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ABSTRACT 
 

Beyond common practice that treats structural damage detection as an optimization problem, 

the present work offers another approach that updates boundaries of the damage ratios. In 

this approach the bandwidth between such lower and upper boundaries, is adaptively 

reduced aiming to coincide at the true damage state. Formulation of the proposed method is 

developed using modal strain energy in a system of finite elements. A resolution-based 

technique is applied so that the search space cardinality can be defined and then reduced. 

The proposed method is validated on different structural types including beam, frame and 

truss examples with various damage scenarios. The results exhibit high cardinality reduction 

and capability of the proposed iterative method in squeezing the design space for more 

efficient search.  
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1. INTRODUCTION 
 

Structural Health Monitoring (SHM) is a rewarding task for practical engineering 

applications that have received considerable attention in recent decades [1,2]. In a major 

branch of SHM, damage detection techniques are utilized to evaluate the current state of an 

existing structure. A common approach in structural damage detection is formulating it as an 

inverse problem. It can be distinguished via the following levels [3]: 

Level 1: Determining the damage occurrence in the structure  
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Level 2: Detecting geometry and location of the damage 

Level 3: Quantifying severity of the damage 
Level 4: Predicting the remained service life of the structure 

Dynamic responses of a structure undergo changes due to variation of its mass, stiffness 

or damping properties. Structural damage causes loss of stiffness in one or more elements of 

the model and consequently affects its modal shapes and frequencies. However, it is difficult 

to localize the damage by mere use of the global dynamic properties. For example, spatial 

information about structural damage distribution may not generally be obtained by a single 

vibration frequency. Multiple frequency shifts, may better provide such spatial information, 

as variation of structural properties at different locations will cause different combinations of 

changes in the modal frequencies [4] .  

Yuen examined variation of mode-shape and mode-shape-slope parameters [5]. Stubbs et 

al. [6] developed another damage detection method using sensitivity of modal frequency 

changes. The sensitivity equations for the entire dynamical system are rearranged as a 

system of algebraic equations with unknowns of stiffness losses at selected locations. Hearn 

and Testa [7] developed a damage detection method that examines the ratio of changes in 

natural frequency for various modes. Kam and Lee [8] presented an analytical formulation 

for locating a crack and quantifying its severity considering changes in the vibration 

frequency and mode shape. Richardson and Mannan [9] proposed a method that assumes 

that damage is limited to changes in the stiffness. The method requires pre-damage mode 

shapes, pre-damage frequency measurements, and post-damage frequency measurements. 

Balis Crema et al. [10] used the modal parameter sensitivity equations presented by Stubbs 

et al. [6] to locate damage They examined not only the effects of the location of the damage 

on successful damage detection but also the relationship between the modes used in the 

analysis and the position of the damage.  

A number of investigators applied meta-heuristics to identify structural damage. Nobahari 

et al. [11] used a residual force function with genetic algorithm to identify damage in truss 

structures. Gomez and Silva [12] performed comparisons on application of genetic algorithms 

with modal data for this problem. Kang et al. [13], applied a hybrid particle swarm optimizer 

for damage detection of beam structures. A simplified dolphin echolocation algorithm was 

proposed by Kaveh et al. [14] using modal data of structures. Shahrouzi and Sabzi [15] 

introduced two hybrid variants of teaching-learning-based optimization and artificial immune 

system to identify damage in planar and spatial truss structures. Kaveh and Dadras [16] 

proposed structural damage identification by an enhanced thermal exchange optimization. 

Sarjamei et al. [17] studied structural damage detection using gold rush opimization algorithm. 

Ghannadi and Kourehli [18] applied a modified total modal assurance criteria in three recent 

meta-heuristics including multi-verse optimizer. Jiang et al. applied beetle swarm optimization 

algorithm for localizing and quantifying structural damage [19]. Kaveh et al. [20] developed a 

boundary-strategy to enhance damage identification in four different meta-heuristics including 

shuffled shepherd optimization algorithm.  

The present work concerns modal strain energy relations [21–23] to derive a system of 

governing equations. It is furthermore used via a novel procedure to iteratively refine the 

upper and lower bounds on the damage ratios. A resolution-based strategy enables definition 

of search space cardinality so that its reduction can be further traced. The proposed method 
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is applied on three examples of different types; including beam, frame and truss structures. 

