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ABSTRACT 
 

The mass matrix formulation is very important to achieve a high-convergent model in 

structural dynamics. This study calculates the optimum mass matrix for in-plane free 

vibrations of the plane problems. In fact, the parameterized mass and stiffness for a 

rectangular element are formulated by the template approach. By using perturbation theory 

and sensitivity analysis, the changes of the natural frequencies are obtained as a function of 

the free parameter variations. Based on the natural frequencies, the objective function is 

established. Through an optimization process, the optimum values for template-free 

parameters are determined. Findings are used to calculate the plane problems’ natural 

frequencies. Some structural analyses and comparative studies with the other schemes are 

performed. Base on the obtained results, the efficiencies and high-convergence properties of 

the optimal element are demonstrated by numerical examples. 
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1. INTRODUCTION 
 

In civil, mechanical, and aerospace engineering, plane structures are used extensively. For 

example, the building shear walls usually are designed for low-frequency dynamic loads 

alike winds and earthquakes. In the new design and construction building methods, there is 

an increasing need to design shear walls against high-frequency loads, such as blasts and 

impacts [1]. Therefore, it is substantial to apply a precise and efficient method for vibration 

response analysis of such structures in high-frequency vibrations. One of the common 

shapes for the shear walls is cantilever rectangular plates. For vibration analysis of cantilever 
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rectangular plates, several analytical methods, based on the variational approximation [2], 

Rayleigh-Ritz energy method [3] and superposition approach, have been developed. 

Nefovska and Petronijevic [1] developed a precise dynamic stiffness method for in-plane 

vibrations of rectangular plates. Although these methods provide exact solutions, they 

cannot be applied easily to dynamic updating and damage detection problems. For these 

plane problems, a simple finite element model with high precision and convergent properties 

is needed. 

One of the very susceptible difficulties that exist in vibration-based finite element models 

is the need to achieve an accurate mathematical model that reflects the actual structural 

dynamic behavior. The changes in the measured vibration response due to the slight 

variations in the stiffness are very small. Therefore, it is impossible to distinguish between 

insufficient modeling and actual stiffness changes. The way to reduce these errors is to 

modify the finite element modeling. The modifications can be performed by introducing the 

appropriate assumptions and parameters in the finite element model [4]. During the process 

of adjusting certain parameters of the finite element model, optimum values of the 

parameters are found. Consequently, the finite element results satisfy requirements for actual 

structural dynamic behavior. Classically, the goal was achieved by a trial-and-error 

approach. This scheme was a time-consuming process and in some cases did not lead to 

feasible results. The idea of element parameterization is a suitable approach to construct a 

finite element model with feasible vibration properties [4, 5].  

The parameter selection strategy is very important to define the actual vibration behavior 

of the structure and should have a good physical explanation. If this idea is applied at the 

element level, it can lead to the concept of generic elements. In the other words, a generic 

element model is identified as a parametric form of the element matrices that generates a 

family of elements with the same configuration [4]. The generic element model must satisfy 

all of the requirements, including; consistency, stability, parameterization, and observer 

invariant. For these requirements, the element stiffness matrix should be semi-positive 

definite and the rigid body modes of the element confined in the null space of the stiffness 

matrix [4]. The first two conditions: consistency and stability, ensure convergence. 

Parameterization property allows performance optimization to achieve special purposes [5]. 

Finite element templates have the features of generic elements and provide the feasibility of 

constructing the custom elements.  

In the dynamic structural analysis and eigenvalue problems, the characteristics of the 

mass matrix are very important [6, 7]. It is important to notify that the convergence 

requirements are not satisfied by the traditional lumped and consistent mass models. The 

diagonal feature of the lumped mass matrices enables solving dynamic problems in a simple 

manner. However, the rate of convergence in estimating the eigenvalue is low and in some 

cases, the lumped mass is not a positive definite matrix [7]. The consistent mass 

underestimates the mass effects and yields higher natural frequencies. On the other hand, the 

lumped mass matrix is overestimated, and the natural frequencies are in the lower bound of 

the exact solution [8]. 

Due to the drawbacks of the lumped and consistent mass, considerable efforts have been 

focused on obtaining the more accurate mass matrices. Several forms of non-consistent 

matrices were developed to reduce the discretization errors and enhanced convergence 
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properties [7]. Stavrinidis [9] derived analytical expressions to achieve the more accurate 

mass matrices for the bar, bending beam, and plane stress elements. Kim [8] proposed the 

linear combination of the lumped and consistent mass matrices to obtain a more accurate 

non-consistent mass. Another form of the linear combination was studied by Fried et al. [10] 

for bar and membrane elements. The optimum non-consistent mass matrix with desired-

convergent property can be achieved by an admissible parametric mass matrix [7]. Adjusting 

the mass matrix parameters to reach the required convergence properties, consequences the 

optimum mass. Ahmadian and Faroughi [7] used the inverse method and derived a super 

convergent mass matrix formulation for a plate bending element.  

