A. Csébfalvi ^{*}

In this paper, a displacement-constrained volume-minimizing topology optimization model is present for two-dimensional continuum problems. The new model is a generalization of the displacement-constrained volume-minimizing model developed by Yi and Sui [1] in which the displacement is constrained in the loading point. In the original model the displacement constraint was formulated as an equality relation, which practically means that the number of “interesting points” may be exactly one. The recent model resolves this weakness replacing the equality constraint with an inequality constraint. From engineering point of view it is a very important result because we can replace the inequality constraint with a set of inequality constraints without any difficulty. The other very important fact, that the modified displacement-oriented model can be extended very easily to handle stress-oriented relations, which will be demonstrated in the forthcoming paper. Naturally, the more general theoretical model needs more sophisticated numerical problem handling method. Therefore, we replaced the original “optimality-criteria-like” solution searching process with a standard nonlinear programming approach which is able to handle linear (nonlinear) objectives with linear (nonlinear) equality (inequality) constrains. The efficiency of the new approach is demonstrated by an example investigated by several authors. The presented example with reproducible numerical results as a benchmark problem may be used for testing the quality of exact and heuristic solution procedures to be developed in the future for displacement-constrained volume-minimization problems.

Type of Study: Research |
Subject:
Optimal design

Received: 2016/02/10 | Accepted: 2016/02/10 | Published: 2016/02/10

Received: 2016/02/10 | Accepted: 2016/02/10 | Published: 2016/02/10