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ABSTRACT 
 

In this paper, the bi-directional evolutionary structural optimization (BESO) method is used 

to find optimal layouts of 3D prestressed concrete beams. Considering the element 

sensitivity number as the design variable, the mathematical formulation of topology 

optimization is developed based on the ABAQUS finite element software package. The 

surface-to-surface contact with a small sliding between concrete and prestressing steels is 

assumed to accurately model the prestressing effects. The concrete constitutive model used 

is the concrete damaged plasticity (CDP) model in ABAQUS. The integration of the 

optimization algorithm and finite element analysis (FEA) tools is done by using the 

ABAQUS scripting interface. A pretensioned prestressed simply supported beam is modeled 

to show capabilities of the proposed method in finding optimal topologies of prestressed 

concrete beams. Many issues relating to topology optimization of prestressed concrete 

beams such as the effects of prestressing stress, geometrical discontinuities and height 

constraints on optimal designs and strut-and-tie models (STMs) are studied in the example. 

The results show that the proposed method can efficiently be used for layout optimization of 

prestressed concrete beams. 
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1. INTRODUCTION 
 

Optimization can be defined as the act of obtaining the best result under given conditions. 

The goal of any optimization algorithm is either to minimize the effort required or to 

maximize the desired benefit [1]. In recent decades, optimization algorithms are used in civil 

engineering domain to perform various tasks such as prediction of material properties [2-3] 
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and a variety of civil engineering design applications [4-9]. Structural optimization is a very 

useful and challenging field that has received significant attention by researchers and 

practicing engineers. Structural optimization problems can be categorized as follows: (1) 

finding optimal size of structural members (size optimization); (2) obtaining the optimal 

form of the structure (shape optimization); and (3) achieving optimal size as well as finding 

connectivity between structural members (topology optimization) [10]. It has been 

recognized that topology optimization can be effectively used in early stages of design and 

that it significantly improves the structural performance compared to other types of 

structural optimization (e.g. size and shape optimization). Topology optimization for 

discrete structures, such as trusses and frames, is to search for the optimal connectivity of 

the bars. In topology optimization of continuum structures, the optimal designs are obtained 

by determining the best locations and geometries of cavities in the design domains. 

Topology optimization provides much more freedom and options and provides the 

designers an effective tool for creating novel conceptual designs for continuum structures 

[11]. Researchers have used various optimization approaches such as Method of Moving 

Asymptotes (MMA) [12], integrated optimization approach based on the concept of 

isogeometric analysis and level set method [13], a combination of isogeometric analysis and 

level set method [14], a combination of isogeometric analysis and an implicit function based 

on Non-Uniform Rational B-Spline (NURBS) basis functions [15], a combination of the 

solid isotropic material with penalization (SIMP) and unstructured polygonal finite element 

analysis [16] and a convex linearization approach combining linear and reciprocal 

approximation functions [17] for solving problems dealing with static and dynamic loads.  

Considering the increasing need to design lightweight structures with low cost and high 

performance, topology optimization may be considered as one of the most important tools in 

engineering applications in recent years [18]. The primary task of topology optimization is 

to find the best structural layout in a predefined design domain so that all the design 

constraints are met [17]. It has been recognized that topology optimization significantly 

improves the structural performance compared to other types of structural optimization (e.g. 

size and shape optimization) and has great potential for application in construction industry, 

particularly concrete structures for the determination of optimal strut-and-tie models and 

reinforcement layout designs [19-22].  

It has been found that prestressing has introduced new approaches of construction and 

enabled new types of structures to be built [23-24]. Three of the most challenging and useful 

applications of the prestressing in recent years have been for large sea structures (such as 

harbors, fixed and floating platforms, and off-shore terminals), nuclear power stations and 

bridges. Several techniques for prestressing have been developed in recent decades. They are 

generally classified into two major categories, pretensioning and posttensioning. 

Pretensioning generally means that a compressive stress is put into a structure before it 

begins its working life [25]. It is well-known that concrete is strong in compression but 

weak in tension. The basic idea of prestressing concrete is to counteract these tensile stresses 

that are developed under external loads [26]. It is well-known that the prestressed concrete 

was patented by P.H Jackson in 1886. However, it was not until the late 1940s that 

prestressed concrete really began to develop. Eugene Freyssinet is regarded as the father of 

the prestressed concrete. His studies in the subject and the tests carried out by him in the 

early 1900s were pioneer in the field of prestressing concrete.  
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There are numerous research studies for the optimization of prestressed concrete 

structures. For example, Barakat et al. [27] proposed a multi-objective reliability-based 

optimization method for the design of prestressed girder beams. Ahsan et al. [28] employed 

a global optimization method for the cost optimum design of posttensioned I-girder bridge. 

