Volume 9, Issue 1 (1-2019)                   2019, 9(1): 39-63 | Back to browse issues page

XML Print


Abstract:   (544 Views)
Design of blast resistant structures is an important subject in structural engineering, attracting the attention of governments, researchers, and engineers. Thus, given the benefits of optimization in engineering, development and assessment of optimization methods for optimum design of structures against blast is of great importance. In this research, multi-objective optimization of steel moment frames subjected to blast is investigated. The considered objectives are minimization of the structural weight and minimization of the maximum inter-story drifts. The minimization of weight is related to obtain low cost designs and the minimization of inter-story drifts is related to obtain higher performance designs. By proposing a design methodology, a framework is developed for solving numerical problems. The developed framework is constructed by combining explicit finite element analysis of the structure and the NSGA-II optimization algorithm. The applicability and efficiency of the proposed method is shown through two numerical examples.
Full-Text [PDF 1498 kb]   (161 Downloads)    
Type of Study: Research | Subject: Optimal design
Received: 2018/06/1 | Accepted: 2018/06/1 | Published: 2018/06/1