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ABSTRACT 
 

In this paper, for topology optimization of double layer grids, an efficient optimization 

method is presented by combination of Imperialist Competitive Algorithm (ICA) and 

Gravitational Search Algorithm (GSA) which is called ICA-GSA method. The present 

hybrid method is based on ICA but the moving of countries toward their relevant imperialist 

is done using the law of gravity of GSA. In topology optimization process, the weight of the 

structure is minimized subjected to displacements of joints, internal stress and slenderness 

ratio of members constraints. Through numerical example, topology optimization of a 

typical large-scale double layer grid is obtained by ICA, GSA and ICA-GSA methods. The 

numerical results indicate that the proposed algorithm, ICA-GSA, executes better than ICA, 

GSA and the other methods presented in the literatures for topology optimization of large-

scale skeletal structures. 
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1. INTRODUCTION 
 

Optimization of truss structures has been one of the most active fields of research for many 

years in the field of optimization algorithms and applications in engineering [1 and 2]. In 

general, truss optimizations can be categorized into three classes: (1) sizing optimization, 

where cross-sectional areas of members (elements) are considered as design variables, while 

the structural geometry is fixed; (2) geometry optimization, where joint coordinates are 

design variables, while the connections (elements) of nodes are fixed [3]; and (3) topology 
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optimization, where the connections of nodes are design variables [4 and 5]. Many 

researches are a combination of these three types of optimization [6]. Many techniques have 

been reformed to search optimal truss structures. Classical optimization methods, such as the 

branch-and-bound algorithm [7], were first employed. However, various recently developed 

methods use evolutionary computations to solve truss optimization problems, such as 

genetic algorithms [8 and 9], particle swarm optimization [10], simulated annealing 

algorithms [11], ant colony optimization [12 and 13] and artificial bee colony algorithms 

[14]. A major difficulty in solving truss topology optimization is that some structures may 

represent a singular point in the given search space [15-17]. Kirsch (1989) [5], shows some 

analytical conditions, such as loading conditions and structure stability, to gain optimal 

geometries. Su et al. (2009) [18], used two different matrices to present the cross-sectional 

areas and the existence of members. A random number is generated to decide the value of 

each topological bit in the individuals in the initial generation. Deb and Gulati (2001) [2], 

presented a new methodology to introduce the existence of members so that the cross-

sectional areas and topology variables can be optimized simultaneously. Truss optimization 

is also complex, and involves various constraints, such as stress, displacement, frequency, 

slenderness ratio, reliability and buckling [19].  

Space structures, as large-scale skeletal structures, belong to specific class of three 

dimensional structures with special configurations. These structures are broadly used to 

cover large areas without intermediate columns. Space structures are often categorized as 

grids, domes and barrel vaults [20]. Double layer grids are classical cases of prefabricated 

space structures and also the most popular forms which are frequently used nowadays.  

In topology optimization of large-scale skeletal structures with discrete cross-sectional 

areas, if the heuristic optimization algorithms are combined with continuous-based topology 

optimization methods, their performance can be increased. For example, a two-stage 

optimization method for reliability-based topology optimization of double layer grid has been 

introduced by Mashayekhi et al. [21] which has been performed by employing the Methods of 

Moving Asymptotes (MMA) and Ant Colony Optimization (ACO). Also, an ESO-ACO 

method has been presented by Mashayekhi et al. [22] which consists of the Evolutionary 

Structural Optimization (ESO) and Ant Colony Optimization for minimizing the weight of 

double layer grids while artificial ground motion is used to calculate the structural dynamic 

responses. Furthermore, to achieve Reliability-Based Topology Optimization (RBTO) of 

double layer grids, Mashayekhi et al. [23] have introduced SIMP-ACO method. 

In this paper, for topology optimization of double layer grids, an efficient optimization 

method is introduced by combination of ICA and GSA which is denominated ICA-GSA 

method. The present combined method is based on ICA but it uses the law of gravity of 

GSA to move countries toward their relevant imperialist. The numerical results show the 

computational advantages of the proposed ICA-GSA method to search the optimum 

topology of large-scale skeletal structures.  

 
 

2. TOPOLOGY OPTIMIZATION OF DOUBLE LAYER GRIDS  
 

In topology optimization of double layer grids, the presence or absence of the bottom joints 

(nodes) and also the cross-sectional areas are chosen as design variables while the support 
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locations and the coordinates of nodes are kept fixed. The symmetry properties of the structure 

are used to tabulate the joints which cause to decrease in the design space. Therefore, the joints 

are deleted in groups of 8, 4 or 1 [21]. Also, a variable (topology variable) is used to determine 

the presence or absence of each joint group which takes the value of 1 and 0 for the two cases, 

respectively. The ith node group should be removed from the ground structure if the ith 

topology variable takes a zero value [21]. In the double layer grids topology optimization, the 

number of design variables (NDV) is summation of the number of topology variables (NTV) 

and the number of compressive and tensile element types [21]. 