One of the more general approaches for obtaining the parametric mass matrix relies on 

templates [6]. The template mass features as a parametric form with the applicability of 

generating a set of mass matrices that satisfy certain convergence requirements. For a given 

element configuration, a set of mass matrices possesses the requirements such as symmetric, 

positive definite; invariance, and momentum conservation is obtained [6]. In vibration 

analysis and wave propagation problems, free parameters of template mass can be optimized 

for special needs. This idea was first proposed by Fellippa [11] and was applied for Fourier 

analysis of Euler-Bernoulli and Timoshenko beam elements. Afterward, Guo [12] developed 

optimal mass matrices using the template approach for membrane triangles with corner 

drilling freedoms in a wave propagation problem. Badran et. al. [13] studied the template 

approach for plane stress quadrilateral elements in the wave propagation analysis. 

Although finite element templates have many advantages, all of their efficiencies in 

vibration analysis have not been yet recognized. The dynamic response of the structure is 

determined by modal characteristics. Hence, the free parameters of the finite element 

template can be used as the design variables to adjusting the mathematical model for 

vibration analysis. The sensitivity modal analysis can be a valuable tool to obtain the 

optimum values of the template-free parameters. Previously, this idea has not been presented 

in any studies, and the researchers have not utilized the templates as generic elements for 

vibration analysis of the plane structures. 

The main objective of this paper is to optimize admissible parametric stiffness and mass 

templates for in-plane free vibration analysis of the plane problem. This article introduces a 

different approach in optimizing the free parameters of the template. The approach is based 

on perturbation theory and sensitivity analysis. The parameterized mass and stiffness for 

rectangular elements are used to establish the objective function. The optimum values for 

free parameters are determined by the quasi-Newton optimization method. In the numerical 

studies, the obtained mass and stiffness produce a highly accurate eigenvalue and fast rate of 

convergence. The significant accuracy and convergence rate are observed in high-frequency 

vibrations that are very important in certain specialized applications.  

 

 

2. FINITE ELEMENT TEMPLATE 
 

One of the important purposes of finite element studies is the construction of high-

performance (HP) elements. The HP elements are defined as simple elements that deliver 

engineering accuracy with arbitrary coarse meshes [5]. In the late 1960s and early 1970s, to 
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achieve HP elements, some construction techniques such as incompatible shape functions, 

the patch test, reduced, selective and directional integration were used. Some developments 

in construction HP elements were made using mixed and hybrid variational principles in the 

1980s [5]. New innovative approaches came into existence by the free formulation proposed 

by Bergan and Nygard [15]. The free formulation creates the fundamental decomposition in 

the stiffness matrix. The stiffness matrix splits into basic and higher-order matrices, 

respectively. The consistency and mixability are provided by the basic stiffness, whereas the 

stability and accuracy requirements are compiled by the higher-order stiffness matrix [16]. 

This fundamental decomposition had a key role in development of HP elements. This idea 

accompanied by parameterized variational principles led to the unexpected discovery that is 

called finite element template [14].  

A finite element template is an algebraic form of the element stiffness matrix which 

contains free parameters. The stiffness template has the fundamental decomposition as the 

followings [17]:  

 

𝐾 = 𝐾𝑏(𝛼𝑘̅̅ ̅) + 𝐾ℎ(𝛼𝑖) (1) 

 

In Equation (1), K is the stiffness matrix of the plane element. Also, Kb and Kh are the 

basic and higher-order stiffness matrices, respectively. Parameter 𝛼𝑘̅̅ ̅ denotes the free 

parameters of the basic stiffness matrix, and i stands for the set of the parameters 

associated with the higher-order stiffness. A very few free parameter ( 𝛼𝑘̅̅ ̅) is needed for the 

basic stiffness of the simple elements. The patch test requirements are satisfied by the basic 

stiffness part and yields the consistent element. The rank efficiency and accuracy are 

provided by the parametric form of the higher-order stiffness matrix. Satisfying consistency 

and stability, ensures convergence. Parameterized form of the stiffness matrix permits 

performance optimization [14]. By using this method, the elements can be tuned to specific 

needs. Setting the optimum values of free parameters, the specific element instances are 

obtained. In the present study, a new parametric form of template is optimized for analysis 

of the in-plane vibrations of the plane problems.  

