 

significant influence on the optimum parameters of TMD and should be considered in the 

optimal design of TMD system. 

 

 

2. MULTI–OBJECTIVE OPTIMIZATION PROBLEM OF TMD 
 

The main aim of this study is to optimize the parameters of a TMD system subjected to 

earthquake excitation considering the SSI effects. In order to achieve this purpose, the 

optimal parameters of TMD in terms of the damping mass, coefficient and spring stiffness are 

determined through simultaneously minimizing the maximum absolute acceleration and 

displacement of structure. Thus, the optimal design of a TMD system in a n degree–of–

freedom structure can be formulated as: 

 

maxMinimize : max( ( ) ) and

Find : , ,

 ; =1,2max( ( ) ) ,…,   ,    =1,2,…,

TMD TMD TMD

i ix t a tt

M K C

t i N
 (1) 

 

where MTMD, KTMD  and CTMD are stiffness, mass and damper of TMD, respectively.  xi t and 

ai(t)  are the displacement and acceleration of ith storey at the tth time, respectively. 

Furthermore, N is the number of structure storeris. 
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3. MODELLING OF SOIL – STRUCTURE INTERACTION SYSTEM WITH 

TMD 
 

In this section, a theoretical model is developed for calculating the earthquake–induced 

vibration of a storey shear building with a TMD and considering the SSI effects. The 

structural responses of structure are calculated in time domain. In order to achieve this 

purpose, the systems of structure and its subsoil are considered respectively as shear 

building system and spring. In Fig. 1, a N–shear structure model with TMD and its subsoil 

model is displayed. Mi, Ci, Ki, and Xi represent, respectively the mass, damping, stiffness 

and the displacement for the ith storey. MTMD, CTMD, KTMD are the corresponding parameters 

of the TMD. M0 and I0 are defined, respectively as mass and mass moment of inertia of the 

foundation. Cs and Cr represent dampings of the swaying and the rocking dashpots, and Ks 

and Kr denote stiffness of the corresponding springs of soil. 

 

 
Figure 1. Geometrical model of the SSI system 

 

In this study, the Lagrangian method [29] is utilized in order to develop the equations of 

motion for the SSI system. In the Lagrange method, first, the kinetic and potential energy of 

the SSI system are obtained. Equtions (2) and (3) representes the kinetic and potential 
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energy of the SSI system in the generalized coordinates, respectively: 

 

2 2 2 2 2 2

0 0 1 1 1 1 2 2 2 2

2 2 2 2 2

-1 -1 -1 -1 1

1 1 1 1 1 1
( ) ( )

2 2 2 2 2 2
1 1 1 1 1

( ) ( ) ( )
2 2 2 2 2N N N N TMD NN N N N N

T M u I M u Z X I M u Z X I

M u Z X I M u Z X I M u Z X

    

    


           

         

 
(2) 

2 2 2 2 2

1 1 2 2 1 1 1 2

2 2

1 1

1 1 1 1 1
( ) ( )

2 2 2 2 2
1 1

( ) ( )
2 2

s r N N N

N N TMD NN N

U K u K K X K X X K X X

K X X K X X


  

 

       
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(3) 

 

Then, using the derivatives of the kinetic and potential energy respect to each of the 

generalized coordinates, the equations of motion for the SSI system are obtained as follows:  
 

          ( ) ( ) ( ) ( )X X Xt t t u t
g

     
 

*
IM C K m  (4) 

 

where  M ,  C  and  K  are the mass, damping, and stiffness of the SSI system, respectively. 

 m* indicates acceleration mass matrix for earthquake; and u g(t)  is the earthquake 

acceleration. 

By considering N degrees of freedom for structure, the number of freedom degrees for 

the effects of SSI system is 3.N   The mass matrix in Eq. (4) can be obtained based on the 

following equations: 
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The damping matrix is expressed as following: 
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In addition, the stiffness matrix is achieved using following equations: 
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Finally, the acceleration mass is as follows: 
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The damping matrix can be obtained using the Rayleigh method [29], as follows: 

 

0 1N N N N N N
A A

  
           C M K  (12) 

 

where A0 and A1 are the Rayleigh damping ratios.  