Discrete variables are used to determine the suitable cross-sectional area of the structural 

members. These variables are selected from the available pipe profiles, with specified 

thickness and outer diameter. To stay unchanged the load bearing areas of top layer joints, 

and also to obtain a practical structure, the existence of nodes in the top grid is not 

considered as a variable [21].  

In topology optimization of the double layer grids to minimize the weight of the structure 

(W), the optimum amounts of the design variables are searched under constraints on stress 

(gσ), slenderness ratio (gλ) and displacement (gδ) [21]: 

 

1 2 1 2

1 1

[ , ,..., , , ,..., ]
[0,1], 1,2,...,

, 1,2,...,

: , , 0

k

T

NTV NMG

i

k
NMG Ne

k ik i

Find : J J J a a a
J i NTV

a k NMG

to minimize:  W ρ a l

subject to g g g  

 


 

 




 

A

A  (1) 

 

where NMG is the number of member groups, Ji is the ith topology variable, Nk is the 

number of members in the kth member group, ak is the discrete cross-sectional area of the 

kth member group which is chosen from steel pipes in an available profile list ( A
~

), ρe is the 

material density and li is the length of the ith element. It is noted that in topology 

optimization process, if an unstable structure is recognized, new random values are 

consecutively generated only for its topology variables, until a stable structure is achieved 

[21]. Therefore, all of the structures that their objective function is calculated using (1) are 

stable and it is not necessary to allocate a penalty to unstable ones. 

To solve a constrained optimization problem, its objective function should be reformed in 

such a way that the constrained problem should be converted to an unconstrained one. Thus, 

only one modified objective function ( )  is minimized [24]. In this paper,   is defined as [21]:  
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where Co is the penalty function, ne is the number of elements and nj is the number of 

nodes (joints). 
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3. GRAVITATIONAL SEARCH ALGORITHM (GSA) 

 

Gravitational search algorithm (GSA) is based on the law of gravity [25]. In this algorithm, 

agents are considered as objects and their fitness is considered as their masses. All these 

masses attract each other by the gravity force, and this force causes a global displacement of 

all masses toward the heavier ones. The heavy masses corresponding to the proper answers 

move more slowly than lighter ones. In GSA, the ith mass (agent) has four characteristics: 

position (Xi), inertial mass (Mi), active gravitational mass (Mai), and passive gravitational 

mass (Mpi). Now, consider a system with N agents (masses). The position of the ith agent is 

determined as follows [25]: 

 
1 d n

i i i i(t) (x (t),..., x (t),..., x (t)),i 1,2,..., N X  (4) 

 

where (t)xd

i  is the position of the ith agent in the dth dimension at the tth time. The 

acceleration acting on the ith mass is calculated as follows [25]: 

 

n ajd d d

i j i jj 1, j i
ij

a
M (t)

(t) rand G(t) (x (t) x (t))
R (t)   

   (5) 

 

where randj is a random number in the interval [0,1], ijR (t)  is the Euclidian distance 

between two agents i and j, G is the gravitational constant which is assumed at the beginning 

and decreases in the tth time to control the search accuracy, and   is a small constant. 

Furthermore, the next velocity of an agent is considered as a fraction of its current velocity 

added to its acceleration. Therefore, its velocity and its position are calculated as follows [25]:  

 
d d d

i i i iv (t 1) rand v (t) a (t)     (6) 

d d d

i i ix (t 1) x (t) v (t 1)     (7) 

 

where irand is a uniform random variable in the interval [0,1]. This random number is 

used to give a randomized characteristic to the search. The gravitational and inertia masses 

are simply calculated by the fitness evaluation as follows [25]: 
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where ifit (t)  is the fitness value of the ith agent at the tth time and for a minimization 

problem worst(t) and best(t) are defined as follows: 
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jbest(t) min fit (t), j {1,..., N}     (11) 

jworst(t) max fit (t), j {1,..., N}     (12) 

 

To have discrete results, a rounding function is employed which converts the magnitude 

of a result to the nearest discrete value, as follows: 

 
d d

i ix (t 1) Round(x (t 1))    (13) 

 

where Round is a function that rounds a result to the nearest integer neighbor. 