In each case, single and multiple damage scenarios are treated to evaluate how the proposed 

method can squeeze the search space and by which resolution indices it can converge to the 

prescribed damage state. 

 

 

2. GOVERNING EQUATIONS  
 

For a structural system with the stiffness matrix of [K] and the mass matrix of [M], the 

eigenvalue problem is expressed as: 

 

   
2

  { }   { }K M
i i i

      (1) 

 

In the typical ith mode; the eigenvalue is square of the corresponding circular frequency 

i
  and the mode shape vector is denoted by { }

i
 . 

The damage state of a structural system is modelled by a stiffness loss in the 

corresponding element matrix as:  

 

 1    d u
e e e

K K   
   

  (2) 

 

where αₑ stands for the Damage Ratio (DR) of the eth element that varies between 0 and 1. 

 d
eK 

 
and  u

eK 
 

denote the corresponding damaged and undamaged stiffness matrices, 

respectively. Modal Strain Energy (MSE) of an eth element in the ith mode is defined as:  

 

{ } { } { } { } 1     ,    1   ( ) / ( ),    T
ie e e

TMSE K M i to N e to N
i i i i m e

                 (3) 

 

The stiffness and mass matrices for the eth-element in global coordinates are denoted 

by
e

K 
 

 and
e

M 
 

, respectively. The vector{ }
i

 stands for the ith mode shape. Here-in-after, 

assume that the mode shapes that are normalized to the mass matrix; i.e.: 

 

{ } { } 1
e

T M
i i

       (4) 

 

Consequently, the modal strain energy of an eth element in the ith mode is simplified as:  

 

{ } { }
ie e

TMSE K
i i

  
     (5) 

 

Summing the relation over elements, the total modal strain energy of the structure is 

obtained for the normalized ith mode as:  



N. Sedaghati and M. Shahrouzi 

 

560 

2{ } { }
i

TMSE K
i i i

        (6) 

 

The modal strain energy for a healthy element e is calculated as: 

 
T

uu u u
i i

ie e
MSE K       

    
  (7) 

 

While for the damaged eth element, it is given as follows employing true damaged ith mode-

shape:  

 

 d

e

T
dd d d

i i
ie

MSE K            
 (8) 

 

In practical cases that stiffness of the damaged element is not known, MSE is 

approximated using the undamaged stiffness matrix as:   

 

 u

e

T
d d d

i i
ie

MSE K            
 (9) 

 

Considering Eq.(2) we have: 

 

(1 )e

dd dMSE MSE
ie ie

   (10) 

 

The total stiffness matrix is obtained by assemblying the corresponding element matrices; 

that gives: 

 

e

d dMSE MSE
ie i
  (11) 

 

Therefore, the damage ratios should satisfy the follwoing equation: 

 

   2

1

1     ( )   
eN

d d

e ie i

e

MSE 


   (12) 

 

Effective Modal Strain Energy, EMSE, for the eth element at the ith mode is defined as: 

 
2

/ ( )
d d

ie ie i
EMSE MSE   (13) 

 

Applying mN modes of vibration, the aforementioned equations can be rearranged  as: 

 

1

1, 1,...,
eN

m

e
ie e ie

EMSE EMSE i N


     (14) 
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3. THE PROPOSED METHOD OF DAMAGE-BOUNDARY DETECTION 
 

Eq.(14) represents a system of linear equations with e as its unknowns. It cannot directly 

be solved for most practical cases when the number of equations does not coincide with the 

number of elements. But it can be used to update limits on  e  by the proposed Damage-

Boundary-Detection (DBD) procedure. DBD algorithm is given via the following steps: 

Step 1. Set the control parameters of the algorithm; including the small 

thresholds , ,   .  

Step 2. Initiate the structural model and the consequent mass matrix. Generate 

undamaged stiffness matrix of each element and assemble them in the total stiffness matrix 

of the structure.  

Step 3. For mN number of modes, solve eigenvalue problem to find the vibration 

properties. Set the iteration number t to 1. Denote the lower and upper bounds on the 

damage ratio of the element e, by ,L t

e  and 
,U t

e , respectively. 

