دوره 6، شماره 4 - ( 7-1395 )                   جلد 6 شماره 4 صفحات 547-555 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Venkata Rao M, Rama Mohan Rao P. GENETIC PROGRAMMING AND MULTIVARIATE ADAPTIVE REGRESION SPLINES FOR PRIDICTION OF BRIDGE RISKS AND COMPARISION OF PERFORMANCES. International Journal of Optimization in Civil Engineering. 2016; 6 (4) :547-555
URL: http://ijoce.iust.ac.ir/article-1-271-fa.html
GENETIC PROGRAMMING AND MULTIVARIATE ADAPTIVE REGRESION SPLINES FOR PRIDICTION OF BRIDGE RISKS AND COMPARISION OF PERFORMANCES. دانشگاه علم و صنعت ایران. 1395; 6 (4) :547-555

URL: http://ijoce.iust.ac.ir/article-1-271-fa.html


چکیده:   (1331 مشاهده)

In this paper, two different data driven models, genetic programming (GP) and multivariate adoptive regression splines (MARS), have been adopted to create the models for prediction of bridge risk score. Input parameters of bridge risks consists of safe risk rating (SRR), functional risk rating (FRR), sustainability risk rating (SUR), environmental risk rating (ERR) and target output. The total dataset contains 66 bridges data in which 70% of dataset is taken as training and the remaining 30% is considered for testing dataset. The accuracy of the models are determined from the coefficient of determination (R2). If the R2 the testing model is close to the R2 value of the training model, that particular model is to be consider as robust model. The modeling mechanisms and performance is quite different for both the methods hence comparative study is carried out. Thus concluded robust models performance based on the R2 value, is checked with mathematical statistical equations.  In this study both models were performed, examined and compared the results with mathematical methods successfully. From this work, it is found that both the proposed methods have good capability in predestining the results. Finally, the results reveals that genetic Programming is marginally outperforms over the MARS technique.

متن کامل [PDF 459 kb]   (755 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: ۱۳۹۵/۲/۷ | پذیرش: ۱۳۹۵/۲/۷ | انتشار: ۱۳۹۵/۲/۷

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2015 All Rights Reserved | Iran University of Science & Technology

Designed & Developed by : Yektaweb