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ABSTRACT 
 

This paper introduces a reliability-based multi-objective design method for spatial truss 

structures. A multi-objective optimization problem has been defined considering three 

conflicting objective functions including truss weight, nodal deflection, and failure 

probability of the entire truss structure with design variables of cross sectional area of the 

truss members. The failure probability of the entire truss system has been determined 

considering the truss structure as a series system. To this end, the uncertainties of the applied 

load and the resistance of the truss members have been accounted by generating a set of 50 

random numbers. The limitations of members' allowable have been defined as constraints. 

To explain the methodology, a 25-bar benchmark spatial truss has been considered as the 

case study structure and has been optimally designed using the game theory concept and 

genetic algorithm (GA). The results show effectiveness and simplicity of the proposed 

method which can provide Pareto optimal solution. These optimal solutions can provide 

both safety and reliability for the truss structure. 
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1. INTRODUCTION 
 

One of the most important civil engineering structures are truss structures which have been 

extensively used in different applications such as bridges, transmission towers, outriggers, 

roofs, and etc. Optimally design of truss structures is still a challenging task to satisfy 

several criteria related to cost, safety, and reliability. To this end, several researches have 

been addressed to optimal design of truss structures [1-10]. In the majority of previous 
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studies, limiting the nodal displacements and axial stress of the members as a safety criterion 

as well as minimizing the truss weight as an economic criterion have been intended. The 

optimization techniques have been used to design truss structures considering only the truss 

response or weight in a deterministic framework. Notwithstanding, different sources of 

uncertainties exist within the design variables, material properties, and applied load which 

can significantly increase the failure probability of the truss elements or the entire truss 

system. 

In the light of previous studies, the major drawback is neglecting the reliability of the 

truss system as a design criterion. However, an appropriate and reliable design procedure 

could be provided by considering the minimization of failure probability as a design 

criterion. Some studies have addressed this issue and limited the failure probability of the 

truss structure majorly as constraints in optimization-based procedures. Papadrakakis et al. 

[11] have considered the objective function of minimization of weight of the structure while 

satisfying the probabilistic constraints. Yadav and Ganguli [12] optimized truss structures 

and laminated composite plates by considering failure probability as a constraint. They have 

used Monte Carlo simulation to obtain the probability of failure. Also, regarding the 

consideration of uncertainties in design process of structures, the robust design optimization 

has also been introduced. In this method, the objective is to minimize the probabilistic 

properties of the objective function such as expectation value or standard deviation. 

Doltsinis and Kang [13] converted a multi-objective optimization problem to a single 

objective by introducing weighting coefficients for expectation value and standard deviation 

of the objective function. Lee and Park [14] designed truss and frame buildings by using 

weighting coefficients and they linearized the constraint function using Taylor’s series first-

order approximation. Thus, the robust optimization problem was converted to a 

deterministic optimization problem. Sandgren and Cameron [15] have used Monte Carlo 

simulation to determine expectation value and standard deviation of the constraint function. 

They have used this method to topology optimization of a truss structure and an automotive 

inner body panel.  

In these studies, the minimization of the failure probability of truss structures has not 

been considered as the objective function. Therefore, this paper aims to design truss 

structure considering multiple objectives of failure probability along with weight and 

deflection of the truss. These objectives conflict with each other and a multi-objective 

optimization problem have been defined and solved using game theory procedure and 

genetic algorithm.  

 

 

2. RELIABILITY OF TRUSS STRUCTURES 
 

2.1 Failure definition 

Failure definition is an essential task in determining the failure probability of each 

component and the entire structure as well. According to the reliability theory, the failure 

could be defined by performance function or limit state function as follows [16]: 

 

𝑔 = 𝑅 − 𝑄 (1) 
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in which, R denotes the resistance and Q represents the load effect. Both R and Q are 

random variables. When g<0, the load effect exceeds the resistance, then the performance is 

undesirable and the component is failed. Conversely, when g≥0, the performance is 

desirable and the component is safe. Consequently, the probability of failure, Pf, is the 

probability that the undesired performance occurs and could be expressed as: 

 

𝑃𝑓 = 𝑃(𝑅 − 𝑄 < 0) = 𝑃(𝑔 < 0) (2) 

 

In this paper, the uncertainties have been accounted for both the applied load and the 

resistance of the truss members by generating random numbers. The uncertain applied loads 

cause the random stress demand in each elements of the truss structure. On the other hand, 

the randomness has also been considered for yielding and buckling stress capacity of truss 

elements. 