Step 4. Determine  ,d d

i i   for the assigned damage scenario and normalize the mode 

shapes to the mass matrix. 

Step 5. For the considered damage scenario, update Eq. (14) by computing Effective 

Modal Strain Energy for every eth element at the ith mode: 
ie

EMSE .  

Step 6. For linear equation of Eq. (14) at every mode do: 

- For each element e do: 

o Initiate
,tU

h by 1  for {1,2,..., }eh N h e    

o Use Eq. (14) in the corresponding mode to update
,tL

h  

- For each element e do: 

o By the updated
,tL

h for {1,2,..., }eh N h e   , solve Eq. (14) in the corresponding 

mode to update
,tU

h  

o Compute the bandwidth of the corresponding damage ratio as
,t ,tt U L

e h h     

Step 7. Update ,L U

h h  by the new values when fall within previous limits. 

Step 8. If , t,t LU
e e    , take damage ratio of the corresponding element as: 

 
, ,( ) / 2L t U t

e e e     (15) 

 

Step 9. Check the termination criteria: 

- If   {1,2,..., }ee N  ,     , t 1,t LL
ei ei  


      , t 1,t UU

ei ei  


  , 

o then go to Step 10 

o otherwise 

 Increase the iteration number by 1 
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 go back to Step 5  

Step 10. Announce the updated ,L U
e e

  and their mean as the final results. 

Note that the upper limit is initiated as 1U

e   to preserve 1U

e   and prevent 

instability in Eigen solution of Eq. (1). In cases that EMSE
ie

falls below a very small value; 

say max( )tEMSE
iee

  , it is suppressed (temporarily replaced by 0) during solution of 

Eq. (14) to avoid abnormal results. 

For practical implementation of DBD, the range of [ , ]L U

e e   is discretized to a finite 

sequence of{ , , 2 ,..., }L L L U

e e e e       . The tiny interval is taken 10 r

 where r is an integer 

resolution index for such a discretization. In another word, every DR is rounded to r floating 

points. Such a discretization, enables definition of the search space cardinality ( )t for any 

iteration, t, as: 

 

( )

1

,t,t[1 ( ) / ] 
Ne

t

e

LU
e e

   


    (16) 

 

It is evident that such a cardinality, exponentially grows with increasing the total number 

of elements eN or the resolution index r.  

The search space Cardinality Reduction (CR) is thus defined as the ratio of ( )t over its 

initial value: 

 
( ) ( ) (1)/t tCR    (17) 

 

The smaller CR, the higher reduction of the search space is achieved. CR varies from 1 

toward 0. The best CR is 0 when the lower and upper bounds on the damage ratio coincide 

with each other; i.e. L U
e e e

    . It is noteworthy to indicate that DBD requires just 

2 .e mN N  evaluations at every iteration for a structure with eN elements and mN considered 

modes of vibration. 

 

 

4. NUMERICAL SIMULATION 
 

Examples in three structural types are considered to evaluate performance of the proposed 

DBD in cardinality reduction. They include a flexural beam, a two-story frame and a space 

truss. Different damage scenarios are concerned in each example; including damages in a 

single element or multiple-elements. Furthermore, to examine whether DBD can detect 

location and/or severity of the damages, an error index is defined between the true and the 

calculated damage states. It is given by: 
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1

Ne trueError e e
e

  


 (18) 

 

For practical purposes, the control parameters of the algorithm are taken dependent to the 

resolution index; r, as 10 r  , 0.5   and 0.1  . Each case is solved by altering the 

resolution index to study its effect on performance of the proposed DBD in refining the 

damage ratio boundaries and detecting the prescribed state of the damage.  

 

4.1 12-element beam 

For the first example, a flexural beam with 12 elements is considered as previously 

addressed in literature [24]. As evident in Fig. 1, the beam is fixed at both ends. It is 

constructed from steel with the density of 37870 /kg m and the elasticity modulus of 207GPa . 