 

 

4. IMPERIALIST COMPETITIVE ALGORITHM (ICA) 
 

ICA, which is introduced by Atashpaz et al. [26], is inspired from the socio-political process 

of imperialism and imperialistic competition, and is applied to structural optimization by 

Kaveh and Talatahari [27]. ICA initiates with a primary population. Each individual of the 

population is called a ‘country’. Some of the best countries, with the minimum cost, are 

considered as the imperialist states and the rest will be the colonies of those imperialist 

states. All the colonies are divided among the imperialist countries proportional to their 

power. In addition, the main ICA segments are briefly described [26]:  

 

4.1 Creation of initial empires 

In ICA each point of the design space is identified as a country. In an Nvar-dimensional 

optimization problem, the ith country is a 1 × Nvar array. This array is determined as follow [26]: 

 

var1 ,..., ,...,i i i

i d Ncountry p p p     (14) 

 

where 
i

dp  is the position of the ith country in the dth dimension.  

The cost of a country is found by evaluation of the cost function (f) of variables. So we 

have [26]: 

 

var1cos ( ) ( ,..., ,..., )i i i

i i i d Nc t f country f p p p    (15) 

 

To start the optimization process, initial countries of size NCountry is produced and some of 

the most powerful countries (Nimp) are selected to form the empires. The remaining Ncol of the 

initial countries are divided among imperialists based on their power. To proportionally divide 

the colonies among imperialists, the normalized cost of an imperialist is identified by [26]: 

 

 maxn i n
i

C c c   (16) 
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where cn is the cost of the nth imperialist and Cn is its normalized cost. Having the normalized 

cost of all imperialists, the normalized power of each imperialist is calculated by [26]: 

 

1

imp

n
n N

i

i
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C

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

 (17) 

 

The initial colonies are divided among empires based on their power. Then, the number 

of colonies of the nth empire (N.Cn) will be: 

 

 . n n colN C round P N   (18) 

 

To divide the colonies, N.Cn of the colonies is randomly chosen and is given to the nth 

imperialist [26]. 

 

4.2 Movement of the colonies toward their imperialist 

In the ICA, the assimilation policy is modeled by moving all the colonies toward their 

imperialist. This movement is shown in Fig. 1 in which a colony moves toward the 

imperialist by x units. The new position of colony is shown in a darker color. The direction 

of the movement is the vector from the colony to the imperialist. In this figure, x is a random 

number with uniform distribution. Then [26]: 

 

x ~  0, , 1U d    (19) 

 

where β is a number greater than one and d is the distance between the colony and the 

imperialist situation. β > 1 causes the colonies to get closer to the imperialist state from both 

sides. 

 

 
Figure 1. The movement of a colony toward its imperialist [26] 

 

4.3 Exchanging the imperialist with a powerful colony 

While moving toward the imperialist, a colony might reach to a location with lower cost 
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than the imperialist. In this case, the imperialist and the colony change their positions. Then, 

the algorithm will continue by the imperialist in the new position [26]. 

 

4.4 Total power of an empire 

Total power of an empire is influenced by the power of imperialist country. However, the 

power of the colonies of an empire has an effect on the total power of that empire. This fact 

is considered by defining the total cost of an empire by [26]: 

 

 (20) 

 

where TCn is the total cost of the nth empire and ξ is a positive small number. A little 

value for ξ causes the total power of the empire to be calculated by just the imperialist and 

increasing it will increase to the role of the colonies in determining the total power of an 

empire. The value of 0.1 for ξ has shown good results in most of the executions [26]. 

 

4.5 Imperialistic competitions 

All empires attempt to take the possession of colonies of other empires and control them. 

The imperialistic competition moderately brings about a decrease in the power of weaker 

empires and an increase in the power of more powerful ones. The imperialistic competition 

is modeled by picking one of the weakest colonies of the weakest empire and making a 

competition among all empires to possess this colony. Fig. 2 shows the modeled 

imperialistic competition. Based on their total power, in this competition, this colony will 

not definitely be possessed by the most powerful empires, but these empires will be more 

likely to possess them.  