Fethermore, the vector X(𝑡) includes also displacement and foundation rotation defined 

as follows: 
 

 ( ), ( ), , ( ), ( ), ( ), ( )1 2 0 0( ) X t X t X t X t X t tN TMD
T

t X  (13) 

 

In this study, the Newmark method [29] is utilized in order to solve the motion equations of 

SSI system. 
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4. MULTI–OBJECTIVE PARTICLE SWARM OPTIMIZATION 
 

Let 
nS   be an n–dimensional search space, and ( ), 1,2, ,Xif i k be k objective 

functions which are defined over S. Also let f be a vector function defined as, 

1 2( ) { ( ), ( ), , ( )}X X X Xkf f f f . Then, the goal of multi–objective optimization is to find a 

solution, 1 2{ , , , },X nx x x that minimizes ( ).Xf  However, a multi–objective problem, in 

principle, produces a set of optimal solutions known as Pareto–optimal solutions instead of a 

single optimal solution. Each point in the Pareto optimal solution set is optimal in the sense 

that improvement in one objective function leads to degradation in at least one of the 

remaining objective functions.  

Solving multi-objective optimization problems is still a challenge. The performance of 

different multi-objective algorithms has been tested in the work of Coello et al. [30] The 

results of this study have been shown that Multi–objective Particle Swarm Optimization 

(MOPSO) [30] is the best in covering the full Pareto front of all the functions used in their 

study. In addition, it has been found to converge with a low computational time. Hence, in 

this study the MOPSO method is selected to find the optimal parameters of the TMD system.  

 

4.1 The PSO method 

In order to introduce MOPSO, a review of Particle Swarm Optimization (PSO) algorithm is 

expressed. The PSO algorithm as a meta–heuristic optimization technique has been inspired by 

the social behavior of animals such as fish schooling, insects swarming and birds flocking. The 

standard PSO was introduced by Kennedy and Eberhart [32] in the mid 1990s, while attempting 

to simulate the graceful motion of bird swarms as a part of a socio–cognitive study. It involves a 

number of particles, which are initialized randomly in the search space of an objective function. 

These particles are referred to as swarm. Each particle of the swarm represents a potential 

solution of the optimization problem. 

The ith particle in tth iteration is associated with a position vector, X
t

i , and a velocity 

vector,V t

i , that shown as following: 

 

1 2

1 2

{ , ,..., }

{ , ,..., }

X

V

t t t t

i i i i n

t t t t

i i i i n

x x x

v v v




 (14) 

 

The particle fly through the solution space and its position is updated based on its 

velocity, the best position particle (pbest) and the global best position (gbest) that swarm has 

visited since the first iteration as: 
 

1

1 1 2 2( ) ( )V V pbest X gbest X
t t t t t t t

i i i i ic r c r       (15) 

1 1
X X V

t t t

i i i

    (16) 

 

where 1r  
and 2r  

are two uniform random sequences generated from interval [0, 1]; c1 and c2 

are the cognitive and social scaling parameters, respectively; and t  is the inertia weight 
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used to discount the previous velocity of particle preserved.  

It has been proposed that the cognitive and social scaling parameters c1 and c2 to be 

selected such that c1=c2=2 to allow the product c1r1 or c2r2 to have a mean of 1 [32]. One of 

the main parameters affecting the performance of PSO is the inertia weight ,, in achieving 

efficient search behaviour. In this study, a dynamic variation of inertia weight proposed by 

linearly decreasing the inertia weight with each iteration algorithm [33] is utilized, as 

 

max min
max

max

t
t

 
 


   (17) 

 

where max and min are the maximum and minimum values of ω, respectively. Also, tmax is 

the numbers of maximum iteration. It is noted that the linearly decreasing inertia weight of 

PSO has provided the better balance between the global search and local search [32]. 

