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ABSTRACT 

 

An efficient method is proposed by using time domain responses and topology optimization 

to identify the location and severity of damages in two-dimensional structures under plane 

stress assumption. Damage is assumed in the form of material density reduction in the finite 

element model of the structure. The time domain responses utilized here, are the nodal 

accelerations measured at certain points of the structure. The responses are obtained by the 

Newmark method and contaminated with uniformly random noise in order to simulate real 

conditions. Damage indicators are extracted from the time domain responses by using 

Singular Value Decomposition (SVD). The problem of damage detection is presented as a 

topology optimization problem and the Solid Isotropic Material with Penalization (SIMP) 

method is used for appropriate damage modeling. The objective function is formed based on 

the difference of singular values of the Hankel matrix for responses of real structure and the 

analytical model. In order to evaluate the correctness of the proposed method, some 

numerical examples are examined. The results indicate efficiency of the proposed method in 

structural damage detection and its parameters such as resampling length in SVD, penalty 

factor in the SIMP method and number and location of sensors are effective parameters for 

improving the results. 
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1. INTRODUCTION 
 

Structural health monitoring aims to extract characteristics of structures by using structural 
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responses via performing inverse analysis and detect damages by tracking changes occurred 

in the characteristics. The occurrence of damage causes change in physical characteristics of 

a structure such as stiffness, mass and damping, which affects the vibration responses. 

Therefore, in recent decades, non-destructive methods of damage identification using 

vibration responses have been considered by several researchers. 

In recent years, topology optimization is being utilized as a robust tool for damage 

identification. In such problems, the material density reduction in each element is assumed 

as damage, therefore the material density instead of the damage severity is considered as 

design variables. Lee et al. [1] identified damages in plate and beam structures by using both 

resonant and anti-resonant frequencies as an objective function and the moving asymptotes 

method. Niemann et al. [2-4] estimated the approximate location of the damage in CFRP 

laminates after impact tests. This approach was based on the correlation of the local stiffness 

loss and the change in modal parameters due to damages in structures. Nishizu et al. [5] 

identified shape and location of  damage in plane stress and plate bending structures by 

analyzing eigenfrequencies and using the moving asymptotes method. Although, identifying 

the damage shape was not accurate, determining the damage location was acceptable. Zhang 

et al. [6] identified damage in continuum structures by using data of natural circular 

frequencies and the level set method . Eslami et al. [7] defined two objective functions based 

on natural frequencies and mode shapes and used the SIMP method to detect structural 

damages in plane stress problems. Abdollahi and Tavakkoli [8] used mode expansion 

techniques and the SIMP method to identify damages in three dimensional elasticity 

problems.  

A local damage identification method based on topology optimization and the SIMP 

method is also proposed by Ryuzono et al.  [9]. The authors analyzed visualized ultrasonic 

wave propagation on a stainless-steel plate with an artificial crack, then defined an objective 

function based on the maximum amplitude of the mean stress which adopted as the 

ultrasonic feature. Sugai et al. [10] presented a damage identification method based on 

topology optimization and Lasso regularization. Static displacements or dynamic responses 

were used to identify the structural damages. Due to the large number of design variables, a 

regularization was added to the objective functions to suppress active design variables and 

delete artificially generated damages during topology optimization process. Dizaji et al. [11] 

detected and reconstructed the location, extent and 3D shape of internal damage in structural 

members. Full-field response data obtained by digital image correlation were leveraged in a 

topology optimization framework. The method of moving asymptotes as the optimization 

algorithm was used to minimize the objective function. 

According to the previous studies, it can be observed that modal parameters are often 

used to extract the damage indicators for the objective functions. The objective function 

proposed in this research, is based on singular values which extracted from the time domain 

acceleration responses and for the first time is used in a topology optimization problem to 

detect the location and severity of damage. The SIMP method is employed that makes the 

possibility of providing porous areas of materials which enables the algorithm to find both 

the location and extent of the damage throughout the design domain. A simple algorithm of 

steepest descent method is used to optimize the objective function. It is noted that meta-

heuristic algorithms have mainly be used for damage detection for minimizing the objective 

functions based on modal data and modal strain energy [12-17] and also based on time 
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domain responses [18-21].  

In field of damage detection, SVD is usually used for different purposes such as feature 

extraction, noise reduction and eliminating environmental and operational effects. 

Vanlanduit et al. [22] proposed a technique based on robust SVD to detect damage in 

structures from measurements taken under different conditions. The robust SVD was able to 

compute the distance of an observation to the subspace spanned by the intact measurements. 