 

2.1 Stiffness template 

In this study, the rectangular element with 2 degrees of freedom in each node is formulated 

by template approach for free vibration analysis (Fig. 1). The rectangular element is the 

simplest element that can be modified to achieve a parameterized template [17]. The element 

formulation is emanated from a mathematical statement of the convergence requirements 

proposed by Bergan and Nygard [15]. According to this mathematical statement, the 

displacement shape functions must be force orthogonal and energy orthogonal. A set of 

rigid-body and constant strain modes together with a set of linearly independent higher-order 

modes which is energy orthogonal to the first set are used for element formulation [15].  

The nodal displacement and displacement field are described in Eqs. (2) and (3). The 

displacement field is decomposed in three rigid body, constant strain, and higher-order 

modes. 
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𝑈 = [𝑢1  𝑣1  𝑢2  𝑣2  𝑢3  𝑣3  𝑢4  𝑣4] (2) 

𝑢 →
𝑣 →

⟨
1 0 −𝑦
0 1 𝑥

|
𝑥 0 𝑦
0 𝑦 𝑥

|
𝑥𝑦 0
0 𝑥𝑦

⟩ 

 

(3) 

r modes       c  modes     h modes 
 

where, U is the vector of nodal displacements. The displacement fields along the x and y-

axis are denoted by u and v. This field is described by two sets of polynomials, and their 

corresponding coefficients by the matrix form presented in Equation (4). Nrc and Nh express 

two complete polynomials correspond to the rc-modes and h-modes. The associated 

polynomial coefficients represented by qrc and qh , as follows. 

 

[
𝑢
𝑣
] = 𝑁𝑟𝑐𝑞𝑟𝑐 +𝑁ℎ𝑞ℎ (4) 

 

The kinematic relationship between the generalized modes and the nodal displacements 

U is easily established by Equation (5). When all displacement modes are linearly 

independent, the inverse exists and two important matrices Hrc and Hh are obtained. The 

roles of Hrc and Hh are essentially that of geometric projectors for basic and higher-order 

stiffness matrices. 

 

𝑈 = 𝐺𝑞 = 𝐺𝑟𝑐𝑞𝑟𝑐 + 𝐺ℎ𝑞ℎ (5) 

𝑞 = [
𝑞𝑟𝑐
𝑞ℎ

] = 𝐺−1𝑈 = [
𝐻𝑟𝑐

𝐻ℎ
] 𝑈 (6) 

 

 
Figure 1. The rectangular panel and the element configuration 

 

Consider the rectangular plane stress element shown in Fig. 1. The in-plane strain and 

stress tensors are eij and ij. The governing plane-stress elasticity equations of the element 
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are described by Equations (7). The operator  stands for derivations of the displacement 

field and tensor Sij stands for the material elasticity coefficients.  

 

[

𝑒𝑥𝑥
𝑒𝑦𝑦
2𝑒𝑥𝑦

] = [

𝜕 𝜕𝑥⁄ 0
0 𝜕 𝜕𝑦⁄

𝜕 𝜕𝑦⁄ 𝜕 𝜕𝑥⁄
] [
𝑢
𝑣
] = ∆ [

𝑢
𝑣
]               𝜎𝑖𝑗 = 𝑆𝑖𝑗𝑒𝑖𝑗 (7) 

 

The generalized stiffness matrix associated with the rc-modes is derived from the 

potential energy principles by the following relation [16]:  

 

𝑘𝑞𝑟𝑐 = ∫ (∆𝑁𝑟𝑐)
𝑇𝑆(∆𝑁𝑟𝑐)𝑑𝑉

𝑉

 (8) 

 

The rigid-body modes are not influential in the rc-generalized stiffness matrix [16]. So, 

the r-modes can be ignored, and associated with the c-modes is obtained as kqc in the next 

equation.  

 

𝑘𝑞𝑐 = ∫ (∆𝑁𝑞𝑐)
𝑇
𝑆(∆𝑁𝑞𝑐)𝑑𝑉

𝑉

 (9) 

 

In the same way, the generalized stiffness matrix associated with the h-modes is derived 

[16]: 

 

𝑘𝑞ℎ = ∫ (∆𝑁ℎ)
𝑇𝑆(∆𝑁ℎ)𝑑𝑉

𝑉

 (10) 

 

The total stiffness matrix of the rectangular element is a combination of basic stiffness 

(Kb) and higher-order stiffness (Kh). Each part of the stiffness matrix is obtained by the 

generalized stiffness and geometric projectors. In Equation (11), Hc and Hh are geometric 

projectors that correspond to the c-modes and h-modes respectively and  is the free 

parameter of the template stiffness.  

