دوره 9، شماره 2 - ( 1-1398 )                   جلد 9 شماره 2 صفحات 313-329 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sobhani J, Ejtemaei M, Sadrmomtazi A, Mirgozar M A. MODELING FLEXURAL STRENGTH OF EPS LIGHTWEIGHT CONCRETE USING REGRESSION, NEURAL NETWORK AND ANFIS. International Journal of Optimization in Civil Engineering. 2019; 9 (2) :313-329
URL: http://ijoce.iust.ac.ir/article-1-392-fa.html
MODELING FLEXURAL STRENGTH OF EPS LIGHTWEIGHT CONCRETE USING REGRESSION, NEURAL NETWORK AND ANFIS. دانشگاه علم و صنعت ایران. 1398; 9 (2) :313-329

URL: http://ijoce.iust.ac.ir/article-1-392-fa.html


چکیده:   (1543 مشاهده)
Lightweight concrete (LWC) is a kind of concrete that made of lightweight aggregates or gas bubbles. These aggregates could be natural or artificial, and expanded polystyrene (EPS) lightweight concrete is the most interesting lightweight concrete and has good mechanical properties. Bulk density of this kind of concrete is between 300-2000 kg/m3. In this paper flexural strength of EPS is modeled using four regression models, nine neural network models and four adaptive Network-based Fuzzy Interface System model (ANFIS). Among these models, ANFIS model with Bell-shaped membership function has the best results and can predict the flexural strength of EPS lightweight concrete more accurately.
 
متن کامل [PDF 1085 kb]   (297 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Applications
دریافت: ۱۳۹۷/۹/۲۶ | پذیرش: ۱۳۹۷/۹/۲۶ | انتشار: ۱۳۹۷/۹/۲۶

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2019 All Rights Reserved | Iran University of Science & Technology

Designed & Developed by : Yektaweb