Every element has identical length of 0.60m , section area of 20.0016m and moment of 

inertia of 9 43.4133 10 m . Two damage scenarios are considered, as given in Table 1. The 

first scenario constitutes a single damaged element at the middle of the beam.  Fig. 2 shows 

performance of the proposed method in this case using different resolution indices. It is 

observed that the location of damage is detected but the bounds on the damage ratio are 

affected by the applied resolution. Especially the lower bound of damage ratio is below its 

prescribed value for the resolution indices less than 4. Increasing the resolution index, both 

the lower and upper bounds approach true damage ratios. The matter is numerically 

confirmed by Table 2.  
 

 
Figure 1. The 12-element clamped-clamped beam 

 

 

Table 2: Damage ratios obtained by different resolutions for the 12-element beam 

Damage  r = 3   r = 4  

Scenario e 
L

e  
U

e  
 

L

e  
U

e  
S1 6 0.1490 0.1500  0.1499 0.1500 

 others 0.0000 0.0000  0.0000 0.0000 

       

S2 6 0.0980 0.1000  0.0999 0.1000 

 11 0.0990 0.1000  0.0999 0.1000 

 others 0.0000 0.0000  0.0000 0.0000 

e: Element Number, r: Resolution index 

 

Table 3 reveals that the resolution index of 4r   has resulted in CR of 10-10.8; that means 

more than 10 million times smaller search space with respect to 3r  . Table 4 confirms that 
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the resulting error has decreased to the tiny value of 0.00005 for 4r  , in this single-damage 

scenario. The least error for the multiple-damage in the 2nd scenario is obtained as 0.00010; 

that again corresponds to the highest applied resolution.  Fig. 3 reveals that by 3r  , DBD has 

just identified the location of damage; however, by applying 4r   its severity is also detected.  

 

Table 1: Damage scenarios of the 12-element beam 

Damage Scenario e 
True

e  

S1 6 0.15 

   

S2 6 0.10 

 11 0.10 

e: Element Number 

In the 2nd scenario,  

Table 2: Damage ratios obtained by different resolutions for the 12-element beam 

Damage  r = 3   r = 4  

Scenario e 
L

e  
U

e  
 

L

e  
U

e  
S1 6 0.1490 0.1500  0.1499 0.1500 

 others 0.0000 0.0000  0.0000 0.0000 

       

S2 6 0.0980 0.1000  0.0999 0.1000 

 11 0.0990 0.1000  0.0999 0.1000 

 others 0.0000 0.0000  0.0000 0.0000 

e: Element Number, r: Resolution index 

 

Table 3 declares that the applying 4r   has resulted in CR of 10-20.3; i.e. about 1010 times 

smaller search space than the other case in the same scenario. Furthermore, the multiple-

damage scenario reveals better CR values than the single-damage scenario for every 

resolution index. It is confirmed by Fig. 4, where the curves of Log (CR) are plotted vs. 

iteration. It is observed that the higher the resolution, the more iterations are needed to 

converge. 
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(a)              (b) 

Figure 2. The effect of increasing resolution in detection of damage scenario S1 for the 

12-element beam 
 

 

 
(a)              (b) 

Figure 3. The effect of increasing resolution in detection of damage scenario S2 for the 

12-element beam 

 

 
Figure 4. Cardinality reduction histories in damage detection of the 12-element beam 
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Table 2: Damage ratios obtained by different resolutions for the 12-element beam 

Damage  r = 3   r = 4  

Scenario e 
L

e  
U

e  
 

L

e  
U

e  
S1 6 0.1490 0.1500  0.1499 0.1500 

 others 0.0000 0.0000  0.0000 0.0000 

       

S2 6 0.0980 0.1000  0.0999 0.1000 

 11 0.0990 0.1000  0.0999 0.1000 

 others 0.0000 0.0000  0.0000 0.0000 

e: Element Number, r: Resolution index 

 

Table 3: The resulted CR in damage detection of the 12-element beam 

Damage Scenario r = 3 r = 4 

S1 10-3.2 10-10.8 

S2 10-9.8 10-20.3 

 

Table 4: The resulted Error in damage detection of the 12-element beam 

Damage Scenario r = 3 r = 4 

S1 0.00050 0.00005 

S2 0.00150 0.00010 

 

 
Figure 5. The 9-element planar frame 

 

4.2 9-element moment frame 

The multi-story steel moment frame of Figure 5 is treated with three degrees of freedom at 

each node. Modulus of elasticity, mass density, moment of inertia and cross sectional area 

for each element are 207GPa , 37870 /kg m , 7 41.125 10 m and 20.0015m , respectively.  