 

𝐾 = 𝐾𝑏 + 𝐾ℎ(𝜶) = 𝐻𝑐
𝑇𝑘𝑞𝑐𝐻𝑐 + 𝜶𝐻ℎ

𝑇𝑘𝑞ℎ𝐻ℎ (11) 

 

Equation (11) is a new parametric form of the rectangular plane element stiffness for 

performing the vibration analysis and sensitivity optimization. The basic stiffness (Kb) 

satisfies consistency conditions and is the same for any rectangular elements with specified 

freedom configuration. The two conditions: consistency and stability are required for 
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convergence ensured by basic and higher-order matrices. The free parameter  provides the 

possibility to generate finite elements for this specific configuration. Specific elements are 

obtained by assigning numeric values to  parameter. This freedom of choice can be used to 

design custom elements for in-plane vibrations of the rectangular cantilever plate. The 

optimum value for  parameter increases the engineering accuracy, typically 1% in 

displacements and 10% in strains [5]. Some applications, notably in dynamic updating and 

damage detection problems require higher precisions in the natural frequencies and vibration 

mode shapes. In the present study, by performing sensitivity analysis of the frequency 

equation, the optimum value for  parameter is obtained.     

 

2.2 Mass template 

The consistent and diagonally-lumped mass matrices denoted by MC and ML, respectively, 

are the two widely used forms of mass matrices in structural dynamics. However, these 

models have major drawbacks in the special applications that require higher precisions. 

These drawbacks can be fulfilled with an approach that relies on the template idea. 

Availability of free parameters in the template approach, allows the mass matrix to be 

customized to the special needs in vibration analysis. Different ways can be applied to 

parameterizing mass matrices. In the study, the simple and effective method in practice is 

utilized. This method is named Matrix-Weighted Parameterization. In this method, a mass 

template for element e is a linear combination of (k+1) component mass matrices. The 

components of which k≥1, are weighted by k parameters by the following relation [6]: 

 

𝑀𝑒 = 𝑀0
𝑒 + 𝛽1𝑀1

𝑒 +⋯+ 𝛽𝑘𝑀𝑘
𝑒 (12) 

 

where, 𝑀0
𝑒 is the baseline mass matrix that should be an acceptable mass matrix if all of the  

weighted components are zero. The simple and effective mass template can be defined by 

only one weighted mass component 𝑀1
𝑒 = 𝑀𝐿

𝑒 −𝑀𝑐
𝑒 according to Equations (13) and (14) 

[12].  

 

𝑀𝑒 = 𝑀0
𝑒 + 𝛽1𝑀1

𝑒 = 𝑀𝑐
𝑒 + 𝛽(𝑀𝐿

𝑒 −𝑀𝑐
𝑒) (13) 

𝑀 = 𝑀𝑐 + 𝛽(𝑀𝐿 −𝑀𝐶) (14) 

 

In the last equation, MC is the consistent mass proposed by Archer [17]. The consistent 

mass is calculated using the Galerkin formulation that is referred to the variationally 

consistent. There are several ways to obtain the lumped mass matrix. In the present study, 

the lumped mass ML is obtained by HRZ method that was formulated by the contribution of 

Hinton, Rock and Zienkiewicz [18]. Hinton, Rock and Zienkiewicz [18], constructed the 

diagonal components of the lump mass matrix by scaling the total translational mass. The 

scaling factor is derived from the ratio of each diagonal component of the consistent mass 

with respect to the sum of all the diagonal components of the consistent mass. The HRZ 

method always produces positive lumped mass. 
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3.OPTIMIZATION OF FREE PARAMETERS IN THE MASS AND 

STIFFNESS TEMPLATES 
 

The actual vibrational properties of the structures are essential in many engineering 

problems, notably damage identification [19, 20]. Detection of damage severity can be 

considered as an inverse problem that relies on the dynamic updating of a finite element 

model [20]. It is highly desirable that updating procedures can apply to the simple finite 

elements with high accuracy and fast convergence properties. Furthermore, the modeling 

errors should not affect the results [21]. The mass and stiffness templates provide very 

useful parametric forms to fulfill these requirements. In this section, by using approximation 

methods based on the perturbation theory, a parametric form of the frequency equation is 

obtained and utilized for establishing the objective function and the optimum values for 

mass and stiffness parameters are obtained.   

 

3.1 Optimization method 

Eigenvalue perturbation theory is an attractive subject in structural engineering that 

originated from the work of Rayleigh in the 19th century. There are two main branches of 

this research, including analytical and numerical perturbation theory [22]. The numerical 

perturbation theory is applied frequently for eigenvalue optimization problems in vibration 

analysis [23, 24]. Sensitivity analysis has been carried out for optimization of eigenvalues 

for free vibrations and appropriate formulations for structural modeling [25]. In structural 

vibration modal analysis, the eigenvalues and their sensitivities are very important for 

engineering problems, such as optimization design, model updating, and damage 

identification [26, 27, 28]. At present, there are two kinds of methods to calculate the 

sensitivities of eigenvalues: exact methods and approximate methods [29, 30]. The changes 

of the eigenvalues and eigenvectors can be determined by accurate approximation in 

eigenvalue perturbation theory [30, 31]. 