Liu et al. [23-25] developed an ultrasonic damage detection method based on SVD. They 

used the orthogonality property of singular vectors and through that separated environmental 

and operational variations into different singular vectors. Rahai et al. [26] proposed a 

sensitivity-based model updating method using SVD of transfer function subsets. The first-

order and second-order changes of SVD parameters was presented to detect damage severity 

and location. 

The objective of this study is utilizing the SVD to extract damage sensitive features under 

random excitation with additional noises. It is assumed that the structure is made of 

homogeneous and isotropic materials and it is within the range of small deformations with 

linear behavior. In this article, first, in section 2, the process of calculating the time domain 

responses is described. In section 3, the SVD method for calculating singular values and 

forming the objective function are presented. Section 4 is assigned to defining the 

optimization problem and introducing the algorithm parameters. The optimization algorithm 

and numerical examples are provided in sections 5 and 6. 

 

 

2. CALCULATION OF TIME DOMAIN RESPONSES 
 

When a damage is occurred in a structure, the vibration characteristics are affected. One of 

the most important characteristics is the time domain responses, which can be measured 

directly and at a lower cost than other data. According to the principles of structural 

dynamics, the governing differential equation for multi degree of freedom (DOF) structures 

is shown as below [27]: 

 

( )X X X F t  M C K  (1) 

 

where M, C and K denote the mass, damping and stiffness matrices of the structure, 

respectively. X , X and X represent vectors of response acceleration, velocity and nodal 

displacement in the global coordinate system, respectively, and P(t) is the time-dependent 

vector of the external load applied to the structure.  

This study is based on the output-only identification method and damage identification is 

performed only by using the measured responses of the structure. In all output-only 

identification methods, a special type of excitation called white noise is considered as the 

input of the system. Because ambient excitations cover a wide range of frequencies and can 

be well simulated by the broad band excitation of white noise which has the constant 

intensity in all frequencies [28]. 

The second-order ordinary differential equations in the time domain given by equation 

(1) can be solved by the Newmark method [29] that is used here to evaluate the vibration 
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responses of the structure. According to the Newmark method, nodal displacements in the 

n+1th step can be determined as follows: 

 

1

1n eq eqX 

  K F  (2) 

 

where eqK and eqF  are the equivalent stiffness matrix and equivalent nodal forces calculated 

by equation (3) and (4), respectively, given as below: 

 

0 1eq a a  K M C K  (3) 

 

0 2 3 1 4 5( ) ( ).eq n n n n n na X a X a X a X a X a X      F F M C  (4) 

 

Finally, to determine the vector of nodal acceleration and velocity, the equations (5) and 

(6) can be used as: 

 

1 0 1 2 3( )n n n n nX a X X a X a X      (5) 

 

1 6 7 1n n n nX X a X a X     (6) 

 

where the factors ( 0, ,7)ia i   are given as: 

 

0 1 2 3 42

5 6 7

1 1 1
, , , 1, 1,

2

2 , (1 )
2

a a a a a
t t t

t
a a t and a t

 

    


 



      
  

  
       

 

 (7) 

 

where 21
(1 )

4
   , 

1

2
    and   is considered to be zero in this study. 

 

 

3. SINGULAR VALUES AS DAMAGE INDICATORS 

 
The basic principle in vibration-based damage detection methods is that the damage affects 

the properties of mass, stiffness and damping of the structure. The problem of damage 

detection can formulate in the form of minimizing a correlation indicator between the 

structural data in healthy and damaged states. In this paper, these indicators are singular 
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values obtained from the time domain responses via SVD method as described below, and 

finally, topology optimization is used to identify the location and severity of the damage. 

SVD is a method of signal processing that has become one of the most useful tools in 

mathematics and related fields. The measured acceleration responses with length N are 

selected as a series of data for analysis. The steps of SVD for signal processing are as 

follows. 
 

3.1 Matrixing of vibration signal 

In the first step, it is necessary that the vibration signal to be transformed into a matrix 

structure. In order to form decomposed signal components to inherit more information from 

the raw signal, the Hankel matrix structure is used. In order to construct the matrix, the 

phase space needs to be reconstructed by the coordinate delay method so that the elements in 

each anti-diagonal are equal [30]. The Hankel matrix is obtained as: 

 

(1) (2) ( 1)

(2) (3) ( 2)

( ) ( 1) ( )

x x x N L

x x x N L

x L x L x N

  
 

 
 
 
 

 

H  (8) 

 

where the number of x(1) to x(L) denotes the resampling length of the signal which can be a 

value between 1 and N. 

