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ABSTRACT 
 

The cycle basis of a graph arises in a wide range of engineering problems and has a variety 

of applications. Minimal and optimal cycle bases reduce the time and memory required for 

most of such applications. One of the important applications of cycle basis in civil 

engineering is its use in the force method to frame analysis to generate sparse flexibility 

matrices, which is needed for optimal analysis. 

In this paper, the simulated annealing algorithm has been employed to form suboptimal 

cycle basis. The simulated annealing algorithm works by using local search generating 

neighbor solution, and also escapes local optima by accepting worse solutions. The results 

show that this algorithm can be used to generate suboptimal and subminimal cycle bases. 

Compared to the existing heuristic algorithms, it provides better results. One of the 

advantages of this algorithm is its simplicity and its ease for implementation. 

 
Keywords: suboptimal cycle basis; simulated annealing algorithm; graph theory; metaheuristic 

algorithms; sparse matrices.  

 
Received: 25 January 2022; Accepted: 6 April 2022 

 

 

1. INTRODUCTION 
 
Cycle bases of graph have many applications in science, and in particular in the force method 

of structural analysis. Cycle basis satisfying certain conditions correspond to sparse flexibility 

matrices where the analysis can be performed more efficiently and accurately. 

For cycle basis to be minimal, the corresponding cycle-edge incidence matrix C should be 

the sparsest, while for an optimal cycle basis the cycle adjacency matrix D=CCt should have the 
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highest sparsity. On the other hand C and D are pattern equivalent to the equilibrium matrix B1 

and flexibility matrix G=B1B1
t respectively. There are graph theoretical methods for the 

formation of subminimal and suboptimal cycle bases. However, selecting minimal cycle basis is 

time consuming and that of optimal cycle basis is impossible at present. 

There are efficient algorithms for finding minimal cycle bases among which algorithms 

developed  by Kaveh [1-4], Horton [5] and Berger [6] are noteworthy. Greedy algorithm was 

first employed by Kaveh using the cycle space of a graph. Horton used a subspace of this cycle 

space to reduce the size of the search space. This is perhaps the fastest candidate for the 

formation of minimal cycle basis. Unlike minimal cycles, algorithms developed for finding 

suboptimal cycle bases are limited to those of  Kaveh [7-8], Kaveh and Rahami [9] and Kaveh 

[10]. 

Metaheuristic algorithms are used for selecting minimal fundamental cycle basis by Amaldi 

et al. [11] and Amaldi et al. [12] Kaveh and Jahanshahi [13] and Kaveh and Daei [14] employed 

ant Colony system algorithm for the formation of suboptimal cycle basis maintaining the 

submimality.  

After this introduction defitions from graph theory is presented in section 2. Simulatted 

annealing is briefly discussed in section 3 and applied to the selection of suboptimal cycle basis 

is section 4. Examples are provided in section 5 and the paper is concluded in section 6. 

 

 

2. DEFINITIONS FROM THEORY OF GRAPHS 
 

In the following, some definitions from theory of graphs are provided when in main follow 

those of Kaveh [4]. 

 Graph: a graph S consists of a set N(S) of elements called nodes and a set M(S) of elements 

called members together with a relation of incidence which associates with each member a pair 

of nodes, called its ends. 

 Walk: a walk 𝑊𝑘   of S is a finite sequence 𝑊𝑘 =  {𝑛0, 𝑚1, 𝑛1, , . . . , 𝑚𝑝, 𝑛𝑝} whose terms are 

alternately nodes 𝑛𝑖 and members 𝑚𝑖 of S for 1 ≤ 𝑖 ≤ 𝑝, and ni1 and 𝑛𝑖 are two ends of 𝑚𝑖. 

 Trail: a trail 𝑇𝑘 in S is a walk in which no member of S appears more than once. 

 Path: a path 𝑃𝑘 is a trail in which no node appears more than once. 

 Cycle: a cycle is a path {𝑛0, 𝑚1, 𝑛1, , . . . , 𝑚𝑝, 𝑛𝑝} for which 𝑛0 = 𝑛𝑝 and 𝑝 ≥ 1; i.e. a cycle is a 

closed path. 