In the present study, with the help of approximation concepts in structural optimization, 

the objective function is established. The approximation method based on the perturbation 

theory is applied to achieve the parameterized frequency equations for in-plane vibrations of 

the plane problems. In such a way, without time-consuming computations, the 

eigenfrequencies are approximated in terms of the changes of the design variables. This type 

of problem is structural optimization with respect to the modal characteristics, including 

eigenvalues and eigenvectors.  

The modal characteristics of a structure with n degrees of freedom in the initial state are 

determined by the eigenvalue equation: 

 

𝐾0𝜙0𝑖 − 𝜔0𝑖
2 𝑀0𝜙0𝑖 = 0 (15) 

 

where, K0(n×n) and M0(n×n) are stiffness and mass matrices of the structure, 0i and 0i are 

the ith eigenvalue and mode shape of the structure. The changes of eigenvalues and 

eigenvectors of the structure can be determined by the perturbation method. The perturbed 

eigenvalue equation can be written as follows: 



OPTIMIZING MASS FOR VIBRATION ANALYSIS OF PLANE STRUCTURE 

 

257 

(𝐾0 + 𝛿𝐾)(𝜙0𝑖 + 𝛿𝜙𝑖) − (𝜔0𝑖
2 +𝛿𝜔𝑖

2)(𝑀0 + 𝛿𝑀)(𝜙0𝑖 + 𝛿𝜙𝑖) = 0 (16) 

 

Here, 𝛿𝐾 and 𝛿𝑀 are corresponding perturbations in the stiffness and mass matrices. 

Eigenvalue and eigenvector perturbations denoted by 𝛿𝜔𝑖
2 and 𝛿𝜙𝑖, respectively. If the 

changes of structural parameters are slight, the second and higher-order terms can be 

neglected and the first order perturbed equation is obtained:  

 

𝛿𝐾𝜙0𝑖 = 𝜔0𝑖
2 𝛿𝑀𝜙0𝑖 + 𝛿𝜔𝑖

2𝑀0𝜙0𝑖 (17) 

 

By Multiplying both sides of Equation (17) by 𝜙0𝑖
𝑇 , the perturbed eigenfrequency can be 

defined as a function of 𝛿𝐾 and 𝛿𝑀: 

 

𝛿𝜔𝑖
2 =

𝜙0𝑖
𝑇 𝛿𝐾𝜙0𝑖 − 𝜔0𝑖

2 𝜙0𝑖
𝑇 𝛿𝑀𝜙0𝑖

𝜙0𝑖
𝑇 𝑀0𝜙0𝑖

 (18) 

 

According to the Equations (11) and (14) presented in section 2 of this paper, the 

changes of stiffness and mass matrices depend on the changes of two free parameters  and 

 respectively. So, the perturbed stiffness and mass are defined by 𝛿𝛼 and 𝛿𝛽: 

 

𝛿𝐾 = 𝛿𝛼𝐾ℎ        ,       𝛿𝑀 = 𝛿𝛽(𝑀𝐿 −𝑀𝐶) (19) 

 

Equation (18) and (19) yields new equation for the changes of eigenfrequencies as a 

function of 𝛿𝛼 and 𝛿𝛽: 

 

𝛿𝜔𝑖
2 =

𝜙0𝑖
𝑇 (𝛿𝛼𝐾ℎ)𝜙0𝑖 − 𝜔0𝑖

2 𝜙0𝑖
𝑇 (𝛿𝛽(𝑀𝐿 −𝑀𝐶))𝜙0𝑖

𝜙0𝑖
𝑇 𝑀0𝜙0𝑖

 (20) 

𝜔𝑖
2 = 𝜔0𝑖

2 + 𝛿𝜔𝑖
2        ,           𝜔𝑖 = √𝜔0𝑖

2 + 𝛿𝜔𝑖
2 (21) 

 

By using Equations (20) and (21), the natural frequencies due to the changes of template-

free parameters can be determined. It is worth emphasizing that this scheme is a very 

efficient computational method. Because, there is no need to solve the eigenvalue problem 

for finding these changes.  