 

 
Figure 2. Imperialistic competition [26] 

 

To start the competition, the weakest colony of the weakest empire is chosen and the 

possession probability of each empire is found. The possession probability (PP) is 

proportionate to the total power of the empire. The normalized total cost of an empire is 

calculated by: 

     n n nTC Cost imperialist mean Cost colonies of empire 
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 maxn i n
i

NTC TC TC   (21) 

 

where TCn and NTCn are the total cost and the normalized total cost of the nth empire, 

respectively. Having the normalized total cost, the possession probability of each empire is 

determined by [26]: 
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5. A NEW HYBRID METHOD (ICA-GSA) 
 

In ICA process, the movement of colonies is one of the important parts while in four 

different types of these movements are compared together [27]. In this paper, a new hybrid 

method is presented to improve this movement of countries toward their imperialist. In this 

method, in each empire, the imperialist attracts all its countries based on the gravitational 

law. To achieve this aim, the position of the ith colonies (countryi) is defined using (14), and 

in the jth empire, at the tth time, the gravitational acceleration of the ith country in the dth 

dimension (
d

ia (t) ) is identified as follows: 

 

ajd d

i i i
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d

ja
M (t)
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where randi is a random number in the interval [0,1], ijR (t)  is the Euclidian distance 

between the ith country and its imperialist (the jth imperialist), 
d

jp (t)  is the position of the 

jth imperialist and Maj is the active gravitational mass of the jth imperialist which is 

calculated in each empire as follow: 
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In which 

 

j jweak(t) max c (t), j {1,..., N.C }     (26) 
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where 
j

impc  is the cost of the jth imperialist. 

In addition, the velocity at (t+1)th time and in the dth dimension is calculated using (6) 

and the new position of the ith country in the dth dimension is defined as follows: 

 
d d d

i i ip (t 1) p (t) v (t 1)     (27) 

 

The flowchart of the ICA-GSA algorithm is schematically shown in Fig. 3. In this figure, 

reaching the number of optimization cycles to 80 is considered as a convergence criterion. 

 

 
Figure 3. The flowchart of the ICA-GSA 
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6. NUMERICAL EXAMPLES 
 

In order to approve the capability of the ICA-GSA, two benchmark size optimization 

examples are considered from the literature. These examples are considered in Sections 6.1 

and 6.2. For further consideration, in Section 6.3, topology optimization of a large scale 

double layer grid is also studied from the literature. 

 

6.1 A 25-bar space truss 

Fig. 4 shows a 25-bar space truss. The material density is 2767.990 kg/m3 and the modulus 

of elasticity is 68,950 MPa. 25 members are categorized into eight groups, as follows: (1) 

A1, (2) A2–A5, (3) A6–A9, (4) A10–A11, (5) A12–A13, (6) A14–A17, (7) A18–A21 and 

(8) A22–A25. The range of cross-sectional areas varies from 0.06452 cm2 to 21.94
 
cm2. 

More information related to the loading conditions and constraints can be found in Kaveh 

and Talatahari [28].  

 

 
Figure 4. A 25-bar space truss structure 

 

Tables (1-3) list the optimal values of the design variables that are obtained in the present 

study, in five runs. Also, in Table 4, the results of the best run are compared with those of 

presented in the literature.  

 
Table 1: Optimum results for 25-bar space truss, using GSA for five sample runs 

 Optimal cross-sectional areas (cm²) 

Variable No. Members Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

1 A1 0.1729 0.1910 1.0742 0.0761 1.8464 

2 A2 ~ A5 12.0470 11.5464 12.9032 12.9032 13.5619 

3 A6 ~ A9 20.6831 21.7193 20.6916 19.6793 18.4845 

4 A10 ~ A11 0.4032 1.3187 0.7768 0.2013 0.1013 

5 A12 ~ A13 0.3948 1.0129 0.2026 0.5058 0.0690 

6 A14 ~ A17 3.7219 4.9645 4.2993 5.1058 3.5961 

7 A18 ~ A21 12.0251 13.562 11.6239 11.5077 11.6742 

8 A22 ~ A25 18.1574 15.3464 17.1296 16.8064 19.3548 

Weight (kg) 255.644 262.157 256.705 254.968 256.887 
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Table 2: Optimum results for 25-bar space truss, using ICA for five sample runs 

 Optimal cross-sectional areas (cm²) 

Variable No. Members Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

1 A1 0.0645 0.0645 0.0645 0.0645 0.0645 

2 A2 ~ A5 12.8103 12.8909 13.0477 11.0864 13.1497 

3 A6 ~ A9 19.5309 19.9883 18.9303 21.7490 18.5555 

4 A10 ~ A11 0.0645 0.0645 0.0645 0.0645 0.0645 

5 A12 ~ A13 0.0645 0.0645 0.0645 0.0645 0.0645 

6 A14 ~ A17 4.8167 4.1851 4.1090 4.7910 4.4477 

7 A18 ~ A21 11.6522 11.3793 11.8187 12.4026 11.9432 

8 A22 ~ A25 16.9883 17.7251 18.0806 16.2013 17.6542 

Weight (kg) 253.513 253.342 253.921 254.584 253.928 

 
Table 3: Optimum results for 25-bar space truss, using ICA-GSA for five sample runs 