This example has already been studied with single and multiple-damage scenarios [24]. 

According to Table 5, in the first scenario the element 8 undergoes 15% stiffness loss while 

in the second 10% damage has occurred in the elements 4 and 8. An additional third 

scenario is also considered here, in which the elements 1, 4 and 7 experience stiffness losses 

of 10%, 15% and 20%, respectively. 
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Table 5: Damage scenarios of the 9-element frame 

Damage Scenario e 
True

e  

S1 8 0.15 

   

S2 4 0.10 

 8 0.10 

   

S3 1 0.10 

 4 0.15 

 7 0.20 
 

 
(a)              (b) 

Figure 6. The effect of increasing resolution in detection of scenario S1 for the 9-element frame 

 

In the first experiment, damage scenario S1 is treated with the resolution of 3r  . 

According to Fig. 6a, in this case the proposed DBD has successfully detected position of 

the damage (the element 8); however, the lower bound on the corresponding damage 

ratio
8

L  has not converged to true value of
8 0.15true  . Therefore, 3r   is not sufficient for 

detection of damage severity in this scenario. In the second experiment of scenario S1, the 

resolution index is increased to 4.  

 
(a)              (b) 

Figure 7. The effect of increasing resolution in detection of scenario S2 for the 9-element frame 
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(a)               (b) 

Figure 8. The effect of increasing resolution in detection of damage scenario S3 for the 9-element 

frame 

 

According to Table 6 and Fig. 6b, in this case, the bounds on the damage ratio have 

converged to the value of 0.15 for the element 8 and 0.00 for the others. Finding location of 

true damage; i.e.  the elements 1, 2 and 7 due to the 3rd scenario; is slightly violated by
8

U of 

0.001 in the case of the lower resolution 3r  . Comparison with the other case of 4r  , 

reveals that 
8

U  is approaching zero by increasing such a resolution index. Note that in the 

3rd scenario, the number of damaged elements over undamaged is as large as 50%. It is while 

DBD has successfully located the damage in the other two scenarios with lower ratio of 

damaged-to-undamaged elements. 

 
Table 6: Damage ratios obtained by different resolutions for the 9-element frame 

Damage  r = 3   r = 4  

Scenario e 
L

e  
U

e  
 

L

e  
U

e  
S1 8 0.1150 0.1500  0.1499 0.1500 

 others 0.0000 0.0000  0.0000 0.0000 

       

S2 4 0.0980 0.1000  0.0999 0.1000 

 8 0.0990 0.1000  0.0999 0.1000 

 others 0.0000 0.0000  0.0000 0.0000 

       

S3 1 0.0990 0.1000  0.0999 0.1000 

 4 0.1490 0.1500  0.1499 0.1500 

 7 0.1990 0.2000  0.1999 0.2000 

 8 0.0000 0.0010  0.0000 0.0001 

 others 0.0000 0.0000  0.0000 0.0000 
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Table 7: The resulted CR in damage detection of the 9-element frame 

Damage Scenario r = 3 r = 4 

S1 10-0.3 10-3.2 

S2 10-8.3 10-16.6 

S3 10-14.0 10-22.9 

 

Table 8: The resulted Error in damage detection of the 9-element frame 

Damage Scenario r = 3 r = 4 

S1 0.01750 0.00005 

S2 0.00150 0.00010 

S3 0.00200 0.00020 

 

Such experiments are repeated for the 2nd damage scenario. Fig. 7 reveals that by 

increasing the resolution index from 3 to 4, true damage state of this scenario is captured by 

DBD. Note that in the 2nd scenario two elements (with ID numbers 4 and 8) have undergone 

different damage ratios. Similar phenomena is observed for the 3rd scenario of this example 

in Fig. 8, where three elements experience linearly increased damage ratios. 

Another issue to study is variation of the search space cardinality, in each case. 