 

3.2 SVD of a matrix 

Based on the matrix decomposition theory, the SVD of H can be expressed as: 

 

T H U V  (9) 

 

where 
1 2 3( , , ,..., )rdiag      denotes the diagonal matrix of the singular values 

( 1,2,3,..., )i i r  of H, and 
1 2 3 r       . The U and V are a pair of orthogonal 

matrices which their columns represent the left and right-singular vectors of H, respectively, 

and are shown as below: 

 

1 2 3

1

1 2 3

[ , , ,..., ]

[ , , ,..., ]

L r

r

r N L

r

u u u u

v v v v



  

  


 

U R

V R
 (10) 

 

where the column vectors 
iv and 

iu are the base vectors in row space and column space of 

matrix H, respectively. 
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3.3 Objective function 

Selection of objective function in damage detection problems is a critical issue as it plays 

essential role in convergence of the optimization algorithm. In many researches, various 

correlation indices have been chosen as the objective function. Since one of the common 

challenges in time domain responses-based damage detection methods is the large number of 

data; using SVD is an effective method to reduce the variables in the objective function. 

SVD can approximate a matrix with high accuracy by reducing the data to a certain number 

of singular values. This feature can be used to compress data with shortened forms of 

singular values instead of time history acceleration data. 

In this research, the objective function is based on the difference of singular values 

obtained by SVD from the measured responses of the real structure and the model as 

follows: 

 
*

2

*
1 1

( )
min : ( ) ( )

N L
ij ij

i j ij

f
  

 
 

  
 

  
  

: 0 1 , 1,...,k esubjected to k n    

(11) 

 

where  is the design variables vector that is considered the density of each element here. N 

and L are the number of sensors and resampling length, respectively. ( )ij  and 
*

ij are the 

singular values which extracted from the acceleration responses of the analytical and real 

models of the structure, respectively. 
k is the damage index of the element k  and 

en is the 

number of elements. 

 

 

4. DAMAGE DETECTION BY USING TOPOLOGY OPTIMIZATION 
 

In this research, topology optimization is used as a tool to detect the damaged domain at the 

element level. For this purpose, the damage is assumed in the form of a stiffness reduction 

which is caused by the material density reduction. In the field of damage detection, the 

objective function is the difference between the observed load effects in the physically 

damaged sample and its simulated intact counterpart. Here, the SIMP method [31] is used to 

parametrize the problem. In this method by the power law, materials with medium density 

are penalized in order to encourage to a favorable configuration and remove materials. The 

damage parameter which is the density 
e , is defined over each element. In this way, the 

damage identification problem is converted to a material density distribution problem in the 

design domain D as follows: 

 

min

1                               x \       no damage
                 

0 1      x             damage

d

e

e d

D


 

 
 

   
 (12) 
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where 
d and \ dD  are the damaged and intact domains, respectively. The Young's 

modulus of the element e is expressed as a function of damage parameter as follows [32]: 

 

1 0 0( ) ( )e e eE E E E     (13) 

 

where 
1E and 

0E are Young's modulus of solid (i.e., perfectly intact) and void elements (i.e., 

perfectly damaged), respectively. Also,  is the penalization exponent. To avoid singularity, 

a small stiffness (
0E  = 0.001 MPa) is assigned for fully damaged elements. Also, in order to 

achieve better results, the values of   by using the continuation method changes in the first 

steps during the optimization process [33]. 

 According to the SIMP method, due to any density reduction in element e, the elasticity 

matrix 
eC  and consequently element matrices are affected as: 

 

( )       ,        1e e e e

   C C  (14) 

 

( )  T

e e e e d 


 K B C B  (15) 

 

*( )   T

e e e e e d d   


  M M N N  (16) 

 

where 
eK  and 

eM  are the element stiffness and mass matrices, respectively. B is the strain-

displacement matrix and   is the element volume, *

eM  is the element mass matrix of 

undamaged structure, d is the material density and N is the finite element shape functions 

matrix. Also changes in the stiffness and mass matrix lead to changes in the damping matrix. 

In this research, classical Rayleigh damping [27] is used to construct the damping matrix as 

follows: 

 

1 2a a C M K  (17) 

1 2

2 2
    ,     

i j

i j i j

a a
 

 
   

 
 

 

(18) 

 

where C is the damping matrix, 
1a and 

2a are constants of proportionality and  is the 

damping ratio. Therefore, the following equation is applied to the damping matrix: 
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*( )e e e e

 C C  (19) 

 

where *

eC  is the element damping matrix of undamaged structure. Therefore, according to 

the above equations and equation (1), it is concluded that the acceleration, velocity and 

displacement vectors are affected by damage. 

