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ABSTRACT 
 

This paper presents the topology optimization of plane structures using a binary level set 

(BLS) approach and isogeometric analysis (IGA). In the standard level set method, the 

domain boundary is descripted as an isocountour of a scalar function of a higher 

dimensionality. The evolution of this boundary is governed by Hamilton–Jacobi equation. In 

the BLS method, the interfaces of subdomains are implicitly represented by the 

discontinuities of BLS functions taking two values 1 or −1. The subdomains interfaces are 

represented by discontinuities of these functions. Using a two–phase approximation and the 

BLS approach the original structural optimization problem is reformulated as an equivalent 

constrained optimization problem in terms of this level set function. For solving drawbacks 

of the conventional finite element method (FEM), IGA based on a Non–Uniform Rational 

B–Splines (NURBS) is adopted to describe the field variables as the geometry of the 

domain. For this purpose, the B–Spline functions are utilized as the shape functions of FEM 

for analysis of structure and the control points are considered the same role with nodes in 

FEM. Three benchmark examples are presented to investigate the performance the topology 

optimization based on the proposed method. Numerical results demonstrate that the BLS 

method with IGA can be utilized in this field. 
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1. INTRODUCTION 
 

The solution of optimal topology design problems is very important and challenging in 

science and computational engineering [1]. Topology optimization approach has been 
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extensively utilized to a variety of structural optimization problems such as the stiffness 

maximization problem, vibration problems, optimum design problems for compliant 

mechanisms, and thermal problems. In the topology optimization approach, the main aim is 

to find the geometry of a design in terms of shape and topology to perform a specific task 

optimally, ranging from discrete gridlike structures to continuum structures [2, 3]. In 

contrast to the detailed designs (e.g. size and shape optimizations) of a structure, topology 

optimization does not require a close–to–optimal initial design and is able to generate 

optimal geometries when intuitive design approaches fail, e.g., due to complex 

interdependencies between design parameters and the structural response. A number of 

methods such as Optimality Criteria (OC) methods [4, 5], the approximation methods [6–9], 

the Method of Moving Asymptotes (MMA) [9–11], Evolutionary Structural Optimization 

(ESO) method [12] and even more heuristic methods such as genetic algorithm [13] and ant 

colony [14] have been proposed for solving the topology optimization problems. 

In recet years, the level set method (LSM) originally proposed by Osher and Sethian [15] 

has been adopted as a new technique to utilize in optimizing shape and topology of structures 

[16–21]. In the LSM, the boundaries of design domain are implicitly represented by the zero 

level set of a higher dimensional function. The standard LSM requires for solving Hamilton–

Jacobi Partially Differential Equation (H–J PDE). This causes several limitations such as re–

initialization process, the Courant–Friedrichs–Lewy (CFL) condition and dependency of final 

design to initial guess. To overcome these drawbacks several LSMs have been proposed [13–

23]. The binary level set method (BLSM) has been proposed as a new approach of the LSM 

[22–24]. Distinct from the conventional LSM, interfaces are represented by the discontinuous 

locations of the binary level set (BLS) functions with only two values 1 and −1 at 

convergence. The BLSMs is closely related to the phase–field method, which has been applied 

for the image processing [25] and topology optimization [24, 26]. 

By recent developments in the Computer Aided Geometry Design (CAGD) technology, 

the geometrical definition and generation of complex surfaces and objects have become 

achievable [27]. In order to achieve this purpose, Splines and some modified versions of 

them, i.e. Non–Uniform Rational B–Splines (NURBS) and T–Splines, are commonly 

utilized. In the development of advanced computational methodologies, Hughes et al. [27] 

proposed a Non–Uniform Rational B–Splines (NURBS)–based isogeometric analysis (IGA) 

to eliminate the gap between CAGD and finite element analysis. In contrast to the standard 

finite element method (FEM) with Lagrange polynomial basis, the IGA approach utilizes 

more general basis functions such as NURBS that are common in CAD approaches. Thus, 

IGA is very promising because it can directly use CAD data to describe both exact geometry 

and approximate solution. 