 

3.2 Proposed optimization algorithm for finding optimum values of free parameters  

When a general template is configured, among the numerous mass and stiffness matrices 

that can be generated, the best ones should be found. The best elements depend on the 

optimum values of the free parameters. In previous studies, these optimum values are 

determined at the local level by using a conventional error analysis in the bending tests of a 

patch of elements. It was usually followed by several heuristic optimization constraints. In 
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the study, an optimization procedure is developed to obtain the optimum values for free 

parameters of the mass and stiffness templates. The suggested technique is based on the 

sensitivity of the frequency equation with respect to the free parameters  and  of the 

template (Eq. (20)). The objective function is established by minimizing the natural 

frequency of the finite element model  and its desired value d (Eq. (22)). In Equation 

(22), two parameters  and  are design variables of the objective function: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∆= (
𝜔 − 𝜔𝑑

𝜔𝑑
)
2

 (22) 

 

The desired value for the natural frequencies (d) can be assumed as experimental data or 

the exact solutions of the benchmarks. The authors’ procedure is outlined by a flowchart in 

Fig. 2. As observed in Fig. 2, the initial values for  and  are chosen as 1 and 0 

respectively. By these initial values, the eigenvalue equation of the structure is solved. 

Afterward, the frequency equation based on the sensitivity analysis is established by the 

eigenvalues and eigenvectors. The objective function in Eq. (22) is set upped and solved 

using the quasi-Newton optimization method. The quasi-Newton optimization method gives 

the optimum values for  and . The free parameters are updated by =0- and 

=0+. When the updated values of  and  convinced the requirement, the calculation 

process is ended, and the new optimum mass and stiffness matrices are generated.  

The accurate element stiffness and mass matrices are determined during numerical 

studies. Several numerical examples with different shapes and element aspect ratios are 

considered. The proposed optimization method is applied to achieve the element mass model 

that satisfies the accepted criteria from a parametric family of admissible mass matrices. In 

this optimization process, special attention is paid to reducing the errors in each vibration 

mode. Hence, a pair of stiffness and mass model is proposed with minimum errors and the 

highest convergence rate. The stiffness and mass models are obtained by optimum values of 

 and , 0.5 and 0.35 respectively.  

The advantages of using the proposed mass and stiffness model are simple and fast 

convergence, especially in the high-frequency range of vibration modes. The number of 

unknowns is significantly decreased with respect to the other methods, without any loss of 

accuracy. The efficiencies in estimating the eigenvalues are presented in the numerical case 

studies. 
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Figure 2. The proposed flowchart to find the optimum values for the free parameters of the 

mass and stiffness templates 

 

 

4. NUMERICAL STUDY 
 

In this section, the relative efficiencies of the proposed method over the usually associated 

methods are demonstrated through the three numerical examples. The exact solutions of 

these examples are derived from the previous analytical studies and the numerical studies 

that were carried out by ANSYS commercial software using the fine meshes of PLANE 42 

elements. The optimum values of the free parameters of the mass and stiffness templates are 

obtained by the proposed optimization procedure (Sec. 3 and Fig. (2)).  

 
4.1 Square cantilever plate (lx/ly=1) 

In this numerical example, a square cantilever plate that is vibrating in its own plane, is 

analyzed. The side lengths of the square plate are lx=ly=10. The plate thickness is one unit, 

and Poisson's ratio is 0.3. This plate was analyzed by Gupta [32] and Stavrinidis et. al. [9] by 

the finite-element method (Fig. 3). The exact analytical dimensionless natural frequencies of 

the square plate are obtained by Seok et al. [2] that are presented in Table 1.  
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Table1: Exact solutions for dimensionless natural frequencies of the cantilever square plate 

 First Vibration mode Second Vibration mode Third Vibration mode 

Parametric 

exact solution 

(Seok et al., 

[2]) 

(0.3370) ×
𝜋

𝑙𝑥

×√
𝐸

𝜌(2(1 + 𝜐))
 

(0.8102) ×
𝜋

𝑙𝑥

× √
𝐸

𝜌(2(1 + 𝜐))
 

(0.9093) ×
𝜋

𝑙𝑥

×√
𝐸

𝜌(2(1 + 𝜐))
 

Exact solution 

for 

ν=0.3 , 2b=10 

(0.06566) × √
𝐸

𝜌
 (0.15785) × √

𝐸

𝜌
 (0.17716) × √

𝐸

𝜌
 

 

 
Figure 3. The first three vibration modes of the square plate (lx=10, ly=10) 

 

The cantilever square plate is discretized by a coarse mesh of the template elements and 

the natural frequencies and associated modes are calculated and used for establishing the 

approximate frequency equation. The optimum values for the free parameters of the 

template are determined by the proposed optimization procedure described in Sec. 3 of the 

paper. By implementing this algorithm, the optimum values =0.5 and =0.35 are chosen 

for the analysis.  