 

2.2 Failure probability of truss element 

Several methods could be used for estimating the failure probability of a truss element. As a 

common approach, a reliability index denoted by β has been introduced by Hasofer and Lind 

[17] as follows: 
 

𝛽 =
𝜇𝑅 − 𝜇𝑄

√𝜎𝑅
2 + 𝜎𝑄

2

 
(3) 

 

where μ and σ respectively denotes mean and standard deviation. By assuming normal 

distribution for both random variables R and Q, the probability of failure could be derived 

by: 
 

𝑃𝑓 = Φ(−𝛽) (4) 
 

in which, Φ is the standard normal cumulative distribution function. This equation 

represents the failure probability of a single truss element, while the failure probability of 

the entire truss structure is required.  

 

2.3 Failure probability of the entire truss system 

Determining the failure probability of a truss structure is a challenging task which should be 

performed properly. Indeed, it is important to distinguish that the failure of a single element 

may or may not cause the failure of the entire structure. The truss system configuration is 

within series and parallel system. In a series structural system, the failure of one element leads 

to immediate failure of the whole system. A definite truss and an indefinite truss with brittle 

elements are examples of series systems. Conversely, in a parallel system, all of the elements 

must fail before the system fails. An indefinite truss structure with ductile elements behaves 

similar to a parallel system. In this paper, the case study truss structure is assumed to be an 

indefinite truss with brittle elements and thus it is categorized as a series structural system. The 

failure probability of a series structural system belongs to the following range [16]: 
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max(𝑃𝑓−𝑖) ≤ 𝑃𝑓−𝑠𝑦𝑠 ≤ 1 − ∏(1 − 𝑃𝑓−𝑖)

𝑁𝑒

𝑖=1

 (5) 

 

where, Pf-sys is the failure probability of the system, Pf-i is the failure probability of the i-th 

element, and Ne is number of truss elements. In a series system, the failure probability of the 

system depends on the statistical dependence between failures of elements. The lower bound 

is the failure probability of the system when the all elements are fully coupled. The upper 

bound relates to the case that all elements are uncorrelated and statistically independent. 

This upper bound provides a conservative estimate of failure probability and is commonly 

used for series system in the literature [18-20]. In this paper, the case study truss structure is 

an indefinite truss with brittle elements and it is assumed that the failure of its elements to be 

uncorrelated. Hence, the failure probability of this system could be evaluated by the upper 

bound of the Equation (5) which is as follows: 

 

𝑃𝑓−𝑠𝑦𝑠 = 1 − ∏(1 − 𝑃𝑓−𝑖)

𝑁𝑒

𝑖=1

 

= 1 − [(1 − 𝑃𝑓−1)(1 − 𝑃𝑓−2) ∗ … ∗ (1 − 𝑃𝑓−𝑁𝑒
)] 

(6) 

 

 

3. MULTI-OBJECTIVE OPTIMIZATION PROBLEM OF TRUSS 

STRUCTURE 
 

In many realistic engineering problems, it is required to satisfy some different objectives that 

conflict with each other. The multi-objective optimization is a capable method to solve such 

problems and represents Pareto optimal solutions instead of a single solution. The Pareto 

optimal solutions do not dominate each other. Generally, the definition of a multi-objective 

optimization problem is as follows: 
 

𝐹𝑖𝑛𝑑          ∶ 𝐗∗ = [𝑋1
∗, 𝑋2

∗, … , 𝑋𝑛
∗]𝑇 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒  ∶ 𝐟(𝐗) = [𝑓1(𝐗), 𝑓2(𝐗), … , 𝑓𝑚(𝐗)]𝑇 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 𝑔𝑖(𝐗) ≥ 0,         𝑖 = 1,2, … , 𝑝 

                        ℎ𝑖(𝐗) = 0,         𝑖 = 1,2, … , 𝑞 

(7) 

 

where f is the vector of m number of objective functions. X denotes the vector of design 

variables which may have several solutions such as X*. Also, n is number of design 

variables and m is number of objective functions. The inequality constraints, gi(X), and the 

equality constraints, hi(X), with the number of p and q, respectively, should be satisfied.  