 Optimal cross-sectional areas (cm²) 

Variable No. Members Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

1 A1 0.065 0.065 0.065 0.099 0.065 

2 A2 ~ A5 12.923 14.148 12.523 20.45 21.09 

3 A6 ~ A9 19.400 17.903 19.580 21.93 21.94 

4 A10 ~ A11 0.065 0.065 0.065 0.56 0.065 

5 A12 ~ A13 0.065 0.065 0.065 0.716 0.065 

6 A14 ~ A17 4.432 4.3806 4.2645 3.26 2.951 

7 A18 ~ A21 10.677 10.419 10.968 18.53 17.53 

8 A22 ~ A25 17.161 17.652 17.264 0.090 1.105 

Weight (kg) 247.20 247.68 247.38 253.71 250.05 

 
Table 4: Optimal design comparison for the 25-bar space truss 

 Optimal cross-sectional areas (cm²) 

Variable 

No. 
Members CSS [28] ICA [29] 

CICA-1 

[29] 

This study 

GSA ICA ICA-GSA 

1 A1 0.065 0.065 0.065 0.076 0.065 0.0645 
2 A2 ~ A5 12.923 14.148 12.523 12.903 12.891 12.146 
3 A6 ~ A9 19.400 17.903 19.580 19.679 19.988 19.748 
4 A10 ~ A11 0.065 0.065 0.065 0.201 0.0645 0.0645 
5 A12 ~ A13 0.065 0.065 0.065 0.506 0.0645 0.0645 
6 A14 ~ A17 4.432 4.381 4.265 5.106 4.185 4.259 
7 A18 ~ A21 10.677 10.419 10.968 11.508 11.379 11.243 
8 A22 ~ A25 17.161 17.652 17.264 16.807 17.725 16.807 

Weight (kg) 247.16 247.68 247.38 254.97 253.34 246.11 

 

All of the statistical values of Table 4 demonstrate that the ICA-GSA in size optimization 

of 25-bar space truss achieves better performance in comparison to the other algorithms. In 

addition, Fig. 5 shows the convergence rate of the best run for the ICA-GSA, ICA and GSA 

algorithms. 
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Figure 5. Convergence history of 25-bar space truss 

 

6.2 A 72-bar space truss 

For the 72-bar spatial truss structure shown in Fig. 6, the material density is 0.1 lb/in3 

(2767.990 kg/m3) and the modulus of elasticity is 68,950 MPa. The members are subjected 

to the stress limits of ±10,000 ksi (±172.375 MPa). The nodes are subjected to the 

displacement limits of ±0.25 in (±0.635 cm). The 72 structural members of this spatial truss 

are categorized as 16 groups using symmetry: (1) A1–A4, (2) A5–A12, (3) A13–A16, (4) 

A17–A18, (5) A19–A22, (6) A23–A30, (7) A31–A34, (8) A35–A36, (9) A37–A40, (10) 

A41–A48, (11) A49–A52, (12) A53–A54, (13) A55–A58, (14) A59–A66 (15), A67–A70, 

and (16) A71–A72.  

The optimal values of the cross-sectional areas that are achieved in five runs using GSA, 

ICA and ICA-GSA are presented in Tables (5-7), respectively. Also, in Table 8, the results 

of the best run are compared with those of presented in [30].  

 

 
Figure 6. A 72-bar space truss 
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Table 5: Optimum results for 72-bar space truss, using GSA for five sample runs 

 Optimal cross-sectional areas (in²) 

Variable No. Members Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

1 A1~A4 0.196 0.196 0.141 0.141 0.196 

2 A5~A12 0.391 0.766 0.563 0.766 0.563 

3 A13~A16 0.602 0.250 0.563 0.442 0.563 

4 A17~A18 0.994 0.563 0.563 0.994 0.994 

5 A19~A22 0.442 0.391 0.563 0.785 0.563 

6 A23~A30 0.602 0.602 0.563 0.563 0.442 

7 A31~A34 0.111 0.111 0.111 0.111 0.111 

8 A35~A36 0.111 0.111 0.442 0.111 0.111 

9 A37~A40 1.266 1.130 1.130 0.994 0.766 

10 A41~A48 0.442 0.602 0.442 0.563 0.563 

11 A49~A52

 

0.111 0.111 0.111 0.111 0.111 

12 A53~A54

 

0.111 0.111 0.111 0.111 0.111 

13 A55~A58

 

2.130 1.800 2.630 1.266 2.130 

14 A59~A66

 

0.602 0.442 0.391 0.442 0.602 

15 A67~A70

 