In the present problem, since the gradient-based optimization method is used, sensitivity 

analysis needs to be performed by differentiating the objective function with respect to the 

design variables. In topology optimization under dynamic loads with numerous design 

variables, the analytical sensitivity analysis method is not recommended because for each 

design variable, needs to solve the second-order differential equation that is a time-

consuming process and makes this method inefficient [34]. Therefore, in the present 

problem, the finite difference method is used for sensitivity analysis. 

 

 

5. OPTIMIZATION ALGORITHM 
 

In this paper, the steepest descent method is used to solve the unconstrained optimization 

problem. Therefore, 
kd which is the search direction in iteration k is considered as below: 

 

( )k kd f    (20) 

 

During successive iterations, design variables are updated using the following equation 

 

1 ( )k k kf        (21) 

 

where   is a positive numerical parameter and is called the step size, which is determined 

here by the golden search method. The steepest descent algorithm for the proposed damage 

detection problem is given in Table 1 [35], [36]. 

 
Table 1. The steepest descent algorithm for damage detection 

Step 1.  Given ( )k (starting value of design variable),  

              Setting 0k   (Repeat counter), 

              Selecting 0   (Convergence parameter).                             

Step 2.  Calculating ( )( )kf   and ( )( )kf   (function and gradient vector). 

Step 3.  Calculating ( )( )k kd f    (search direction). 

     Step 4. If 
( )( )kf     then the iteration process stops because

* ( )k  is the 

optimum point. 

     Step 5. Calculating the step size 
k  (by using the golden search method) based on 
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minimization ( ) ( )( ) ( )k kf f d      in direction 
( )kd . 

Step 6.  Updating design variables using 
( 1) ( ) ( )k k k

k d     . 

              1k k  and going to step 2. 
 

It is also noted that in the first step it is assumed that the structure is perfectly healthy 

and, therefore, starting value of design variables is considered to be 1 (i.e., 0 1  ). In the 

second step, the mass, stiffness and damping matrices and the time domain responses of the 

structure are calculated in order to determine the objective function. Also, the gradient 

vector of the objective function is obtained by sensitivity analysis. In the third step, it is 

necessary to apply the design variables constraint in the form of 0 1 e  . 

 

 

6. NUMERICAL EXAMPLES 
 

In order to demonstrate the capability of the introduced objective function, four numerical 

examples are presented in this section. In all examples, Young's modulus and Poisson's ratio 

are considered as 2 Pa and 0.3, respectively, and the material density is 0.00785 kg/cm3. In 

order to simulate ambient excitations, the vibration load is applied in the form of Gaussian 

white noise at one of DOFs in the vertical direction. The random acceleration response is 

calculated using the finite element analysis and the Newmark's time step method for all 

DOFs, with a sampling rate of 1000 samples per second and a duration of 0.2 Sec. The 

initial value of the design variables is assumed to be 1, that means no damage is considered 

in structural elements at the beginning of the optimization process. Also, the penalty factor (

 ) by using the continuation method in the first 100 optimization steps is gradually 

decreased from 3 to 1, and the optimization continues with 1   in the next steps.  One of 

the main issues related to structural damage detection in real situations, is sensitivity to 

noise. It was decided to add white Gaussian noise to the acceleration time history responses 

generated by the finite element code. To achieve this, a scaler quantity SNR (Signal-to-

Noise-Ratio) is specified to define the ‘amplitude’ of the noise with respect to that of the 

clean signal. When the noise level is given by a particular value of SNR, it means that a 

noisy signal with such an SNR has been added to the time domain responses of each node. 

Therefore, severe experimental conditions are simulated, because the noisy sequences 

affecting different nodes are uncorrelated [37]. In all the examples, the signal is affected by 

noise level characterized by the value SNR=40. 

 

6.1 Example 1 

A cantilever beam with dimensions of 40×10 cm and thickness of 1 cm is shown in Figure 1. 