The present study presents is the topology optimization of plane structures using the 

BLSM with IGA. In order to achieve this purpose, the BLSM is firstly utilized to solve the 

topology optimization problem. Then, IGA based on NURBS is applied to describe the field 

variables as the geometry of the domain. In the IGA approach, control points is considered 

as the same role with nodes in FEM and B–Spline basis functions are utilized as shape 

functions of FEM for analysis of structure. Three benchmark examples are presented to 

illustrate the validity of the proposed method. The optimal results demonstrate that the 

BLSM with IGA can be considered as a efficient topology optimization metod in the 

topology optimization of plane structures. 
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2. MATHEMATICAL FORMULATION OF TOPOLOGY OPTIMZATION 
 

In the present study, a plane structure with the linear property of material is constructed for 

defining the problem of topology optimization. In this problem, R
n is assumed an open 

and bounded set occupied by a linear isotropic elastic structure. The boundary of   consists 

of three parts 
d u t     , with Dirichlet boundary conditions on 

u and 

Neumann boundary conditions on .t  Furthermore, 
d is traction free. The displacement 

field in   is the unique solution of the linear elastic system and is expressed as [28]: 
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where u is the nodal displacement field function. The strain tensor and the stress tensor   

at any point   are defined in the usual form as: 
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where ijklE  is the elasticity tensor; and ij  is the liberalized strain tensor.  

The main aim of the topology optimization is to find a suitable shape in the admissible 

design space, so that the objective functional can obtain its minimum or at least a local 

minimum. Therefore, this can be expressed as follows [30, 31]: 
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where v is the adjoint displacement field function in the space U of kinematically admissible 

displacement fields. Field function u0 prescribes displacement field on partial boundary 
u .

p  is the body force.  is the boundary traction. The inequality describes the limit on the 

amount of material in terms of the maximum admissible volume maxV  of the design domain. 

 

3. STANDARD LEVEL SET METHOD FOR TOPOLOGY OPTIMIZATION 
 

The standard level set method (LSM) developed by Osher and Sethian [30] can be referred 
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to as implicit moving boundary models. In this method, the boundary of structure is 

described by zero level set and can easily represent complicated surface shapes that can form 

holes, split to form multiple boundaries, or merge with other boundaries to form a single 

surface. Based on the concept of propagation of the level set surface, the design changes are 

carried out to solve the problem of structural topology optimization. Therefore, these 

definitions are also defined as follows [30]: 
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The implicit function ( )x is used to represent the boundary and to optimize it, as it was 

originally developed for curve and surface evolution. The change of the implicit function

( )x is governed by the simple convection equation as: 
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where ( )V x  defines the velocity of each point on the boundary. The parameter t is a 

fictitious time parameter that represents the optimization iteration number, and the time step, 

t, is chosen in such away that the Courant–Friedrichs–Lewy (CFL) conditionis satisfied [17]. 

Since the tangential components of V would vanish, it can be written as: 
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where 
NV is the normal velocity. 

These two H–J PDEs are the well–known level set equations. Solving H–J PDE causes 

several limitations such as re–initialization process, the Courant–Friedrichs–Lewy (CFL) 

condition and dependency of final design to initial guess. Hence, the binary level set method 

(BLSM) was proposed by Lie et al. [22] in order to eliminate the drawbacks of the standard 

LSM.  

 

 

4. THE BINARY LEVEL SET METHOD 
 

In this section, the formulation of BLSM is first presented and then apply BLSM for the 

structural topology optimization. 

 

4.1 Basic formulations of BLSM 

In the BLSM, the subdomains are defined by the discontinuous level set functions which 

take the values 1 and –1 at convergence. The representation of two domains  1 2,  can be 
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given as follows [22]: 
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where  1,1k  . A piecewise constant function ( )x that equals to c1 in 
1  , and 

2c  in 
2  

then ( )x  can be expressed as [22]: 
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and write characteristic function i  as the product 
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Therefor, the piecewise constant function can be represented as: 
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In order to ensure the BLS functions converges to values 1 and –1 at every point in ,

these functions are required to satisfy 2( ) 1 0iK     for 1,2,..., .i N  Furthermore, the 

volume and the perimeter of each subdomain are calculated with the following formulation: 
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4.2 BLSM for the structural topology optimization 

In this section, the formulation of BLSM is described for solving the topology optimization 

problem of plane structures. In order to achieve this purpose, the piecewise constant density 
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function based on Equation (8) is defined as follows [26]:  
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where 1c  and 2c  are constant and are set to –1 and +1, respectiviely. In fact, 1 1c    and 

2 1c 
 
indicate the hole and no hole in the toplology of structure, respectievly. 

