دوره 7، شماره 1 - ( 10-1395 )                   جلد 7 شماره 1 صفحات 71-80 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Behfarnia K, Khademi F. A COMPREHENSIVE STUDY ON THE CONCRETE COMPRESSIVE STRENGTH ESTIMATION USING ARTIFICIAL NEURAL NETWORK AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM. International Journal of Optimization in Civil Engineering. 2017; 7 (1) :71-80
URL: http://ijoce.iust.ac.ir/article-1-284-fa.html
A COMPREHENSIVE STUDY ON THE CONCRETE COMPRESSIVE STRENGTH ESTIMATION USING ARTIFICIAL NEURAL NETWORK AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM. دانشگاه علم و صنعت ایران. 1395; 7 (1) :71-80

URL: http://ijoce.iust.ac.ir/article-1-284-fa.html


چکیده:   (1334 مشاهده)

This research deals with the development and comparison of two data-driven models, i.e., Artificial Neural Network (ANN) and Adaptive Neuro-based Fuzzy Inference System (ANFIS) models for estimation of 28-day compressive strength of concrete for 160 different mix designs. These various mix designs are constructed based on seven different parameters, i.e., 3/4 mm sand, 3/8 mm sand, cement content, maximum size of aggregate, gravel content, water-cement ratio, and fineness modulus. In this study, it is found that the ANN model is an efficient model for prediction of compressive strength of concrete. In addition, ANFIS model is a suitable model for the same estimation purposes, however, the ANN model is recognized to be more fitting than ANFIS model in predicting the 28-day compressive strength of concrete.

متن کامل [PDF 677 kb]   (1092 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: ۱۳۹۵/۴/۲۹ | پذیرش: ۱۳۹۵/۴/۲۹ | انتشار: ۱۳۹۵/۴/۲۹

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2015 All Rights Reserved | Iran University of Science & Technology

Designed & Developed by : Yektaweb