دوره 6، شماره 3 - ( 6-1395 )                   جلد 6 شماره 3 صفحات 423-432 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khademi F, Behfarnia K. EVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS. International Journal of Optimization in Civil Engineering. 2016; 6 (3) :423-432
URL: http://ijoce.iust.ac.ir/article-1-260-fa.html
EVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS. دانشگاه علم و صنعت ایران. 1395; 6 (3) :423-432

URL: http://ijoce.iust.ac.ir/article-1-260-fa.html


چکیده:   (1870 مشاهده)

In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables. For each set of these input variables, the 28 days compressive strength of concrete were determined. A total number of 140 input-target pairs were gathered, divided into 70%, 15%, and 15% for training, validation, and testing steps in artificial neural network model, respectively, and divided into 85% and 15% for training and testing steps in multiple linear regression model, respectively. Comparing the testing steps of both of the models, it can be concluded that the artificial neural network model is more capable in predicting the compressive strength of concrete in compare to multiple linear regression model. In other words, multiple linear regression model is better to be used for preliminary mix design of concrete, and artificial neural network model is recommended in the mix design optimization and in the case of higher accuracy requirements.

متن کامل [PDF 1122 kb]   (1306 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: ۱۳۹۴/۱۱/۲۱ | پذیرش: ۱۳۹۴/۱۱/۲۱ | انتشار: ۱۳۹۴/۱۱/۲۱

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2015 All Rights Reserved | Iran University of Science & Technology

Designed & Developed by : Yektaweb