 

4.2 The MOPSO method 

In multi–objective optimization problem, the objectives are normally in conflict to each 

other, which means that there is no single solution for these problems. Instead, the aim of the 

MOPSO algorithm is to find good tradeoff solutions that represent the best possible 

compromises among the objectives based on the concept of Pareto optimality [31]. A point 
*X   is Pareto optimality if for every X   and  1, 2, . . . ,     I k  either 

 
*( ( ) ( ))X Xi I i if f    (18) 

 

or, there is at least one i I  such that 

 
*( ) ( ))X Xi if f   (19) 

 

It is defined that 
*X is Pareto optimal if there exists no feasible vector X which would 

decrease some criterion without causing a simultaneous increase in at least one other 

criterion. In MOPSO, all objective functions are evaluated for each particle. Pareto 

optimality can guide the particles to produce non–dominated best positions (often called 

leaders). Since there can be many non–dominated solutions in the neighborhood of particle, 

the determination of leaders is not straightforward, but only one is usually selected to 

participate in the velocity update in PSO. The external archive is utilized for storing the 

non–dominated solutions discovered during search [34]. An external archive has bounded 

size, thereby making unavoidable the imposition of the rules regarding the replacement of 

existing solutions with new ones. 

For solving the optimization problem of TMD considering the SSI effects The framework 

of the MOPSO method is depicted in Fig. 2. 
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Figure 2. Flowchart of MOPSO for the optimal design of TMD considering the SSI effects 

 

 

5. ILLUSTRATIVE EXAMPLE 
 

In order to investigate the effects of SSI in the optimal design of the TMD parameters, a 40–

storey shear structure with a TMD installed on the top of building is chosen. This structure 

has been studined in the works of Farshidianfar and Soheili [21, 22]. Table 1 shows the 

properties of the structure. In this study, foundation is assumed to be on two types of soil, 

namely soft and medium soil. The properties of soil and foundation are also presented in 

Table 2. 

 
Table 1: The parameters of the structure [21] 

Parameter Value 

Height of storey (m) 4 

Mass of storey (kg) 9.8×105 

Inertia moment of storey (kg.m2) 1.31×108 

Stiffness of storey (N/m) K1=2.31×109 – K40=9.98×108 

Mass of foundation (kg) 1.96×106 

Inertia moment of foundation (kg.m2) 1.96×108 

Generate initial population which consists of N 

particles 

Update pbest and gbest of population 

Obtain the maximum displacement and 

acceleration of SSI system for each particle 

Update velocity and position based on Eqs. (15) 

and (16) 

Meeting end 

of criterion? 
End 

No Yes 

Solve the equations of motion of SSI system 

using the Newmark method for each particle  

Update the best position and external archive 

for each particle 

Select a member of eternal archive for each 

particle 
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Table 2: Soil and foundation parameters [21] 

Type of soil Kr (N.s/m) Ks (N.s/m) Cr (N/m) Cs (N.s/m) 

Soft 7.53×1011 1.91×109 2.26×1010 2.19×108 

Medium 7.02×1012 1.8×1010 7.02×1010 6. 9×108 

 

The lower and upper bounds of the TMD parameters defined in Section (2) are shown in 

Table 3: 

 
Table 3: Upper and lower bands of TMD parameters [21] 

Upper bound Lower bound Parameter of TMD 

2000×103 100×103 MTMD (kg) 

2000×103 0.1×103 CTMD (N.s/m) 

60×106 0.5×106 KTMD (N/m) 

 

The optimal design of the TMD parameters is found for the SSI system subjected to the 

El–Centro earthquake. This component of the recorded ground motion is shown in Fig. 3.  

 

 

Figure 3. Accelerogram of the El–Centro earthquake 
 

The parameters of the MOPSO algorithm are the following: the initial inertia weight 

max 0.95   and the final inertia weight min 0.4.   Furthermore, a random initial population 

of 50 individuals is created for each of this runs. A size of 50 is adopted for the external 

repository. To demonstrate the SSI effect in the optimal design of the TMD parameters, 

two cases of optimization are considered and compared as follows: 

Case 1: The optimal design of the TMD parameters for building in the fixed base 

(without SSI effects). 

Case 2: The optimal design of the TMD parameters for building in the flexible base 

(with SSI effects). 
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6. OPTIMIZATION RESULTS AND DISCUSSIONS 
 

In order to consider the stochastic nature of the MOPSO process, ten independent 

optimization runs are performed for each case, and three Pareto fronts are selected and 

reported in Tables 4 to 6. 
 