 In this study, the main aim of the toplology optimization is to minimize the compliance 

over the structural domain for general loading condition and several constraints. Hence, the 

formulation of toplolgy optimization based on BLSM is expressed as follows [26]: 
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where 
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In the objective function defined in Equation (14), , , , , ,( ) 1/ 2 ( ) ( )i j k l i j k lF u E u u  is the 

strain energy density, and   is the material density ratio. The second term in the objective 

function is the regularization term and   is a nonnegative value to control the effect of this 

term. 
1H indicates the material fraction for different phases, and 

2H is the piecewise constant 

constraint to guarantee LSF which belongs to only one phase. Using the augmented 

Lagrangian method, the optimization problem i.e., Equation (14) can converted into an 

unconstraint problem as: 
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where 
1 R   and

2

2 ( )L    are Lagrange multiplier, and 
1 2, 0    are penalty parameters. 

The saddle point of this function i.e., Equation (16), can be obtained by the following 

formulation which was proposed by Wei and Wang [32]: 
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In order to satisfy Equation (18), the steepest descent method was proposed as [32]: 
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Accroding the previous formulation, the problem of the structural topology optimization 

is converted into an ordinary differential problem with initial value 
0.  A semiimplicit 

method with the additive operator splitting (AOS) scheme [33, 34] is utilized for solving 

Equation (24). For updating Lagrange multipliers 1  and penalty parameters 1,  the 

following equations are emploied as, 
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5. ISOGEOMETRIC FINITE ELEMENTS 
 

In this section, a short overview is given on the main features of isogeometric finite elements 

and is applied for the static analysis of a plane strucrure. 

 

5.1 Surface definition by NURBS basis function 

A surface based on NURBS can parametrically defined as [21, 27]: 
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where ,i jP
 
are ( , )n m control points, ,i j are the associated weights and , ( )i pN   and , ( )j qN   

are the normalized B–splines basis functions of degree p  and q  respectively. The i th B–

splinebasis function of degree ,p denoted by , ( )i pN  , is defined recursively as:  
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where  0 1, ,..... r    is the knot vector and, 
i  are a non–decreasing sequence of 

realnumbers, which are called knots. The knot vector  0 1, ,..., s     is employed to define 

the , ( )j qN  basis functions for other direction. The interval    0 0, ,r s    forms a patch 

[21].  A knot vector, for instance in   direction, is called open if the first and last knots 

have a multiplicity of 1.p   In this case, the number of knots is equal to .r n p   Also, the 

interval  1,i i   is called a knot span where at most 1p   of the basis functions , ( )i pN   are 

non–zero which are , ,( ),...., ( )i p p i pN N  . 

 

5.2 Numerical formulation for plane elasticity structures 

By using the NURBS basis functions for a patch ,p the approximated displacement functions 

 ,p u vu  can be expressed as [21, 27]: 
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where , ( , )i jR   is the rational term in Equation (17). Furthermore, the geometry is 

approximated by B–spline basis functions as [27]: 
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By using the local support property of NURBS basis functions, Equations (20) and (21) 

can be summarized as it follows in any given 1 1( , ) [ , ) [ , ).i i j j         
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The strain–displacement matrix B can be constructed from the following fundamental 

equations, 

 

( , )Du B u
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where D is the differential operation matrix.  

Final, the stiffness matrix, ,K
p

 for a single patch is also computed as, 
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where t is the thickness, , and J is the jacobian matrix which maps the parametric space to 

the physical space. C is the elastic material property matrix for plane stress.  