In this study, three conflicting objectives have been defined as objective functions to be 

minimized simultaneously. The weight of truss has been considered as a cost criterion, the 

nodal deflection of the truss has been considered as a safety criterion, and the failure 

probability of the entire truss has been considered as reliability criterion. Thus, the multi-

objective optimization problem to design the spatial truss structure is defined as follows: 

 

𝐹𝑖𝑛𝑑           ∶ 𝐗∗ = [𝐴1
∗ , 𝐴2

∗ , … , 𝐴𝑛𝑣
∗ ]𝑇 (8) 
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𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒  ∶ 𝑓1 = 𝑊 = ∑ 𝛾𝑖𝐴𝑖𝐿𝑖

𝑛

𝑖=1

 

                        𝑓2 = max(𝛿𝑖) ,                 𝑖 = 1,2, … , 𝑝 

                        𝑓3 = 𝑃𝑓−𝑠𝑦𝑠 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 𝜎𝑚𝑖𝑛 ≤ 𝜎𝑖 ≤ 𝜎𝑚𝑎𝑥,        𝑖 = 1,2, … , 𝑞 

                         𝜎𝑖
𝑏 ≤ 𝜎𝑖 ≤ 0,                   𝑖 = 1,2, … , 𝑛𝑠 

                         𝐴𝑚𝑖𝑛 ≤ 𝐴𝑖 ≤ 𝐴𝑚𝑎𝑥,       𝑖 = 1,2, … , 𝑛𝑔 
 

in which W is the weight of the truss structure. p and q are respectively the number of 

node and members of the truss. Also, ns is the number of compression members and nv is 

the number of design variables. Li is the length of i-th element. Ai is the cross section area of 

the i-th member. σ and δ are stress and nodal deflection, respectively. σb is allowable 

buckling stress when the member i-th is in compression. 

 

 

4. GAME THEORY AND GA FOR MULTI-OBJECTIVE OPTIMIZATION 
 

4.1 Game theory procedure 

A game theory procedure [21-23] has been used to solve the multi-objective optimization 

problem discussed in the previous section. Each of the objective functions are considered as 

a player and their actions according to their strategies to minimize their individual gains is 

called game. When players do not cooperate with each other and their actions are 

independent, the game is called non-cooperative and the consequent solution is called Nash 

Equilibrium Solution. Conversely, a cooperative game is defined as a coalition of players 

with the aim of working together to receive an outcome better than the Nash solution. The 

success criterion of a cooperative game is embodied in the concept of Pareto optimal 

solution or Pareto front. The Pareto solutions do not dominate each other. In the game theory 

procedure, a single objective function is defined by a convex combination of different 

objective functions and the cooperative game result the Pareto optimal solutions. For solving 

a multi-objective optimization problem using game theory, different objectives are assumed 

as rational players who aims to maximize their own gains within the feasible domain. It is 

assumed that all players know the best and worst gains of all players including themselves. 

A rational bargaining model so-called supercriterion is defined based on the Nash solution 

for the negotiation process. Thus, all players negotiate to maximize the supercriterion 

function to determine the cooperative solutions. The game theory procedure for a three 

objective problem could be explained by the following five steps [23]: 

Step 1: define reasonable conflicting objective functions, f1(X), f2(X), and f3(X) for the 

multi-objective optimization problem at hand. 