 Tree: a tree T of S is a connected subgraph of S which contains no cycle. If a tree contains all 

the nodes of S, it is called a spanning tree of S. For simplicity it will be referred to as a tree, 

from now on. 

 Chord: the complement of a tree T in S is called a cotree, denoted by 𝑇∗. The members of T 

are known as branches and those of 𝑇∗ are called chords. 

 Cycle Basis: a maximal set of independent cycles of a graph is known as its cycle basis. 

 Cycle-Member Incidence Matrix: a cycle-member incidence matrix C has a row for each cycle 

and a column for each member. An entry 𝑐𝑖𝑗 of C is 1 if cycle 𝐶𝑖 contains member 𝑚𝑗 and it is 0 

otherwise. 

 Cycle Adjacency Matrix: the cycle adjacency matrix 𝑫 =  𝑪𝑪𝑡 is a 𝑏1(𝑆) × 𝑏1(𝑆) matrix, each 

entry 𝑑𝑖𝑗 of which is 1 if 𝐶𝑖 and 𝐶𝑗 have at least one member in common and it is 0 otherwise. 

Here, 𝑏1(𝑆)  =  𝑀(𝑆)  𝑁(𝑆)  +  1 is known as the first Betti number of S, and it is the 
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dimension of the cycle space of a graph S, where M(S) and N(S) are the cardinality of the node 

set and members set of S, respectively. 

 Minimal Cycle Basis: a cycle basis 𝐶 = {𝐶1, 𝐶2 … 𝐶𝑏1(𝑆)} is called minimal if it corresponds to 

a minimum value of 

 

𝐿(𝐶) = ∑ 𝐿(𝐶𝑖)

𝑏1(𝑆)

𝑖=1

 (1) 

 
where 𝐿(𝐶𝑖) is he number of members of the cycle 𝐶𝑖. 𝐿(𝐶) shows the number of entries of the 

cycle-member incidence matrix C. A cycle basis corresponding to near minimal 𝐿(𝐶) is called a 

subminimal cycle basis. 

 Sparsity Coefficient 𝜒: the sparsity coefficient 𝜒 of a matrix is defined to be its number of 

nonzero entries. A matrix of maximal sparsity has the minimum number of non-zero entries. 

 Optimal Cycle Basis: a basis that corresponds to maximal sparsity of cycle adjacency matrix, 

D, is called an optimal cycle basis. A cycle basis corresponding to near maximum sparsity of D 

is called a suboptimal cycle basis. An optimal cycle basis is not necessarily a minimal cycle 

basis and vice versa. 

 

 

3. SIMULATED ANNEALING ALGORITHM 
 

Simulated Annealing (SA) is commonly said to be the oldest among the metaheuristics and 

surely one of the first algorithms that had an explicit strategy to escape from local minima. The 

origins of the algorithm are in statistical mechanics (Metropolis algorithm) and it was first 

presented as a search algorithm for combinatorial problems in Kirkpatrick et al. [15] and Cerny 

[16]. The fundamental idea is to allow moves resulting in solutions of worse quality than the 

current solution (uphill moves) in order to escape from local minima. The probability of doing 

such a move is decreased during the search. Other studies on SA can be found in [17-19]. 

Different recent powerful metaheuristic algorithms can be found in Kaveh [20]. Efficient codes 

and examples can be found in Kaveh and Bakhshpoori [21]. 

The algorithm starts by generating an initial solution (either randomly or heuristically 

constructed) and by initializing the so-called temperature parameter T. Then, at each 

iteration a neighbor solution 𝑠′ is randomly sampled and it is accepted as new current 

solution depending on f (s), f (𝑠′) and T. 𝑠′ replaces s if f (𝑠′) < f (s) or, in case 𝑓 (𝑠′) ≥
 𝑓 (𝑠), with a probability which is a function of T and 𝑓 (𝑠′) −  𝑓 (𝑠). The probability is 

generally computed following the Boltzmann distribution 𝑒𝑥𝑝 (−
𝑓 (𝑠′)−𝑓 (𝑠)

𝑇
). 