In order to obtain the stiffness matrix and solve the integration i.e., Equation (34), the 

standard Gauss quadrature over each knot space is used for numerical integration. It is noted 

that the proper number of gauss points depends on the order of the NURBS basis functions. 

 

 

6. TOPOLOGY OPTIMIZATION BASED ON BLSM WITH IGA 
 

In this study, the BLSM with IGA is adopted for the topology optimization of plane 

structures. In fact, for analyzing plane structures in the topology optimization procedure the 

NURBS based–IGA is utilized instead of in the conventional FEM. In oder to achive 

purpose, in IGA control points are considered as nodes in FEM and B–Spline basis functions 

are utilized as shape functions of FEM for the analysis of structure. Boundary conditions are 

directly imposed on control points. The design model is also modeled using a fixed 

isogeometric mesh. Furthermore, the “Ersatz material” approach [16] is considered in this 

study in order to avoid the time–consuming re–meshing process of design model in the 

topology optimization procedure. Based on the “Ersatz material” approach, the elements 
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associated with the hole region are modeled by a weak material.  

 

 

7. NUMERICAL EXAMPLE 
 

In this section, three examples of plane elasticity structure are presented in order to 

demonstrate the performance of the topology optimization based on BLSM with IGSA. In 

all examples the modulus of elasticity, the Poisson’s ratio and thickness are considered as 

1Pa, 0.3 and 0.01m, respectively. For modeling the hole in the analysis procedure of 

structures, the “Ersatz material” approach [16] is utilized. Based on this approach, the hole is 

filled by a weak material. For this purpose, Young’s modulus of Ersatz material is assumed 

as 10–3Pa. The order of NURBS basis functions in each direction is equal to be 2. 

 

7.1 Cantilever beam 

The first problem is the cantilever beam shown in Fig. 1, which is a benchmark problem in 

topology optimization. As shown in Fig. 3, the length of the domain is L 80mm and the 

height is H 40 .mm  The cantiliver beam is subjected to a concentrated load P=1N at the 

end point of the free end. The volume constraint is 40% of the total domain volume.  
 

 
Figure 1. Fixed design domain and boundary condition of the cantilever beam 

 

In this example, the initial geometry is modeled based on a bi–quadratic NURBS geometry 

with 10×6 control points. The open knot vectors are respectively {0, 0, 0, 0.125, 0.25, 0.375, 0.5, 

0.625, 0.75, 0.875, 1, 1, 1} and {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1} in 
 
and 

 
direction, thus 

leading to 8 4 knot spans. By subdividing each knot span into 10 equal parts in   
and   

direction, the physical mesh with 80×40 knot spans and the control mesh with 82×42 control 

points are obtained. In the BLSM, the time step size is 8t   and other parameters are assumed 

as 410 ,  1 245, 450    and 0.95.   

The evolution procedure of structural topology based on the proposed method is shown from 

Figs. 2(a) to 2(h). The final topology of the cantilever beam is also depicted in Fig. 2(h). 
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Figure 2. The evolution of the optimal topology for the cantilever beam 

 

This example has been considered and investigated by other researchers. The final 

optimal topology obtained the proposed method of this study is compared with those 

obtained in the work of Shojaee and Moammadian [26] and shown in Fig. 3. It can be seen 

from Fig. 3 that the optimal design obtained in this study is similar to those reported in the 

literature. 

 

 
(a) The AOS–MBO scheme with FEM [26] 

 
(b) The MOS–MBO scheme with FEM [26] 
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(c) The piecewise constant LSM with FEM [26] 

 
(d) This study 

 

Figure 3. The comparison of the optimal topology in this study with that of Ref. [26] 

 

The evolution of the compliance and the volume fraction are shown in Fig. 4. The value 

of the compliance at the optimal design is 82.6. 

