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ABSTRACT 
 

key factor in the successful application of a tunnel boring machine (TBM) in tunneling is the 

ability to develop accurate penetration rate estimates for determining project schedule and 

costs. Thus establishing a relationship between rock properties and TBM penetration rate 

can be very helpful in estimation of this vital parameter. However, this parameter cannot be 

simply predicted since there are nonlinear and unknown relationships between rock 

properties and TBM penetration rate. Relevance vector regression (RVR) is one of the 

robust artificial intelligence algorithms proved to be very successful in recognition of 

relationships between input and output parameters. The aim of this paper is to show the 

application of RVR in prediction of TBM performance. The model was applied to available 

data given in open source literatures. In this model, uniaxial compressive strengths of the 

rock (UCS), the distance between planes of weakness in the rock mass (DPW) and rock 

quality designation (RQD) were utilized as the input parameters, while the measured TBM 

penetration rates was the output parameter. The performances of the proposed predictive 

model was examined according to two performance indices, i.e., coefficient of determination 

(R2) and mean square error (MSE). The obtained results of this study indicated that the RVR 

is a reliable method to predict penetration rate with a higher degree of accuracy. 
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1. INTRODUCTION 
 

Tunnel boring machine (TBM) penetration rate assessment is an important issue for 

schedule and cost planning in mechanical tunneling construction projects. Therefore, proper 
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estimation of TBM penetration rate is helpful for risk reduction in tunneling projects [1]. In 

recent years, many researchers devoted their works to predict penetration rate. In this paper, 

the well–known research works are addressed. McFeat-Smith, Tarkoy [2] presented different 

relations to predict the penetration rate for different types of machines in different geological 

conditions. Cassinelli et al. [3] used a rock structure rating system for correlation with TBM 

performance. Nelson [4] studied TBM performance at several tunneling projects mainly in 

sedimentary rock formations by comparing the instantaneous penetration rate achieved with 

different rock properties. Tarkoy [5] developed an empirical relationship between total 

hardness and TBM rate of penetration. Barton [6,7] reviewed a wide range of TBM tunnels 

to establish the database for estimating penetration rate, utilization and advance rate. 

Moradi, Farsangi [8] estimated the advance rate in rock TBM tunneling using the risk matrix 

method. Besides these theoretical and empirical models, soft computing methods have been 

used to predict the penetration rate. Mikaeil et al. [9], Fattahi [10], Gholamnejad, Tayarani 

[11], Khademi Hamidi et al. [12], Acaroglu [13], Ghasemi et al. [14], Acaroglu et al. [15], 

and Grima et al. [16] employed soft computing methods for the prediction of TBM 

penetration rate. 

However, neural networks may result in very poor generalization or even over-fitting 

when parameters involved in modeling are not chosen wisely. Support vector machine used 

for regression, the so called support vector regression (SVR), is a suitable machine learning 

methodology introduced in the early 1990s [17] and has been successfully used for 

regression tasks in the recent years even for TBM penetration rate estimation [18,19]. 
However, even this capable network suffers from numerous limitations including parameters 

and kernel selection which may have significant effect on its prediction efficiency [20,21]. 

Relevance vector machine based regression (RVR) is a Bayesian sparse kernel technique 

used for regression having most of the SVR characteristics while avoiding its limitations 

[22]. It typically leads to much sparser models and correspondingly faster performance on 

test data as well as a sophisticated generalization error [23,24]. However, RVR has not yet 

been used for prediction of TBM penetration rate in any kinds of mechanical tunneling 

construction project. 

In this study, the RVR is proposed for indirect prediction of TBM penetration rate. The 

goodness of RVR model was evaluated by using the data available in the literature. Finally, 

a statistical error analysis has been performed on the modeling results to investigate the 

effectiveness of the proposed method. 

 

 

2. RELEVANCE VECTOR REGRESSION 
 

RVR is a probabilistic model whose functional form is equivalent to that of support vector 

regression (SVR). It achieves comparable recognition accuracy to the SVR, yet provides a 

full predictive distribution, and also requires substantially fewer kernel functions [25,26]. 

RVR is based on Bayesians approach in which a prior is introduced over the model weights 

and each weight is administrated by one hyperparameter. The most probable value of each 

hyper parameter is iteratively evaluated from the data. The model is sparser since the 

posterior distributions of some proportion of the weights are set to zero.  
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Now, the predicted output ŷ of the true value y is 
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In the above nonlinear function estimation model, m is the weight vector and  .m  is 

an arbitrary basis function (or kernel). In the present work, RBF is used as the kernel 

function because of its ability to reduce computational complexity of the training process. 

The vector form of  1

T

M   and the responses of all kernel function 

     1

T

Mx x x      maps the input data into a high dimensional feature space z. 

Hence, the obtained error signal could be stated as 
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The objective of relevance vector regression is to find the finest value of such that 

 ˆ ,y x  makes good predictions for unknown input data. For the RVR model in equation 

(2) let  1

T

M   be the vector of M independent hyperparameters, each associated 

with one model weight or kernel function.  