Step 2: Select a starting feasible design vector, X0, and normalize the objective functions 

by choosing the constant coefficients m1, m2, and m3 as: 

 

𝑚1𝑓1(𝑋0) = 𝑚2𝑓2(𝑋0) = 𝑚3𝑓3(𝑋0) = 𝑀 (9) 

 

in which, M is a specific constant. Therefore, all the objective functions are scaled 
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equally at the starting design X0. The normalized objective function for the i-th player is as 

follows: 
 

𝐹𝑖(𝑋) = 𝑚𝑖𝑓𝑖(𝑋),             𝑖 = 1,2,3 (10) 

 

Step 3: Minimize each of the objective functions separately and determine the optimum 

solutions 𝑋𝑖
∗ for i-th objective function. 

Step 4: construct the matrix [P] as: 

 

[𝑃] = [

𝐹1(𝑋1
∗) 𝐹2(𝑋1

∗) 𝐹3(𝑋1
∗)

𝐹1(𝑋2
∗) 𝐹2(𝑋2

∗) 𝐹3(𝑋2
∗)

𝐹1(𝑋3
∗) 𝐹2(𝑋3

∗) 𝐹3(𝑋3
∗)

] (11) 

 

It is evident that the diagonal arrays in matrix [P] are the minimum solutions in their 

corresponding column. The worst values of the objectives are calculated by: 
 

𝐹𝑗𝑢(𝑋) = max
𝑖=1,2,3

(𝑓𝑗(𝑋𝑖
∗)) ,             𝑗 = 1,2,3 (12) 

 

It is clear that the i-th player do not expect a value better than 𝐹𝑖(𝑋𝑖
∗) and a value worse 

than 𝐹𝑖𝑢.  

Step 5: Under this assumption that the players start negotiation from their worse value, 

the supercriterion (S) is formulated as follows: 

 

𝑆 = ∏[𝐹𝑗𝑢 − 𝐹𝑗(𝑋)]

3

𝑗=1

 (13) 

 

in which, the quantity in the bracket is the gain value for the j-th player. Maximizing the 

Supercriterion, S, is cooperative game solution that yield the design vector representing a 

Pareto optimal solution.  

 

4.2 Genetic algorithm and reliability analysis 

Solving a multi-objective optimization problem based on game theory procedure requires 

only solving some single objective optimization problems. These single objectives include 

minimization of separate objective functions as well as maximization of supercriterion 

objective function and could be solved by any metaheuristic algorithms. Several 

metaheuristic algorithms have been proposed for solving optimization problems such as 

genetic algorithm [24], particle swarm optimization [25], colliding bodies [26], search and 

rescue [27], and etc. The genetic algorithm, GA, is one of the most capable algorithms and is 

extensively used in engineering problems. This algorithm is inspired form the evolution 

process in the nature and has been developed first by Holland [28]. In this paper, the GA has 

been used to solve the optimization problems due to its effectiveness and simplicity. The GA 

has three main operations including selection, crossover, and mutation [29].  

In this paper, the selection criterion of the individuals for mating has been considered 
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based on the stochastic universal sampling [30]. The probability of selecting an individual is 

as follows: 
 

𝑃(𝑥𝑖) =
𝐹(𝑥𝑖)

∑ 𝐹(𝑥𝑖)
𝑁𝑖𝑛𝑑

𝑖=1

 (14) 

 

in which, 𝐹(𝑥𝑖) is the fitness of individual xi and Nind is the number of individuals. Then, 

the selected individuals generate newborns by crossover operator. The linear combination of 

parents genes is considered for crossover operator as follows: 

 

𝐺1,2 = 𝑃1 ± 𝛼(𝑃2 − 𝑃1) (15) 

 

in which, G1 and G2 are the newborn chromosome genes. P1 and P2 are the corresponding 

parent chromosome genes and α is a random scale factor within the range [-0.25, 1.25]. The 

mutation operator of GA is used to guarantee searching all probable solutions and to avoid 

local minima. The number of mutated individuals is calculated by: 

 

𝑁𝑚𝑢𝑡 = 𝑚𝑟𝑁𝑛𝑒𝑤𝑁𝑣𝑎𝑟 (16) 

 

in which, mr is the mutation rate. This variable is recommended to be small and the value 

of o.o4 has been considered for it. The Nnew and Nvar are respectively number of newborns 

and variables in each generation. 