0.111 0.111 0.111 0.111 0.111 

16 A71~A72

 

0.111 0.111 0.111 0.111 0.111 

Weight (lb) 405.370 401.686 402.052 409.215 408.677 

 

 

 
Table 6: Optimum results for 72-bar space truss, using ICA for five sample runs 

 Optimal cross-sectional areas (in²) 

Variable No. Members Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

1 A1~A4 0.196 0.196 0.196 0.196 0.196 

2 A5~A12 0.442 0.442 0.442 0.563 0.563 

3 A13~A16 0.442 0.563 0.391 0.391 0.442 

4 A17~A18 0.602 0.785 0.602 0.563 0.766 

5 A19~A22 0.785 0.563 0.442 0.563 0.563 

6 A23~A30 0.563 0.442 0.563 0.563 0.442 

7 A31~A34 0.111 0.111 0.111 0.111 0.111 

8 A35~A36 0.141 0.111 0.111 0.111 0.111 

9 A37~A40 1.266 1.228 1.266 1.457 1.457 

10 A41~A48 0.563 0.563 0.563 0.563 0.563 

11 A49~A52

 

0.111 0.111 0.111 0.111 0.111 

12 A53~A54

 

0.111 0.111 0.111 0.111 0.111 

13 A55~A58

 

1.620 1.990 2.130 1.800 2.130 

14 A59~A66

 

0.602 0.602 0.563 0.442 0.442 

15 A67~A70

 

0.111 0.111 0.111 0.111 0.111 

16 A71~A72

 

0.111 0.111 0.111 0.111 0.111 

Weight (lb) 395.670 396.324 392.026 390.270 394.541 
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Table 7: Optimum results for 72-bar space truss, using ICA-GSA for five sample runs 

 Optimal cross-sectional areas (in²) 

Variable No. Members Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

1 A1~A4 0.196 0.196 0.196 0.196 0.196 

2 A5~A12 0.602 0.602 0.563 0.563 0.563 

3 A13~A16 0.442 0.391 0.442 0.307 0.307 

4 A17~A18 0.602 0.563 0.785 0.785 0.563 

5 A19~A22 0.785 0.563 0.563 0.766 0.442 

6 A23~A30 0.442 0.563 0.563 0.563 0.563 

7 A31~A34 0.111 0.111 0.111 0.111 0.141 

8 A35~A36 0.111 0.111 0.111 0.111 0.141 

9 A37~A40 1.266 1.266 1.457 1.228 1.620 

10 A41~A48 0.563 0.442 0.442 0.563 0.442 

11 A49~A52

 

0.111 0.111 0.111 0.111 0.111 

12 A53~A54

 

0.111 0.111 0.111 0.111 0.111 

13 A55~A58

 

1.563 1.800 1.990 1.800 1.990 

14 A59~A66

 

0.563 0.563 0.442 0.442 0.563 

15 A67~A70

 

0.111 0.111 0.111 0.111 0.111 

16 A71~A72

 

0.111 0.111 0.111 0.111 0.111 

Weight (lb) 393.284 389.872 391.826 393.149 394.264 

 
Table 8: Optimal design comparison for the 72-bar space truss 

Variable No. Members ICA [30] 
This study 

GSA ICA ICA-GSA 

1 A1~A4 1.99 0.196 0.196 0.196 

2 A5~A12 0.442 0.766 0.563 0.602 

3 A13~A16 0.111 0.250 0.391 0.391 

4 A17~A18 0.141 0.563 0.563 0.563 

5 A19~A22 1.228 0.391 0.563 0.563 

6 A23~A30 0.602 0.602 0.563 0.563 

7 A31~A34 0.111 0.111 0.111 0.111 

8 A35~A36 0.141 0.111 0.111 0.111 

9 A37~A40 0.563 1.130 1.457 1.266 

10 A41~A48 0.563 0.602 0.563 0.442 

11 A49~A52

 

0.111 0.111 0.111 0.111 

12 A53~A54

 

0.111 0.111 0.111 0.111 

13 A55~A58

 

0.196 1.800 1.800 1.800 

14 A59~A66

 

0.563 0.442 0.442 0.563 

15 A67~A70

 

0.307 0.111 0.111 0.111 

16 A71~A72

 

0.602 0.111 0.111 0.111 

Weight(lb) 392.84 401.686 390. 270 389.872 

 

The values of Table 8 show that the ICA-GSA achieves better performance in 

comparison to the other algorithms, in size optimization of 72-bar space truss. Also, the 

convergence rate of the best run for the ICA-GSA, ICA and GSA algorithms are shown in 

Fig. 7.  