The Gaussian prior distributions of the RVR framework are chosen as 
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Here, M is the hyperparameter that governs each weight m . The likelihood function of 

independent training targets , 1,...,my y m M  can be stated as 
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The above likelihood function is enhanced by the prior in equation (4) defined over each 

weight to reduce the complexity of the model and to avoid over fitting. Now, using Bayes’ 

rule, the posterior distribution over model weights could be calculated as follows: 
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The posterior distribution in equation (6) is a Gaussian distribution function, 
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whose covariance and mean are respectively given by 
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with  A diag  . 

Marginalization of the likelihood distribution over the training targets given by equation 

(5) can be obtained by integrating out the weights to acquire the marginal likelihood for the 

hyperparameters. 
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Here, the covariance is given by 
2 1 TC I A    .In equations (8) and (9), the only 

unknown variables are the hyperparameters α. The values of these hyperparameters are 

estimated using the framework of type II maximum likelihood [27]. 
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Logarithm is included in equation (11) to reduce computational complexity. 
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Maximization of the logarithmic marginal likelihood in equation (11) over α leads to the 

most probable value αMP which provides the maximum a posteriori (MAP) estimate of the 

weights.  

The ambiguity about the optimal value of the weights, given by (6), is used to express 

ambiguity about the predictions made by the model, i.e., given an input x∗, the probability 

distribution of the corresponding output y∗ is given by the predictive distribution 
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which has the Gaussian form 
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The mean and variance of the predicted model are, respectively, 
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Maximizing the logarithmic marginal likelihood in (11) leads the optimal values of many 

of the hyperparameters αm typically infnite yielding a posterior distribution in (6) of the 

corresponding weights m that tends to be a delta function peaked to zero. Thus, the 

corresponding weights are deleted from the model along with its accompanying kernel 

function. Hence, very few data points corresponding to nonzero weights build the RVR 

model and are called the relevance vectors. This results in better sparseness of RVR model 

than SVR model. Thus, the computation time for prediction using RVR model is reduced 

significantly. In this paper, the RVR model is used for prediction of TBM penetration rate. 

 

 

3. DATABASE INFORMATION 
 

The main scope of this work is to implement the above methodology in the problem of TBM 

penetration rate prediction. Dataset applied in this study for determining the relationship 

among the set of input and output variables are gathered from open source literature [11].  

Database were obtained from three different TBM projects: 1) The Queens Water Tunnel #3, 

Stage 2, USA. This project is intended to improve fresh water distribution throughout the 

New York City, USA. The tunnel, about 7.5 km long, was excavated with a high power 

TBM. 2) The Karaj-Tehran water transfer tunnel, Iran. The 30-km Karaj-Tehran tunnel is 

the longest water transfer project in Iran and is now being excavated using double shield 

TBM’s. 3) The Gilgel Gibe II hydroelectric project, Ethiopia. This is a 25-km tunnel that 

allows power to be generated by the exploitation of the elevation drop between the basin 

created by the Gilgel Gibe I dam on the Gilgel Gibe river and the river Omo [11]. In the 
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present study, 185 data sets were collected. Partial dataset used in this study are presents in 

Table 1. Also, Table 2 shows statistical description of datasets used in this study.  

 
Table 1: Partial dataset used in this study [11] 

No. Tunnel station 

Input parameters Output parameter 

UCS 

(MPa) 

RQD 

(%) 

DPW 

(m) 

Measured Penetration rate 

(m/h) 

1 Queens (USA) 173.1 99.81 1.6 2.17 

2 Queens (USA) 159.6 97.35 0.4 2.26 

3 Queens (USA) 137.2 99.81 1.6 2.2 

4 Queens (USA) 118.3 99.28 0.8 2.22 

5 Gilgel Gibe II (Ethiopia) 158.6 73.58 0.1 2.07 

6 Gilgel Gibe II (Ethiopia) 140 66.26 0.08 1.58 

7 Karaj-Tehran (Iran) 30 56.25 0.25 14.43 

8 Karaj-Tehran (Iran) 75 60 0.3 8.69 

9 Karaj-Tehran (Iran) 60 62.5 0.3 10.3 

10 Gilgel Gibe II (Ethiopia) 75 49.32 0.06 2.89 

 
Table 2: Statistical description of dataset utilized for construction of model 

Parameter Min Max Average 

UCS (MPa) 30 199.7 142.96 

RQD (%) 40.6 99.88 91.04 

DPW (m) 0.05 2 0.87 

Penetration rate (m/h) 1.27 14.43 2.33 

 

 

4. DATA PROCESSING 
 

To start the training, inputs and output data should be normalized for increasing the 

efficiency of networks in recognition of the relationships between inputs and output data. 

Normalization is also really helpful in increasing the accuracy of prediction and scaling the 

data to minimize the biasing of the networks. Data normalization can also reduce the 

consuming time of training. It is especially useful for modeling those applications where 

input data are in different scales [21,28]. There are many normalization techniques 

conventionally used to scale up the data including Z–Score normalization, Min–Max 

normalization, sigmoid normalization, statistical column normalization, etc. However, for 

the purpose of this study, Min–Max normalization method was used. This was due to the 

capability of Min–Max normalization in maintaining the variation of each feature after 

normalization. Beside, this normalization method can preserve all of the relationships in the 

data [28]. Min–Max normalization equation is expressed as below: 
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max min
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x x
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where x is the original value of the dataset, xM is the mapped value, and xmax (xmin) denotes 

the maximum (minimum) raw input values, respectively.  