Also in recent years several metaheuristic algorithms have been proposed for reliability 

analysis such as using the combination of asymptotic sampling and weighted simulation for 

reliability estimation [31], evaluate the reliability index with the Modifed Dolphin 

Monitoring operator [32], calculation of the probability of failure of structural systems 

involves multi-dimensional integrals, which are complicated or even impossible to solve 

[33], applied set theoretical variants of some of population-based metaheuristic algorithms to 

solve frequency-constrained truss optimization problems [34], utilize four metaheuristic 

algorithms consisting of the improved ray optimization, democratic particle swarm 

optimization, colliding bodies optimization and enhanced colliding bodies optimization with 

the penalty function to estimate failure probability of problems [35], using the charged 

system search algorithm to solve aforementioned constrained optimization [36].  

 

 

5. NUMERICAL ANALYSIS AND DISCUSSION 
 

In this section, the methodology of reliability-based multi-objective optimal design of truss 

structures has been explained through numerical analysis. Three objective functions 

including the truss weight, deflection, and failure probability of the entire truss structure has 

been intended to be minimized. The game theory procedure along with genetic algorithm 

have been used to solve the multi-objective optimization problem and determine the Pareto 

optimal solutions. The cross section areas of the truss elements have been considered as 

design variables and stress of elements have been constrained.  
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5.1 Twenty five-bar spatial truss 

In this paper, a 25-bar benchmark spatial truss structure has been considered as the case 

study structure. This benchmark truss structure has been previously studied in several 

researches [1-7]. The topology and nodal and element numbers of this truss structure have 

been illustrated in Fig. 1. This truss structure has been subjected to two different load cases 

as represented in Table 1. The density and elasticity modulus of the material are considered 

the values of 0.1 lb/in3 (2767.99 kg/m3) and 10000 ksi (68950 Mpa), respectively.  

The elements of the truss have been categorized into eight groups in terms of cross 

section area as: (1) A1, (2) A2-A5, (3) A6-A9, (4) A10-A11, (5) A12-A13, (6) A14-A17, (7) A18-

A21, (8) A22-A25. The tensile stress is constrained to be below the value of 40 ksi (275.8 

Mpa) and the limitations of the compressive stress are considered according to Table 2. The 

cross section area varies in the range of 0.01 to 3.4 in2 (0.6452-21.94 cm2). 

 

 
Figure 3. The 25-bar spatial truss [7] 

 

Table 1: The load case for the spatial truss 

Load case Node PX kips (kN) PY kips (kN) PZ kips (kN) 

Case1 
1 0 20 (89) -5 (22.25) 

2 0 -20 (89) -5 (22.25) 

Case2 

1 1 (4.45) 10 (44.5) -5 (22.25) 

2 0 10 (44.5) -5 (22.25) 

3 0.5 (2.22) 0 0 

6 0.5 (2.22) 0 0 
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Table 2: The limitations of compressive stress for the spatial truss members 

Element group Compressive Stress ksi (Mpa) 

1 A1 35.092 (241.96) 

2 A2~A5 11.590 (79.913) 

3 A6~A9 17.305 (119.31) 

4 A10~A11 35.092 (241.96) 

5 A12~A13 35.092 (241.96) 

6 A14~A17 6.759 (46.603) 

7 A18~A21 6.959 (47.982) 

8 A22~A25 11.082 (76.410) 

 

5.2 Uncertainties of load and resistance 

Properly accounting for the effects of uncertainties is a crucial task is reliability assessment 

of truss structures. The significant uncertainties involved in this problem are uncertainties of 

the applied load and the resistance of the truss members. The effects of load uncertainties are 

taken into account by modelling them as random variables. Therefore, random variables 

with normal distribution have been generated for all loads applied to the truss structure. 