To solve the problem, the beam is discretized into 100 square linear finite elements with 

dimensions of 2×2 cm. Damage is assumed as 100% density reduction in two elements. Five 

sensors are installed in the specified nodes on the structure to record the acceleration 

responses in vertical DOFs. The damaged elements, the location of sensors and dynamic 

load are depicted in Figure 1. The vibration load applied to the end of the beam is a white 

noise random excitation that is shown in Figure 2. 
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Figure 1. The cantilever beam related to Example 1 

 
Figure 2. Applied random white noise excitation 

 

Choosing appropriate signal resampling length is of particular importance. In order to 

investigate its effect on the accuracy of damage detection, the problem is solved with two 

different resampling lengths. These values are considered as 10 and 50. The detected 

damages after 400 iterations along with the iteration history graphs are shown in Figures 3 

and 4. It is observed that in two cases, the damage location and severity are identified and 

there are some fictitious damages in a few elements. In the second state with resampling 

length as 50, there are some spikes in iteration history of the objective function in the last 

iterations. In fact, using too long resampling length causes signal characteristics are not 

appropriately derived. Therefore, with resampling length of 10, more acceptable results have 

been obtained and the severity of fictitious damages has been reduced. 
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(b) 

 
Figure 3. Results with resampling length of 10: (a) identified damages (b) iteration history 

 

 
(a) 

 
(b) 

Figure 4. Results with resampling length of 50: (a) identified damages after 400 iterations (b) 

iteration history 

 

6.2 Example 2 

A simple supported beam is studied in this example where the damages are assumed in two 
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elements with 100% decrease in density, as depicted in Figure 5. The vibration load applies 

to the middle node of the beam as a random excitation and five sensors are used in a row 

that records acceleration responses in vertical DOFs. The resampling length is chosen equal 

to 10. 

 

 
Figure 5. The simple supported beam in Example 2 

 

Figure 6 shows damage detection results and the iteration history. The results indicate 

that the location and severity of damage are properly identified. In addition, fictitious 

damages are also appeared in the adjacent elements to the damaged area and left support. 

 

 
(a) 

 
(b) 

Figure 6. Results of Example 2: (a) identified damages (b) iteration history 

 

6.3 Example 3 

In this example, an L-shaped beam is considered as depicted in Figure 7 with two damaged 
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elements and three sensors. The density of damaged elements is reduced by 100%. The 

beam is divided into 60 square elements with dimensions of 2×2 cm. The sensors record the 

acceleration responses in vertical DOFs. The resampling length of SVD is considered as 10.  

 

 
 Figure 7. The L-shaped beam in Example 3 - sensors arrangement 1 

 

In order to investigate the effect of location of the sensors on results accuracy, the 

problem is solved in two states with two different sensors arrangements. The arrangements 

are shown in Figures 7 and 8. The damage detection results and iteration history graphs are 

shown in Figures 9 and 10. From the results, it is clear that damages are identified more 

accurate for the first arrangement and also less fictitious damages are appeared in the 

structure.  It can be concluded that it is more appropriate to install the sensors at the points 

that have larger displacement and acceleration. 

  

 
Figure 8. The L-shaped beam in Example 3 - sensors arrangement 2 
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(a) (b) 

Figure 9. Results for sensor arrangements 1: (a) identified damages (b) iteration history 

 

  
(a) (b) 

Figure 10. Results for sensor arrangements 2: (a) identified damages (b) iteration history 

 

6.4 Example 4 

In this example a cantilever beam is considered with dimensions of 20×18 cm with an 

opening with dimensions of 6×8 cm as illustrated in Figure 11. The beam is discretized into 

68 square linear finite elements with dimensions of 2×2 cm. Damage exists in one element. 

Three sensors have been installed in the specified nodes on the structure to record the 

vertical acceleration responses. The resampling length of SVD is set to be 10.  
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Figure 11. The cantilever beam in Example 4 

 

According to Figure 12, the results show that the damage severity and location is 

identified correctly, however, some fictitious damages are slightly appeared. It should also 

be noted that the slope discontinuity in iteration history is because the continuation method 

is used in the first 100 iterations where the penalty exponent μ is reduced from 3 to 1 and 

after that remains constant. 

 

 

 
(a) (b) 

Figure 12. Results of Example 4: (a) identified damages (b) iteration history 

 

 

7. CONCLUSION 
 

This paper presents a vibration-based damage detection method by using topology 

optimization in which singular values extracted from acceleration responses are considered 

as the objective function. The damage detection problem is formulated as a standard 

optimization problem to minimize the objective function, and find continuous damage 

variables. The objective function is defined based on singular values of the Hankel matrix 
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that is constructed by time domain acceleration responses measured from a given number of 

sensors installed on the structure. The damage is modeled as a density reduction in the 

structure and the SIMP method is used to parameterize the topology. The sensitivity analysis 

is achieved by the finite difference method and the damage detection problem is solved by 

the steepest descent method. Numerical examples show that the proposed method can 

evaluate the location of damages by using time domain responses of the structure under 

random excitation with additional noise. The examples also show that the results can be 

improved by selecting appropriate algorithm parameters such as resampling length to form 

the Hankel matrix, penalty exponent values in the continuation method, and the number and 

location of sensors on the structure.  
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