 

 
Figure 4. The convergence histories of the compliance and the volume ratio 

 

7.2 Messerschmitt–Bölkow–Blom beam 

Messerschmitt–Bölkow–Blom (MBB) beam considered as the second example is the 

benchmark problem for the topology optimization. The geometry model and loading 

conditions of the MBB beam is shown in Fig. 5. The length of the domain is L 120mm and 

the height is H 30 .mm  The problem is subjected to a concentrated load P=1N at the upper 

half of the vane. In the optimization procedure, the specified material volume fraction is 

40%. In the BLSM, the time step size is 8t   and other parameters are assumed as 410 , 

1 250, 400    and 0.95.   
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Figure 5. Fixed design domain and boundary condition of the MBB beam 

 

In the first stage, the topology optimization is performed based on the proposed method 

with 12030 mesh isogeometric and the topology evolving history is depicted in Fig. 6. The 

optimal topology of the MBB beam is shown Fig. 6(h) which was obtained in the 92 

iterations. 

 

 
Figure 6. The evolution of the optimal topology for the MBB beam 

 

In the work of Dai et al. [24], this example was investigated by a variational BLSM. The 

FEM was utilized for the analysis of the structure in the procedure of the topology 

optimization. The final optimal topology obtained in this study is compared with that 

obtained in the work of Dai et al. [24] and shown in Fig. 7. As can be seen from Fig. 7, the 

final design obtained in this study is similar to that reported in the literature. 
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(a) The variational BLSM with FEM [24] (b) This study 

Figure 7. The comparison of the optimal topology in this study with that of Ref. [24] 

 

Fig. 8 shows the structural strain energy variation history during the optimization process 

for the proposed method. In the figure the iteration history of material usage within the 

design domain during topology evolving is also depicted. The value of the compliance at the 

optimal design is 47.1. 
 

 
Figure 8. The convergence histories of the compliance and the volume ratio 

 

7.3 Michell structure with multiple loads 

The Michell type structure with multiple loads is considered as the final example. Fig. 9 

shows the boundary condition of this kind of structure. The left corner of the bottom of the 

design domain is fixed and its right corner is simply supported. Three forces are applied at 

the equal spaced point at the bottom boundary with with 
1 10P N  and 

2 5 .P N The design 

domain is80 40  which is discretized with 3200, 1 1  squared elements. The volume 

fraction is chosen 40% . The BLSM is used for solving this problem without any holes in the 

initial design domain. The time step size is 8t   and other parameters are 410 ,  1 45, 

2 450   and 0.95.   
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Figure 9. Fixed design domain and boundary condition of the Michell structure 

 

The topology optimization is performed based on the proposed method and the topology 

evolving history is depicted in Fig. 10.  
 

 
Figure 10. The evolution of the optimal topology for the Michell beam 
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The topology evolving history shows that the final topology is obtained in the 69 

iterations. In the work of Shojaee and Moahmmadian [17], this example was investigated 

usnig the BLSM with FEM. The final optimal topology obtained in this study is compared 

with that obtained in the work of Shojaee and Moahmmadian [17] and shown in Fig. 11. As 

obvious from Fig. 11, the final design obtained in this study is similar to that reported in the 

literature. 

 

 
(a) The BLSM with FEM [17] 

 
(b) This study 

Figure 11. The comparison of the optimal topology in this study with that of Ref. [17] 

 

It can be concluded from Fig. 11 that the optimal design obtained based on the IGA is 

similar to that of FEM. Fig. 12 shows the structural strain energy variation history during 

optimization for the proposed method. In the figure the iteration history of material usage 

within the design domain during topology evolving is also depicted. The value of the 

compliance at the optimal design is 4611.71. 

 

 
Figure 12. The convergence histories of the compliance and the volume ratio 

 

 

8. CONCLUSIONS 
 

This paper proposes the topology optimization of plane structures using the BLSM with 

IGA. The BLSM has the same advantage as the piecewise constant method. It does not need 
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to re–initialize level set function and can easily create small holes without topological 

derivatives during the evolution. This means that the BLSM can substantially reduce the 

computational complexity. In the topology optimization procedure the NURBS based–IGA 

approach is also utilized instead of in the conventional FEM.  

The performance and capability of the BLS schemes with IGA is shown through the 

benchmark examples widely used in topology optimization. The final topology obtained by 

the proposed method are compared with outcome of topology optimization based on the 

other LSM techniques, and the results show similar topologies. Therefore, the optimization 

results demonstrate that this method can efficiently be used in the structural toploplogy 

optimization. 
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