According to Table 1, two load cases including 11 separate loads have been applied into the 

truss structure. It has been assumed that these loads are statistically independent. For each of 

these loads, 50 normal random numbers with the mean values according to Table 1 and 

different coefficient of variations (CoVs) including 0.1, 0.2, 0.3, and 0.4 have been 

generated.  

The uncertainty in the resistance of the truss members has been considered by taking into 

account the allowable stress of truss members as random variables. The mean value of 

tensile stress has been considered 40 ksi (275.8 Mpa) and the mean values of compressive 

stresses have been considered according to Table 2. Different CoVs including 0.01, 0.05, 

and 0.1 have also been considered for them.  

 

5.3 Reliability assessment of the truss structure 

In this section, the reliability of the 25-bar spatial truss with previously designed cross-

sectional area of the members has been assessed. Several studies have been addressed the 

optimal design of this truss structure in a deterministic framework [1-7]. In these studies, the 

optimization problem of the equation (8) without consideration of the second and third 

objective functions has been considered. Thus, only the objective function of minimization 

of the truss weight under the assumption of deterministic load and resistance has been 

intended. As sample, the results of works performed by Kaveh and Talatahari [7] have been 

assessed. The optimal cross section areas of the eight groups of truss members and the 

corresponding truss weight of these works have been reported in Table 3.  

The uncertainties of the applied load and members’ allowable stress have been 

considered by generating normal random numbers. The failure probability of each member 

has been calculated by equation (4) and the failure probability of entire truss has been 

evaluated by equation (6).  
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Table 3: Optimal cross-sectional area of truss members and truss weight 

Element group 
Kaveh and Talatahari [7] 

in2 cm2 

1 A1 0.010 0.065 

2 A2~A5 1.993 12.856 

3 A6~A9 3.056 19.717 

4 A10~A11 0.010 0.065 

5 A12~A13 0.010 0.065 

6 A14~A17 0.665 4.293 

7 A18~A21 1.642 10.594 

8 A22~A25 2.679 17.281 

Weight  545.16 lb 2425 N 

 
Table 4: The failure probability of each member under two load cases 

Element number Pf under load case 1 Pf under load case 2 Maximum Pf 

1 3.22657e-60 1.58599e-59 1.58599e-59 

2 0.00037 6.38464e-22 0.00037 

3 6.02146e-46 8.34645e-27 8.34645e-27 

4 1.16521e-45 9.76495e-73 1.16521e-45 

5 0.00041 5.85352e-72 0.00041 

6 1.01730e-51 8.42004e-35 8.42004e-35 

7 9.38051e-14 3.99225e-70 9.38051e-14 

8 3.99817e-14 4.77697e-34 3.99817e-14 

9 1.28088e-50 3.42804e-68 1.28088e-50 

10 1.47452e-76 6.70770e-77 1.47452e-76 

11 1.44007e-77 1.25741e-76 1.25741e-76 

12 6.93282e-71 6.92197e-65 6.92197e-65 

13 4.16909e-69 1.50471e-80 4.16909e-69 

14 0.00053 0.02703 0.02703 

15 2.21834e-60 2.952317e-61 2.21834e-60 

16 7.38021e-61 0.07453 0.07453 

17 0.00109 1.01778e-63 0.00109 

18 8.09802e-50 1.75182e-06 1.75182e-06 

19 0.58134 2.02725e-05 0.58134 

20 0.62966 1.36176e-71 0.62966 

21 9.95950e-49 4.74842e-71 9.95950e-49 

22 2.82709e-13 1.43733e-61 2.82709e-13 

23 2.37910e-17 3.11733e-11 3.11733e-11 

24 4.13807e-14 4.57208e-09 4.57208e-09 

25 2.69044e-16 2.03856e-64 2.69044e-16 

Failure probability of the entire truss (%) 86.07 

 

Table 4 represents the failure probability of each member and the entire truss system by 

considering the CoV of 0.2 and 0.05 for load and resistance, respectively. The failure 

probabilities of the entire truss structure with different CoVs for load and resistance have 
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also been reported in Table 5. It could be observed that the maximum failure probabilities of 

the truss relate to CoV of 0.2 for load and CoV of 0.1 for resistance. Also, it can be see that 

the minimum failure probability corresponds to the CoV of 0.1 for load and CoV of 0.05 for 

resistance. 