According to Table 7, in the first damage scenario CR has decreased from 10-0.3 to 10-3.2 by 

increasing r from 3 to 4; that means nearly 800 times smaller search space. Such reduction is 

obtained 108.3 times for the 2nd scenario and 108.9 times for the 3rd. So the amount of search 

space reduction by DBD depends on the given damage scenario. Note that in this example, 

CR has been more reduced for multiple-damage scenarios with respect to the single-damage 

(the first) scenario. 

Fig. 9 compares CR convergence curves for different resolution of the treated scenarios, 

in logarithmic scale. It can be realized that in the 1st damage scenario DBD has converged in 

2 iterations for 3r   and in 3 iterations for 4r  . Switching to the next scenario, the number 

of iterations to converge differs, as in Fig. 9. In this example, for a specific resolution index, 

better CR reduction is observed for the damage scenario S3 with respect to S2 and also for 

the damage scenario S2 with respect to S1. Note that the number of damaged elements, is 1, 2 

and 3 for the damage scenarios S1, S2 and S3, respectively.  

More intense study on finding damage state of each scenario, is briefed in Table 8. In 

the 1st damage scenario, such an error is significantly decreased from 0.01750 to 0.00005 by 

increasing the resolution index from 3 to 4, respectively. Similar decrease of error by 

increasing resolution in DBD, is observed for the 2nd and 3rd damage scenarios of this 

example; however, the amount of errors vary case by case depending on the scenario.  

For any fixed resolution, the scenarios with more damaged elements has resulted in larger 

error. For example in the 3rd scenario with 4r  , DBD has led to the error of 0.00020 that 

may be considered sufficiently small; however, the errors of the 2nd and the 1st scenarios are 

even smaller. Nevertheless, increasing the resolution index to 5r  , improves such an error 

to 0.00002 and CR to 10-31.9 within just 8 iterations to converge. 
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Figure 9. Cardinality reduction histories in damage detection of the 9-element frame 

 

 
Figure 10. 72-bar spatial truss 

4.3 72-bar spatial truss  

As an example of spatial pin-jointed structures, the 72-bar truss of Fig. 10 is considered 

here. It has already been studied by a several investigators [14,25,26]. Material density is 

taken 2770 kg/m² while its elasticity modulus is 69.8GPa. Every member is constructed 

from a section with area of 0.0025 m². Non-structural mass of 2270 kg is attached to each of 

the four top nodes. Geometry and topology of the truss is demonstrated in Fig. 10. The 

corresponding damage scenarios are listed in Table 9.  
 

Table 9: Damage scenarios of the 72-bar truss 

Damage Scenario e 
True

e  

S1 55 0.15 

   

S2 4 0.10 

 58 0.15 

   

S3 4 0.10 

 14 0.13 

 58 0.15 
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(a)               (b) 

Figure 11. The effect of increasing resolution in detection of damage scenario S1 in the 

72-bar truss 

 
(a)              (b) 

Figure 12. The effect of increasing resolution in detection of damage scenario S2 in the 

72-bar truss 

 
(a)              (b) 

Figure 13. The effect of increasing resolution in detection of damage scenario S3 in the 

72-bar truss 
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Table 10: Damage ratios obtained by different resolutions for the 72-bar truss 

Damage  r = 3   r = 4  

Scenario e 
L

e  
U

e  
 

L

e  
U

e  
S1 55 0.1450 0.1500  0.1499 0.1500 

 others 0.0000 0.0000  0.0000 0.0000 

       

S2 4 0.0990 0.1000  0.0999 0.1000 

 58 0.1490 0.1500  0.1499 0.1500 

 others 0.0000 0.0000  0.0000 0.0000 

       

S3 4 0.0990 0.1000  0.0999 0.1000 

 14 0.1290 0.1300  0.1299 0.1300 

 58 0.1490 0.1500  0.1499 0.1500 

 others 0.0000 0.0000  0.0000 0.0000 

 

Table 11: The resulted CR in damage detection of the 72-bar truss 

Damage Scenario r = 3 r = 4 

S1 10-6.0 10-16.7 

S2 10-16.6 10-31.6 

S3 10-20 10-38.6 

 

Table 12: The resulted Error in damage detection of the 72-bar truss 

Damage Scenario r = 3 r = 4 

S1 0.00250 0.00005 

S2 0.00100 0.00010 

S3 0.00150 0.00015 

 

The obtained damage ratios by DBD are compared for two different resolutions in 

Table 10. Note that in all cases,
U

e has been the first to approach
True

e . It is not the case for 

the resulted values of
True

e ; however, they get better by increasing the resolution index. The 

matter is better declared for multiple-damage scenarios (the 2nd and the 3rd) than for the first. 