The temperature T is decreased during the search process, thus at the beginning of the 

search the probability of accepting uphill moves is high and it gradually decreases, 

converging to a simple iterative improvement algorithm. This process is analogous to the 

annealing process of metals and glass, which assume a low energy configuration when 

cooled with an appropriate cooling schedule. Regarding the search process, this means that 

the algorithm is the result of two combined strategies: random walk and iterative 

improvement. In the first phase of the search, the bias toward improvements is low and it 
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permits the exploration of the search space; this erratic component is slowly decreased thus 

leading the search to converge to a (local) minimum. The probability of accepting uphill 

moves is controlled by two factors: the difference of the objective functions and the 

temperature. On the one hand, at fixed temperature, the higher the difference 𝑓(𝑠′) − 𝑓(𝑠), 

the lower the probability to accept a move from s to 𝑠′. On the other hand, the higher T, the 

higher the probability of uphill moves. 
 

 

4. SIMULATED ANNEALING ALGORITHM FOR THE FORMATION OF A 

SUBOPTIMAL CYCLE BASIS 
 

In this algorithm, an initial cycle basis is first generated, and then the optimal solution is 

searched by local search and generating neighbor solutions. 

The novelty of this paper is how to generate a neighbor cycle basis (neighbor solution) 

for local search and use it in simulated annealing algorithm to obtain a suboptimal (or 

subminimal) cycle basis. The following are the steps of this algorithm: 

(1) Step 1: Generate an initial cycle basis (randomly or heuristically), and evaluate it. 

(2) Step 2: Consider the previous step solution as the best solution. 

(3) Step 3: Set the initial temperature (𝑇 = 𝑇0). 

(4) Step 4: Generate a random solution in the neighborhood of the current solution and 

evaluate it. 

(5) Step 5: Accept the new solution if it is better than the current solution. 

(6) Step 6: Conditional (probable) acceptance if the new solution is not better. 

(7) Step 7: Update the best solution ever found. 

(8) Step 8: Decrease the temperature and return to Step 4 if the termination conditions are not 

met. 

 

4.1 Generating the initial cycle basis 

The initial cycle basis can be created in one of the following ways: 

 Using the fundamental cycle basis, to improve the fundamental cycle basis, the used 

chords can be added to the tree branch set and also the chords can be used according to 

their distance from the root node Kaveh [1]. 

 Creating a minimal length cycle on each member and select independent cycles from 

them. If the number of independent cycles was not enough to form a basis, unused 

members can be selected and an independent cycle can be created on it. 

 

4.2 Generating a neighbor solution 

First, a cycle is selected randomly from the cycle basis elements and denoted by 𝐶1. Then, 

from the set of neighboring cycles with cycle 𝐶1, one cycle is randomly selected and denoted 

by 𝐶2 (two cycles are called adjacent or neighbors if they have at least one member in 

common). The symmetric difference of the 𝐶1 and 𝐶2 creates a new cycle that denoted by 

𝐶𝑛𝑒𝑤. Now, the cycle 𝐶𝑛𝑒𝑤 is replaced with one of the cycles 𝐶1 or 𝐶2, and the neighbor 

cycle basis (neighbor solution) is generated. Creating a new cycle by the symmetric 
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difference of two adjacent cycles is shown in the Fig. 1. 

 

    
𝐶1⨁𝐶2 Cycle 𝐶2 Cycle 𝐶1 Graph 𝑆 

 

Figure 1. Creating a new cycle by the symmetric 

difference of two adjacent cycles 

 
4.3 Reannealing (restarting) 

In order the algorithm to be able to escape the local optima, it is sometimes better to increase 

the temperature so that the algorithm can escape the local optima by choosing worse 

solutions. This procedure is called restarting or reannealing. To do this, the initial solution to 

start over is usually equated to the best solution found, and the algorithm is restarted. The 

decision to restart can be based on several criteria. The most common restart methods: After 

a certain number of iterations, restart is due to overrun of system maximum energy and 

restarting randomly. 

 
4.4 Algorithm parameters 

The parameters used in the algorithm are presented in Table 1. 