 
Table 5: The failure probability of the entire truss (%) 

 
CoV of allowable stress 

0.01 0.05 0.1 

CoV of the load 

0.1 81.58 81.26 81.87 

0.2 86.03 86.07 86.42 

0.3 83.69 84.05 85.23 

0.4 81.49 82.02 83.52 

 

5.4 Reliability-based multi-objective optimal design of truss structure 

In this section, the reliability-based multi-objective method has been used to design optimal 

cross sectional area of the 25-bar spatial truss. According to Equation (8), the three objective 

functions of minimization of the truss weight, minimization of nodal deflection, and 

minimization of the failure probability of the entire truss system have been considered in the 

multi-objective optimization problem. The cross sectional areas of the truss members are the 

considered design variables. The optimal values of the design variable are searched within 

the pre-defined domains in the optimization process. The upper and lower bound of these 

domains affect the convergence speed. However, if they include the optimal answer, they 

have no significant effect on the final answer. In order to provide an acceptable convergence 

speed, the search domain of design variables have been selected 0.01 to 3.4 in2 (0.6452-

21.94 cm2) according to [7]. The multi-objective optimization has been solved frequently, 

where the parameters of the GA have been selected as presented in Table 6.  

 
Table 6: Parameters of genetic algorithm 

Nind Number of individuals in each generation 100 

Nnew Number of newborns 20 

mr Mutation rate 0.04 

Nmax Maximum number of generations 1000 

Nind Number of individuals in each generation 100 

 

The values of the arrays of the starting design vector are considered to be 1.0 in2. The 

values of normalized objective functions at the starting design vector are considered 

F1=F2=F3=500. The optimization problem of designing the cross section of truss elements 

have been solved for each objective function separately and the results have been reported in 

Table 7. The design vectors for three different objectives have been illustrated in this table 

and all the constraints have been satisfied for them. Also, the starting point has been 

considered with the arrays of 1.0 in. For the design point, buckling has been occurred in the 

elements 2, 5, 7, 8, 19, and 20 under load case 1 and elements 23 and 24 under load case 2. 
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Table 7: Results of minimization of each objective function 

variable 
Starting 

point 

Minimization 

of Weight 

Minimization 

of deflection 

Minimization of 

failure probability 

Design vector 

X(in2) 

1 3.4 1.6378 0.01 

1 3.4 3.4 1.2375 

1 2.5437 3.4 1.1309 

1 0.01 1.2062 0.01 

1 0.01 3.4 0.2976 

1 1.3828 3.4 0.5521 

1 3.4 3.4 1.655 

1 3.4 3.4 1.2561 

Weight (lb) 330.72 344.5837 1078.327 840.0104 

Deflection (in) 0.777 0.6506 0.2286 0.2642 

Failure probability (%) 100.0 99.8642 0.01096 0.00212 

Supercriterion, S 6.25e4 2.5e-12 -0.0092 4.47e7 

 

The values of constant coefficients are m1=1.5118, m2= 643.34, and m3=5. The matrix 

[P] is determined as: 
 

 [𝑃] = [
520.96 418.57 499.32

1630.27 147.06 0.0548
1269.97 169.97 0.01058

] (17) 

 

As mentioned earlier, the diagonal arrays of matrix [P] are the smallest values in their 

respective column. The result illustrates that minimization of the weight resulted in 184% 

increase in deflection and 4,539,172% in failure probability with respect to their optimum 

values. Also, minimization of deflection leads to 213% increment in weight and 81% 

increase in failure probability. Eventually, minimization of failure probability yields 144% 

increase in weight and 16% increase in deflection.  

The first player which relates to first objective cannot achieve a value lower that 520.96 

for his/her objective while it is insured that it will not exceed the value of 1630.27. Such 

these interpretations could also be expressed for other players according to the matrix [P]. 