Nevertheless, both lower and upper bounds on the damage ratios are obtained zero for the 

undamaged elements. The proposed method has been successful in capturing true damage 

locations using either resolution cases, in this example; as the number of damaged elements 

constitutes a small portion (4.2%) of total elements. 

According to Table 11, increasing resolution from 3 to 4 leads to 1010.7 times smaller 

search space in the 1st scenario with just one damaged element. In the 2nd scenario (with two 

damaged elements), CR values are in a lower range. In this case, CR has been reduced from 

10-16.6 to 10-31.6 for the resolution indices of 3 and 4, respectively. That corresponds to 1015 

times smaller search space for the higher resolution. Such a cardinality reduction is obtained 

more than 1018 times for the 3rd scenario with three damaged elements.  

Fig. 11 shows that DBD has better approached to the prescribed damage state of the 1st 
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scenario by higher resolution of 4 with respect to 3. According to Table 12, this case 

corresponds to the tiny error of 0.00005 while applying 3r   results in considerably greater 

error of 0.00250. Similar trend is observed (Fig. 12) for the 2nd damage scenario, so that 

increasing r (from 3 to 4) decreases the resulting error (from 0.00150 to 0.00010). It is 

evident from Fig. 13 that the proposed method has truly localized damages in the scenario 

S3; however, severity of the damage is better identified by the higher resolution; i.e. 4r  . 

Although error reduction due to increasing resolution is again observed in the 3rd scenario; 

the error values differ from the other two. In another word, the amount of error depends not 

only on the resolution but also on the applied damage scenario.  

It is observed in Fig. 14 that for every scenario of damage, convergence curve of the 

higher resolution has fallen below the other. The picture reveals that more iterations are 

generally required to converge in higher resolutions. In the other hand, they brings about 

more cardinality reduction (less CR values) than lower-resolution cases.  

 

 
Figure 14. Cardinality reduction histories in damage detection of the 72-bar truss 

 

5. CONCLUSION 
 

Structural damage detection problem was reformulated using vibration data of the damaged 

state based on modal strain energy. As such a set of equations may include redundant 

number of unknowns, a novel method was offered to iteratively solve them by updating 

boundaries of the damage ratios. The proposed resolution-based technique made possible to 

measure the amount of search space reduction via CR, as well as accelerating convergence 

to the solution.  

DBD was applied to a variety of structural types including beam, frame and truss 

examples. As a result, considerable search space reduction was observed starting from CR of 

10-0.3 for the single-damage scenario in the 9-element frame example to 10-38.6 in a multiple-

damage scenario of the 72-bar truss. Generally, the more the number of structural elements, 

the higher performance in search space reduction by DBD is observed.  

The effect of resolution index was found quite considerable on such a cardinality 

reduction. Increasing the resolution index from 3 to 4 could result in 107 to 1018 times 
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smaller search space in various cases. In the other hand, higher resolution required more 

iterations to converge. Nevertheless, the number of such iterations was quite small; (less 

than 10) in the treated examples. It confirms capability of DBD in search space reduction by 

such a low computational effort.  

In the light of our theoretical and numerical study, the proposed DBD was quite 

successful in achieving its main goal; that is to refine and squeeze the bandwidth between 

lower/upper bounds on the damage ratios. However, our experiments showed that the 

proposed DBD can identify the damage occurrence and location on various structures 

(beam, frame and truss) by taking into account all vibration modes. The results even exhibit 

ignorable errors in detecting severity of the damage when sufficiently high resolution is used 

in such cases. Further study on the effect of noisy or incomplete data is recommended as a 

future scope of research. 
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