 
Table 4: Optimal values of the TMD parameters and the maximum responses of the structure for 

three selected Pareto fronts in the case 1 

Selected Pareto 

front 
MTMD (kg) CTMD (N.s/m) KTMD (N/m) 

Maximum 

acceleration (m/s
2
) 

Maximum 

displacement (m) 

1 1672.839×10
3
 950.012×10

3
 2927.723×10

3
 5.130 0.264 

2 1011.311×10
3
 551.251×10

3
 1358.793×10

3
 5.129 0.276 

3 426.946×10
3
 100 60000×10

3
 5.122 0.286 

 

 
Table 5: Optimal values of the TMD parameters and the maximum responses of the structure for 

three selected Pareto fronts in the case 2 (soft soil) 

Selected Pareto 

front 
MTMD (kg) CTMD (N.s/m) KTMD (N/m) 

Maximum 

acceleration (m/s
2
) 

Maximum 

displacement (m) 

1 285.327×10
3
 1264.755×10

3
 54845.863×10

3
 4.317 0.232 

2 1528.153×10
3
 100 500×10

3
 4.322 0.189 

3 1546.244×10
3
 180.486×10

3
 1665.521×10

3
 4.324 0.100 

 

 
Table 6: Optimal values of the TMD parameters and the maximum responses of the structure for 

three selected Pareto fronts in the case 2 (medium soil) 

Selected Pareto 

front 
MTMD (kg) CTMD (N.s/m) KTMD (N/m) 

Maximum 

acceleration (m/s
2
) 

Maximum 

displacement (m) 

1 1990.553×10
3
 17.628×10

3
 45867.273×10

3
 5.291 0.199 

2 1955.066×10
3
 104.151×10

3
 3558.901×10

3
 5.273 0.222 

3 1832.229×10
3
 232.115×10

3
 543.141×10

3
 5.270 0.242 

 

As can be observed from the optimal design of the TMD parameters shown in Tables 4–

6, the SSI effects have the significant influence on the optimum parameters of TMD. Hence, 

structural engineer should consider the SSI effects in the optimal design of TMD system. 

For the two cases, pareto optimal frontier for displacement and acceleration is depicted in 

Figs. 4-6.  

For a Pareto front of each case shown Table 7, the time history displacement of the top 

storey of structure with and without TMD are plotted and compared in Figs. 7 to 9. 
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Figure 4. Pareto optimal frontier for the case 1 

 

 
Figure 5. Pareto optimal frontier for the case 2 (soft soil) 

 

 

Figure 6. Pareto optimal frontier for with the case 2 (medium soil) 
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Table 7. Optimal values of the TMD parameters and the maximum structure responses for a 

selected Pareto front 

Case MTMD (kg) CTMD (N.s/m) KTMD (N/m) 
Maximum 

acceleration (m/s
2
) 

Maximum 

displacement (m) 

Without soil 1011.311×10
3
 551.251×10

3
 1358.793×10

3
 5.129 0.276 

Medium soil 1832.229×10
3
 232.115×10

3
 543.141×10

3
 5.270 0.242 

Soft soil 1546.244×10
3
 180.486×10

3
 1665.521×10

3
 4.324 0.100 

 

 
Figure 7. Time history displacement of the top storey for fixed case (without SSI) 

 

 
Figure 8. Time history displacement of the top storey for medium soil 

 

 
Figure 9. Time history displacement of the top storey for soft soil 
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It can be seen from Figs. 7 to 9 that the TMD system in comparison with uncontrolled 

structure decreases the displacement of sructure. 

 

 

9. CONCLUSIONS 
 

An efficient multi–objective optimization procedure is introduced to find the optimal 

parameters of a TMD system considering the effects of soil–structure interaction (SSI) for 

earthquake loading. In the optimization process, the parameters of TMD including mass, 

stiffness and damping optimization are considered as the variables of optimization. The 

maximum absolute displacement and acceleration of structure are also simultaneously 

adopted as objective functions. In order to achieve this purpose, the multi–objective particle 

swarm optimization (MOPSO) algorithm is utilized to find the optimal parameters of TMD. 

In this study, the equations of motion for SSI system is obtained based on the Lagrangian 

method. 

The optimal results reveal that the SSI greatly influence on the TMD parameters. It is 

also indicated that the soil type also severely affects the time response of structures and the 

TMD parameters. Therefore, the SSI effects have an important role in the optimal design of 

TMD for structures constructed on relatively soft soil. 
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