The supercriterion S in Equation (13) for the designing spatial truss should be maximized 

and is in the form: 

 

𝑆 = (𝐹1𝑢 − 𝐹1(𝑋)) ∗ (𝐹2𝑢 − 𝐹2(𝑋)) ∗ (𝐹3𝑢 − 𝐹3(𝑋))

= (𝐹1𝑢 − 𝑚1𝑓1(𝑋)) ∗ (𝐹2𝑢 − 𝑚2𝑓2(𝑋)) ∗ (𝐹3𝑢 − 𝑚3𝑓3(𝑋)) 
(18) 

 

Using the worst values of Fiu in the matrix [P], the supercriterion S could be expressed as: 

 

𝑆 = (1630.27 − 𝑚1𝑓1(𝑋)) ∗ (418.57 − 𝑚2𝑓2(𝑋)) ∗ (499.32 − 𝑚3𝑓3(𝑋)) (19) 

 

In order to maximize S, the objective function of -S is minimized. Therefore, the multi-

objective optimization problem of designing spatial truss is converted to a single objective 

optimization problem using the game theory concept. The single objective function is 
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minimization of -S with design variables of cross section area of the elements. This 

optimization problem has been solved several times with GA. Table 8 illustrates the results 

of the three separate optimization runs for designing spatial truss. It seems that the applied 

procedure based on game theory concept and genetic algorithm have the capability to 

optimize the considered objectives simultaneously. The objectives of weight, deflection, and 

failure probability have gained rational and proper values. All the considered constraints 

have been satisfied and design vector of different runs are approximately equal. Also, the 

results show that the three optimization runs have been converged.  

Comparing this Pareto solution to previously deterministic design in literature shows that 

the failure probability of the 25-bar truss structure under the considered load cases was about 

86%, while the proposed method has introduced an optimal solution that reduces the failure 

probability and deflection about 83% and 10%, respectively, and only with 14% increment 

in weight. 

 
Table 8: Results of designed truss based on game theory procedure for three different 

optimization runs 

variable Run 1 Run 2 Run 3 variable 

Design vector 

X(in2) 

0.0999 0.0821 0.0258 
Design vector 

X(in2) 

2.1329 2.0696 1.9416  

2.5129 2.5721 2.7496  

0.01 0.01 0.01  

0.01 0.01 0.01  

0.8832 0.9034 0.9014  

2.5704 2.5915 2.6518  

2.9029 2.8568 2.809  

Weight (lb) 624.95 624.56 626.72 Weight (lb) 

Deflection (in) 0.3207 0.3207 0.3183 Deflection (in) 

Failure probability (%) 2.5712 2.5737 2.6852 
Failure 

probability (%) 

Supercriterion, S 7.077e7 7.083e7 7.092e7 Supercriterion, S 

 

 

6. CONCLUSIONS 
 

This paper presents a reliability-based multi-objective optimal design method to design 

spatial truss structures while accounting for the uncertainties of the applied load and 

allowable stresses of the truss members. The methodology is based on the definition of a 

multi-objective optimization problem and solving it using a game theory concept and genetic 

algorithm. It has been aimed to provide three different criteria including the truss weight as a 

cost criterion, nodal deflection as a performance criterion, and failure probability of the 

entire truss as a safety criterion. For illustration, the method has been applied to design 

optimal cross sectional areas of the members of a 25-bar benchmark spatial truss structure. 

The Pareto solution of the optimal truss have been derived using the proposed procedure. 

Numerical studies have shown the capability and simplicity of the applied method in 
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designing cross sectional areas of the truss elements. This method has led to derive an 

optimal Pareto solution which provides both cost and safety criteria. The results show that 

the failure probability of the truss structure reduces by increasing the uncertainty level of 

load and resistance. The failure probability of the 25-bar truss structure under the considered 

load cases with previously deterministic design was about 86%, while the proposed method 

has introduced an optimal solution that reduces the failure probability and deflection about 

83% and 10%, respectively, and only with 14% increment in truss weight. 
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