By using Equation (20), the sensitivities of the first natural frequencies of the square plate 

with respect to the changes of the free parameter in the mass template,  are calculated. The 

results are depicted in Fig. 4. As observed in Fig. 4, the rate of the sensitivity depends on the 

size of the mesh. For two types of very coarse mesh, the values  close to 0.35, lead to 

accurate frequencies. 

 

 
Figure 4. Sensitivity study for the first dimensionless natural frequency of the square plate 

(lx=10, ly=10) 
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In order to convergence studies, the cantilever plate is discretized by an increasing 

number of the proposed elements, and the convergence of the method is compared to those 

obtained by ANSYS software. According to the Figs. 5-7, compromising results are found. 

The proposed finite element mass and stiffness converge very fast in the small number of 

degrees of freedom. The accurate results are obtained by ANSYS for 882 degrees of 

freedom. Whereas, the same accurate results are obtained by the optimum mass and stiffness 

in 50 degrees of freedom. The difference between the usual finite element modeling and the 

proposed method is more significant in the high-frequency vibration modes (Fig. 7). As 

shown in Fig. 7, the precise natural frequencies are obtained with respect to ANSYS results. 

Furthermore, the proposed mass and stiffness pair is more accurate than the mass matrix 

formulation proposed by Stavrinidis et. al. [9].   

To reach a more general conclusion, the square plate is also analyzed by the optimum 

stiffness with the free parameter =0.5 and four different forms of the mass matrices, 

including: lumped, consistent, linear combination, and template mass. For each form of the 

mass matrices, the averages of the errors of the three first natural frequencies are calculated. 

Fig. 8 shows the effect of the mass matrix formulation on the convergence. Based on the 

findings, the proposed template mass with the free parameter =0.35 yield minimum errors 

during the convergence study. 
 

 
Figure 5. Convergence study for the first dimensionless natural frequency of the square plate 

(lx=10, ly=10) 
 

 
Figure 6. Convergence study for the second dimensionless natural frequency of the square plate 

(lx=10, ly=10) 
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Figure 7. Convergence study for the third dimensionless natural frequency of the square plate 

(lx=10, ly=10) 

 

 
Figure 8. Average frequency errors for three first vibration modes of the square plate (lx=10, 

ly=10) with optimum stiffness template and four different mass matrices 

 

4.2 Rectangular cantilever plate (lx/ly=2/5) 

In the case of rectangular cantilever plates similar to the concrete shear walls of the 

buildings, this numerical study is undertaken and discussed (Fig. 9). The dimensions of the 

rectangular plate are lx=4, ly=10, and Poisson's ratio is 0.2. The free in-plane vibration of this 

cantilever plate was analyzed by Seok et al. [2]. They used a variational approximation 

procedure to obtain the exact solutions [2]. In the present study, this rectangular plate is 

analyzed utilizing the optimum mass and stiffness templates.  
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Figure 9. The first three vibration modes of the rectangular plate (lx=4, ly=10) 

 

According to Sec. (3), the optimum values for the free parameters of the mass and 

stiffness templates are determined by perturbation theory and sensitivity analysis. The 

stiffness and mass templates with =0.5 and =0.35 are selected for the finite element 

analysis. The results for mesh 2×4 and mesh 4×8 of the present study are summarized in 

Table (2). According to the obtained results in Table (2), by using the template approach, the 

model of mesh 4×8 with 90 degrees of freedoms yields accurate results closed to the exact 

solution. To achieve these accurate results, it is needed to utilize the finite-element model 

with about 900 degrees of freedom in ANSYS software (Figs. 10-12). The results indicate 

that the model is precise and fast convergent.  

 

Table 2: Dimensionless natural frequencies of the cantilever rectangular plate  = √
𝐸

𝜌
 , lx/ly=2/5 

 First Vibration mode Second Vibration mode Third Vibration mode 

Exact solution for 

ν=0.2, lx =4 
(0.03669) × 𝜆 (0.15740) × 𝜆 (0.15810) × 𝜆 

mesh (2×4) –present study 

=0.5 , =0.35 
(0.03640) × 𝜆 (0.1578) × 𝜆 (0.1651) × 𝜆 

mesh (4×8) –present study 

=0.5 , , =0.35 
(0.0366) × 𝜆 (0.1575) × 𝜆 (0.1598) × 𝜆 

 

The convergence study is carried out, and the results are compared to the numerical 

results of ANSYS software (Figs. 10-12). To study the influence of the mass matrix 

formulation, the mass matrices derived by consistent, lumped, template and combination 

methods are utilized with the optimum stiffness template (=0.5) in the finite-element 

model. For these mass models, the average errors of the first three vibration modes are 

calculated and presented in Fig. 13. According to Fig. 13, template mass gives more accurate 

results.  
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Figure 10. Convergence study for the first dimensionless natural frequency of the rectangular 

plate (lx=4, ly=10) 