In addition to the normalization, mean square error (MSE) and coefficient of 

determination (R2) are two conventional criteria considered to assess the efficiency of the 

networks. The MSE is calculated using the following equation: 
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where tk be the actual value and ˆ
kt be the predicted value of the kth observation and n is the 

number of samples used for training or testing the network. MSE is routinely used as a 

criterion to show the discrepancy between the measured and estimated values of the 

network. Coefficient of determination, R2, is also calculated as 
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R2 is widely used as a representation of the initial uncertainty of the model. The best 

network model which is unlikely to build, would have MSE=0 and R2 =1. 

 

 

5. RESULTS AND DISCUSSION 
 

In this study, RVR model was utilized to build a prediction model for the prediction of TBM 

penetration rate from available data, using MATLAB environment. A dataset that includes 

185 data points was employed in current study, while 148 data points (80%) were utilized 

for constructing the model and the remainder data points (37 data points) were utilized for 

model performance evaluation. In this model, uniaxial compressive strengths of the rock 

(UCS), the distance between planes of weakness in the rock mass (DPW) and rock quality 

designation (RQD) were utilized as the input parameters, while the measured TBM 

penetration rates was the output parameter. 

In RVR model, hyper parameter estimation is carried out by expectation maximization 

(EM) updates on the objective function [22,26]. For this RVR model, radial basis function 

(RBF) kernel is used with the width parameter estimated automatically by the learning 

procedure [22,26] which improves generalization ability and reduces computational 

complexity of the training process. Thus, unlike in SVR there is no necessity for 

computationally expensive determination of regularization parameter by cross validation 

technique. Also in the RVR model confidence intervals, likelihood values and posterior 

probabilities could be explicitly encoded easily. 

After modeling, a comparison between estimated values of penetration rate by the RVR 

model and measured values for 185 data sets at training and testing phases is shown in Fig. 
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1. As shown in Fig. 1, the results of the RVR model in comparison with actual data show a 

good precision of the RVR model. 
 

 
(a) 

 
(b) 

Figure 1. Comparison between measured and estimated penetration rate for a) training datasets, 

b) testing datasets 
 

Furthermore, a correlation between estimated values of penetration rate by the RVR model 

and measured values for 185 data sets at training and testing phases is shown in Fig. 2. 
 

 
Figure 2. Correlation between measured and estimated penetration rate for training and testing 

datasets 
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Also, performance analysis of the RVR model for predicting penetration rate is shown in 

Table 3. The performance indices obtained in Table 3 indicate the high performance of the 

RVR model that can be used successfully to the estimation of the penetration rate.  

 
Table 3: Performance analysis of the RVR model for predicting penetration rate 

Description R2 MSE 

RVR model 
Training 0.0050 0.932 

Testing 0.0028 0.976 

 

Also, relative error (error percentage) for data point (training and testing samples) is 

assessed and revealed in Fig. 3 Relative error for most data points is located in range of [-

18% 14%], which is an acceptable value. 

 

 
Figure 3. Relative error (error percentage) of RVR model in estimating the penetration rate 

 

Eventually, we compared our results with the results obtained by Gholamnejad, Tayarani 

[11]. This comparison is demonstrated in Table 4. Table 4 contains two methods, including 

artifitial neural network and the RVR model suggested in this study. 

As can be seen, the RVR model indicate better results relative to previously published 

model. As presented in Table 4, the RVR model with MSE= 0.0028 and R2= 0.976 is found 

to be the best predictive model. However, the best previously published model (artifitial 

neural network) has the MSE = 0.1082 and R2= 0.939. 

 
Table 4: Comparison of performance of the proposed model and previously presented model 

Description MSE R2 

RVR model 

(Proposed in this study) 

Training 0.0050 0.932 

Testing 0.0028 0.976 

Artifitial neural network model 

(Gholamnejad, Tayarani [11]) 

Training 0.0083 ---- 

Testing 0.1082 0.939 
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6. CONCLUSION 
 

Prediction of TBM penetration rate is one of the most important concerns in estimating cost 

and time of a tunnel project. There are various techniques of nonlinear analysis utilized 

for estimating the TBM penetration rate. In this study, the RVR technique has been used 

for estimating the TBM penetration rate. It is observed that the UCS, DPW and RQD have 

major effect on the TBM penetration. So, the model was generated based on relevant 

properties. The following conclusions can be drawn: 

 The RVR with MSE= 0.0028 and R2= 0.976 is a reliable system modeling technique for 

predicting TBM penetration rate with highly acceptable degree of accuracy and 

robustness. 

 Comparison between the developed model and previously presented model reveals the 

superiority of the RVR in prediction of TBM penetration rate. 

This study shows that the RVR approach can be applied as a powerful tool for modeling 

of some problems involved in tunnel engineering. 
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