A NEW HYBRID ALGORITHM FOR TOPOLOGY OPTIMIZATION OF DOUBLE … 

 

367 

 
Figure 7. Convergence history of 72-bar space truss 

 

 

6.3 20×20 double layer grid 

A square-on-square double layer grid with 841 nodes (joints) and 3200 members (elements) 

is presented to examine the proposed optimization method. The depth of the double layer 

grid is 450 cm and the node spacing in the top and bottom chord is 300 cm (Fig. 8) [21].  

 

 
Figure 8. A 20×20 Double layer grid [21] 

 

The assumed material is steel with a Young’s modulus and mass density of 2.1×106 

kg/cm2 and 7850 kg/m3, respectively. Also, it is assumed that distributed load on double 

layer grid is 180 kg/m2 which are assigned to the nodes of the top grid in the proportion of 

their load bearing area [21]. The ground structure is considered to be supported at perimeter 

nodes of the bottom grid. The bottom joints are tabulated in 55 different groups (NTV = 55). 

The number of member types for tensile and compressive members is considered as 3 and 

14, respectively, which resulted in 72 design variables [21].  

The cross-sectional area of the members is selected from the pipe profiles available in 

Table 9, where OD and TH are outer diameter and thickness in centimeter, respectively.  
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Table 9. Available pipe profiles 

No. OD T No. OD T No. OD T 

1 4.83 0.26 8 13.30 0.40 15 27.30 0.63 

2 6.03 0.29 9 13.97 0.40 16 32.39 0.71 

3 7.61 0.29 10 15.90 0.45 17 35.56 0.80 

4 8.89 0.32 11 16.86 0.45 18 40.64 0.88 

5 10.16 0.36 12 19.37 0.45 19 45.72 1.00 

6 10.80 0.36 13 21.91 0.45    

7 11.43 0.36 14 24.45 0.63    

 

This example is optimized in three cases as follows: 

Case 1: Topology optimization using GSA. 

Case 2: Topology optimization using ICA. 

Case 3: Topology optimization using ICA-GSA. 

To consider the stochastic nature of the applied optimization approaches, five sample 

optimization runs are employed for each design case and the achieved optimal solutions in 

Cases 1, 2 and 3 are presented. Furthermore, it in all of the following figures, the thickness 

of each element is directly proportional to its cross-sectional area. Also, in these figures, a) 

through d) denote: double layer grid, top layer, diagonal layer and bottom layer, 

respectively. It is noted that these obtained configurations are purely for gravity loads and 

horizontal loads can change the configurations. 

In Cases 1, 2 and 3, the optimum topology are shown in Figs. (9, 10 and 11), which the 

optimum weights of these structures are obtained as 143362 kg, 88504 kg and 80661 kg, 

respectively. 

 

 
                    (a)       (b)       (c)             (d) 

Figure 9. Optimum topology in Case 1 

 
                   (a)        (b)             (c)            (d) 

Figure 10. Optimum topology in Case 2 
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(a)       (b)        (c)       (d) 

Figure 11. Optimum topology in Case 3 

 
Table 10: Comparison of the optimum weights of the achieved structures for Cases 1, 2 and 3 

 

These values validate that ICA-GSA gives better performance than GSA, ICA, ACO and 

MMA-ACO in topology optimization of double layer grids. Also, Fig. 12 shows the 

convergence rate of the best obtained topology in Cases 1, 2 and 3.  

 

 
Figure 12. Convergence rate of the best obtained topology using GSA, ICA and ICA-GSA 

 
To have better comparison of ICA-GSA and the other optimization methods, the 

optimum weights of the obtained topologies for Cases 1, 2 and 3 are listed in Table 11, in 

which the weights of topologies shown in Figs. (9, 10 and 11) are highlighted. Also, the 

mean and the standard deviation of these optimum weights are presented in Table 12. 

Optimum Weight (kg) 

GSA ICA ICA-GSA 
Topology optimization 

using ACO [21] 

Topology optimization 

using MMA-ACO [21] 

143362 88504 80661 85036 81927 
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Table 11: Optimum weights of the topologies attained for Cases 1, 2 and 3 for seven sample runs 

Case No. 
Optimum Weight (kg) 

sample 1 sample 2 sample 3 sample 4 sample 5 

GSA 170503 162439 173214 165540 123362 

ICA 88504 90694 89877 89054 92254 

ICA-GSA 80601 81854 82589 83652 81973 

ACO[21] 89652 89947 89910 85036 92542 

MMA-ACO[21] 86152 85607 81927 87648 83116 

 
Table 12: The mean and the standard deviation of the optimum weights 

Case No. W (kg) SD (kg) 