 

 
Figure 11. Convergence study for the second dimensionless natural frequency of the rectangular 

plate (lx=4, ly=10) 

 

 
Figure 12. Convergence study for the third dimensionless natural frequency of the rectangular 

plate (lx=4, ly=10) 
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Figure 13. Average frequency errors for three first vibration modes of the rectangular plate (lx=4, 

ly=10) with optimum stiffness template and four different mass matrices 
 

4.3 Rectangular cantilever plate (lx/ly=3/2) 

In this numerical example, the vibration response of a short height cantilever rectangular 

plate is studied by the proposed method. The rectangular plate with the height of four units 

and the width of six units is analyzed. It is similar to the rectangular plate employed by Seok 

et al. [2]. To find the exact eigenfrequencies, Seok et al. [2] utilized a variational 

approximation procedure.  
 

Table 2: Dimensionless natural frequencies of the cantilever rectangular plate lx/ly=3/2 

 First Vibration mode Second Vibration mode Third Vibration mode 

Exact solution for 

ν=0.2, lx =6 
(0.19534) × √

𝐸

𝜌
 (0.39360) × √

𝐸

𝜌
 (0.43478) × √

𝐸

𝜌
 

 

 
Figure 14. The first three vibration modes of the rectangular plate (lx=6, ly=4) 

 

 
Figure 15. Convergence study for the first dimensionless natural frequency of the rectangular 

plate (lx=6, ly=4) 
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Figure 16. Convergence study for the second dimensionless natural frequency of the rectangular 

plate (lx=6, ly=4) 

 

 
Figure 17. Convergence study for the third dimensionless natural frequency of the rectangular 

plate (lx=6, ly=4) 

 

 
Figure 18. Average frequency errors for three first vibration modes of the rectangular plate (lx=6, 

ly=4) with optimum stiffness template and four different mass matrices  
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4.4 Results and discussion 

In this study, in-plane vibrations of the plane problems with different dimensions, were 

analyzed by the proposed mass and stiffness matrices. Because of the fast convergence 

properties and high accuracy of the suggested scheme, all the obtained numerical results 

were better than ANSYS software. Moreover, the authors’ technique led to the better 

responses than the other conventional finite element formulations, such as, assumed shape 

functions and variational methods. The conventional methods are the basis for construing 

lumped and consistent mass formulations. These ways cannot analyze efficiently all the 

engineering problems [5, 6]. The general approach relies on the template has the virtue of 

generating custom elements for engineering applications, such as, plane vibrations.  

According to the findings, even when using only small numbers of degrees of freedoms, 

the great distances between the results of ANSYS and the present study in the prepared 

figures confirm firmly the efficiencies and accuracy of the suggested parametric form of the 

stiffness template. No correction is needed for calculated coefficients, because they led to 

the precise and fast convergent. The achieved responses by using only small numbers of 

degrees of freedoms demonstrated clearly the efficiencies and accuracy of the authors’ 

scheme. 

It is worth mentioning that the proposed method has the limitations in the high aspect 

ratios of the mesh. This behavior is similar and common to the other finite element 

solutions.  

 

 

5. CONCLUDING REMARKS  
 

The proposed element mass and stiffness matrices were optimized in this study. Based on 

the perturbation theory and sensitivity analysis, the Authors’ technique utilized an 

optimization method for a finite element template. The optimum values for the free 

parameters of the mass and stiffness template were found to obtain precise natural 

frequencies of the plane problems. By performing several numerical and comparison studies, 

the efficiencies of the optimum elements were demonstrated, and the following conclusions 

were drawn: 

 A new pair of mass and stiffness matrices for in-plane vibration analysis of the plane 

problem was obtained based on the template approach. Two vital optimum values of 

=0.5 and =0.35 were found for the optimum stiffness and mass respectively. 

 The benefits of the proposed element mass and stiffness matrices are the highest 

convergence rate and precision in the limited number of degrees of freedom. These 

properties are valuable in the updating process of some actual experimental applications 

with a limited number of sensors and degrees of freedom.  

 The precision of the proposed pair of mass and stiffness matrices became more 

significant in the higher-frequency vibration modes. Due to the increasing interest to use 

the higher frequencies of in-plane vibrations in some engineering designs such as 

acoustics, blast loads, and ship hull, it is a very useful property. 
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 The new mass and stiffness matrices require no complicated and time-consuming 

computations and can be implemented easily into finite element codes. 
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