 
Table 1: SA algorithm parameters 

Value / formula parameter 

𝑇0 = 10 Initial temperature 

𝛼 = 0.995 Temperature reduction rate 

𝑇𝑘+1 = 𝛼. 𝑇𝑘 Temperature in each iteration (cooling schedule) 

𝑆𝑢𝑏𝐼𝑡 = 10 Number of iterations at each temperature 

Δ𝐸 = 𝑓(𝑠′) − 𝑓(𝑠) Δ𝐸 

𝑝 = 𝑒
−Δ𝐸

𝑇  probability of accepting worse solutions 

The cost function (objective function) is defined as follows: 

 

𝑓(𝑠) = 𝜒(𝐷) (2) 

 

where 𝜒(𝐷) is the sparsity coefficient of the cycle adjacency matrix D. 
 

 

5. EXAMPLES 
 

In this section, some examples are provided to evaluate the simulated annealing algorithm. 
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5.1 Example 1 

This example is a space structure (graph) with 𝑏1(𝑆) = 21 − 12 + 1 = 10, as shown in Fig. 

2.  
The proposed algorithm selects cycle basis with 𝜒(𝐷) = 42, which is shown in Fig. 3. The best result 

of the heuristic algorithms for this example has 𝜒(𝐷) = 44. 

 

 
 

Figure 2. The graph model of a space frame S with b1(S) = 10. 

 

  

  

  

  

  
 

Figure 3. The selected suboptimal cycle basis 

 

As shown in Fig. 4, restarting the algorithm (increasing the temperature) after a certain 

number of iterations can improve the result of the algorithm. 
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Figure 4. Diagram of the cost function (χ (D)) relative to the number of iterations for Example 1 

 

5.2 Example 2 

This example is a space structure with 𝑏1(𝑆) = 360 − 91 + 1 = 270, as shown in Fig. 5.  

The proposed algorithm selects cycle basis with 𝜒(𝐷) = 1482. The best result of the 

heuristic algorithms for this example is 𝜒(𝐷) = 1504. 

 

 
 

Figure 5. The model of a space structure with 𝑏1(𝑆) = 360 − 91 + 1 = 270 

 
As shown in Fig. 6, restarting the algorithm (increasing the temperature) after a certain 

number of iterations can improve the result of the algorithm. 
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Figure 6. Diagram of the cost function (χ (D)) relative to the number of iterations for Example 2 

 

5.3. Example 3 

This example is a space structure with 𝑏1(𝑆) = 540 − 216 + 1 = 325, as shown in Fig. 7.  
The proposed algorithm selects cycle basis with 𝜒(𝑫) = 2417. The best result of the heuristic 

algorithms for this example is 𝜒(𝑫) = 2565. 
As shown in Fig. 8, restarting the algorithm (increasing the temperature) after a certain 

number of iterations can improve the result of the algorithm. 

 

 
 

Figure 7. A space structure with 540 members and 216 nodes 
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Figure 8. Diagram of the cost function (χ (D)) relative to the number of iterations for Example 3 

 

 

6. CONCLUSIONS 
 

Due to the importance of the optimal cycle basis, several methods have been introduced to 

create the suboptimal cycle basis of a graph. In order to improve the existing methods, in 

this research it is attempted to provide a method for producing a suboptimal cycle basis that 

has the desired performance by using metaheuristic algorithms, which are an effective tool 

for optimizing various problems. For this purpose, the Simulated Annealing algorithm is 

used to form the cycle basis. The simulated annealing algorithm works by using local search 

and generating neighbor solution, and also escapes local optima by accepting worse 

solutions. The results show that this algorithm can be used to generate suboptimal bases. In 

comparison to the existing heuristic algorithms, it leads to better results. One of the 

advantages of this algorithm is its simplicity requiring easily implementation. 

The main purpose of this research was to form the suboptimal cycle basis, but the 

proposed algorithm can also be used to create the subminimal cycle basis or the suboptimal-

subminimal cycle basis. For this purpose, the change of the objective (or cost) function in 

the simulated annealing algorithm is needed. 
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