GSA 163010 11758 

ICA 90077 1473 

ICA- GSA 82146 1093 

ACO[21] 89417 2717 

MMA-ACO[21] 84899 2312 

 

These values validate that the ICA-GSA achieves better performance than the GSA, ICA, 

ACO and MMA-ACO in topology optimization of large scale skeletal structures. It is noted 

that in (Mashayekhi et al. 2012) to obtain better cross-sectional areas for optimum achieved 

topologies, at the end of the first phase of the topology optimization, the local search space 

of the following phases is applied by the neighborhood of the previous elitist ant’s solution, 

with 100 ant’s, and the size optimization of the obtained optimum topology is implemented 

in several phases until the optimum weight of the structure is not changed significantly in 

two successive phases. But in this article, the optimum topology is achieved only in one 

phase with 50 countries and 80 iterations, which is significant. In addition, the maximum 

and the allowable amount of displacement of the structure are shown in Table 13. These 

values indicate that the displacement of the structure is not an active constraint. 

 
Table 13: Maximum and allowable displacement 

Maximum Displacement (cm) 
Allowable Displacement (cm) 

GSA ICA ICA-GSA 

6.6693 10.3033 10.0601 15.833 

 

Also, the maximum and the allowable amounts of the internal stress of members are 

shown in Table 14 and these obtained values using GSA, ICA and ICA-GSA are 

schematically shown in Figs. 13, 14 and 15, respectively. 

 
Table 14: Maximum and allowable amounts of the internal stress of members (kg/cm²) 

GSA ICA ICA-GSA 

Allowable 

stress 

Maximum 

stress 

Allowable 

stress 

Maximum 

stress 

Allowable 

stress 

Maximum 

stress 

907.23 334.19 525.19 285.17 401.65 285.41 

525.19 470.94 967.77 275.90 525.19 460.51 
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1070.78 582.63 825.68 455.96 667.21 632.95 

825.68 661.96 1207.47 399.85 825.68 646.67 

1141.97 850.00 1162.15 755.31 825.68 709.34 

1141.97 840.85 1207.47 670.45 1162.15 860.67 

1207.47 736.71 1290.16 529.57 1141.97 998.39 

1207.47 947.46 1207.47 892.74 1141.97 1098.01 

1207.47 1099.11 1225.74 965.11 1207.47 1018.92 

1207.47 1182.85 1309.26 568.62 1207.47 1137.98 

1225.74 1207.32 1290.16 932.56 1225.74 1174.24 

1263.00 1138.80 1290.16 1079.39 1263.00 1127.41 

1263.00 1235.04 1290.16 1018.76 1263.00 1241.01 

1290.16 1251.94 1309.26 857.90 1290.16 1153.59 

1440 1152.01 1440 763.01 1440 1138.21 

1440 1422.28 1440 977.68 1440 1298.56 

1440 1248.10 1440 611.38 1440 1356.43 

 

 
Figure 13. Maximum and allowable amounts of the internal stress of members, using GSA 

 

 
Figure 14. Maximum and allowable amounts of the internal stress of members, using ICA 
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Figure 15. Maximum and allowable amounts of the internal stress of members, using ICA-

GSA 

 

 

7. CONCLUSIONS 
 

In this article, an efficient optimization method has been introduced by combination of ICA 

and GSA for topology optimization of double layer grids. The present combined method, 

ICA-GSA, was based on ICA but it used the law of gravity of GSA to move countries 

toward their relevant imperialist. The proposed method was applied for topology 

optimization of a large-scale double layer grid, and the optimization was implemented in 

three cases. In the solved example, the following numerical results can be drawn as:  

(a) In comparison with other heuristic algorithms, the ICA-GSA method has better 

performance than ICA, CSS, CICA and GSA in the size optimization of the space trusses. 

(b) ICA method finds better answer in the topology optimization of large scale skeletal 

structures than those of optimum topologies attained by GSA.  

(c) ICA-GSA method obtains the optimum topologies with lower weight than those of 

optimum topologies achieved by ICA, GSA, ACO and MMA-ACO. 

(d) In ACO and MMA-ACO to achieve a better solution, at the end of the first phase of 

topology optimization, the local search space of the following phases is applied by the 

neighborhood of the previous elitist ant’s solution, with 100 ants, and the size optimization 

of the obtained optimum topology is implemented in several phases. But ICA-GSA gives the 

optimum topology only in one phase with 50 countries and 80 iterations. Therefore, ICA-

GSA approach is more reliable than ACO and MMA-ACO, in the topology optimization of 

large-scale skeletal structures. 
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