Sirca and Adeli [29] suggested a nonlinear technique for the minimum cost optimization of 

prestressed I-girder bridge structures. Rana et al. [30] applied an evolutionary algorithm for 

the optimal cost design of prestressed concrete bridge structures. Aydin and Ayvaz [26] 

employed a hybrid genetic algorithm to determine the optimum number of spans and 

optimum cross-sectional properties of prestressed concrete bridges. Kaveh et al. [31] studied 

the cost optimum design of post-tensioned concrete bridges using the modified colliding 

bodies optimization algorithm. Liang et al. [32] proposed a performance-based optimization 

(PBO) method to generate optimal STMs of 2D prestressed concrete beams. Amir and 

Shakour [33] applied a density-based approach for topology optimization of 2D prestressed 

concrete beams. However, it can be found that none of these studies deals with topology 

optimization of 3D prestressed concrete beams in which prestressing steel, contact model 

between concrete and steel, and actual behavior of concrete under tension and compression 

are accurately modeled. 

In this paper, the BESO method is extended for topology optimization of prestressed 

concrete beams considering material nonlinearity. A pretensioned simply supported beam is 

modeled using the ABAQUS finite element software to accurately model the effects of 

prestressing. The surface-to-surface contact with a small sliding between the concrete and 

prestressing steel is assumed. The concrete damaged plasticity model is used to model the 

nonlinear behavior of concrete. The height constraint, prestressing stress and geometrical 

discontinuity will be found to highly effect on the optimal layouts of prestressed concrete 

beams. Based on our best knowledge, this paper is the first study to find optimal topologies 

of 3D prestressed concrete beams in which prestressing steel, contact between concrete and 

steel, and material nonlinearity of both concrete and steel are all considered The results 

confirm the efficiency of the proposed method in finding optimal layouts of prestressed 

concrete beams.  

 

 

2. PROBLEM FORMULATION 
 

Some parts of a structural concrete member are not as effective in carrying loads as other 

parts [20]. Finding the efficient parts in a loaded concrete structure, the optimal layouts can 

effectively be generated. Therefore, the development of the optimal layouts in a concrete 

structure can simply be converted to a topology optimization problem [34]. The classical 

topology optimization can be stated as follows [35-38]: 
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The objective of the above equation is to minimize the mean compliance C. The design 

variable ix  indicates the presence (1) or absence (𝑥𝑚𝑖𝑛 = 0.001) of an element. This is 

consistent with the design variables of the soft-killed BESO method. In equation (1), N  and 
*V  denote the total number of elements and the prescribed volume, and F  and U  represent 

the global force and displacement vectors respectively. In the BESO method considering 

nonlinearity, the structure is optimized by the discrete design variables which can be defined 

using the element sensitivity number i  [11]: 

 
1p e p

i i i i
px ( E E )     (2) 

 

where p  is the penalty exponent, and e
iE  and 

p
iE  are respectively the elastic and plastic 

strain energies of element i. Using the obtained sensitivity numbers, the void elements are 

ranked alongside the solid elements in terms of their importance. The element additional and 

removal criterion can be described as follows: 
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where 
th  is the threshold of the sensitivity number which can be calculated based on the 

prescribed volume in each iteration (
1kV 
): 

 
1 1k kV V ( ER )    (4) 

 

where 
kV  is the volume for the current iteration and ER is the evolutionary volume ratio. It 

should be noted that in this study a procedure similar to Ref. [34] is employed to obtain 

mesh-independent and checkerboard-free solutions. A performance index is also used to 

evaluate the measure of the efficiency of the iterative process [39]: 

 

0 0k

k k

C V
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C V
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where kPI  is the performance index at iteration k. 0C  and 0V  are the compliance and 

volume of the initial structure respectively. Similarly, kC  and kV
 are the compliance and 

volume of the current design at iteration k respectively. The performance index can also be 

used as a stopping criterion during the optimization process. In this study, the performance 

index smaller than unity is defined as the sopping criterion. 
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Figure 1. Response of concrete to uniaxial loading in: (a) tension; (b) compression 

 

 

3. ABAQUS DAMAGED PLASTICITY MODEL 
 

For nonlinear FE analysis, material model can play an essential role in predicting the strength 

of concrete. In this study, the damaged plasticity model in ABAQUS is used to model the 

tensile and compressive behavior of the concrete beam. The material model uses the isotropic 

damaged elasticity in association with isotropic tensile and compressive plasticity to represent 

the inelastic behavior of the concrete [40]. Both tensile cracking and compressive crushing are 

included in this model. Beyond the failure stress in tension, the formation of micro-cracks is 

represented macroscopically with a softening stress-strain response. The post-failure 

behaviour for direct straining is modeled by using the tension stiffening, which also allows for 

the effects of the reinforcement interaction with concrete [41].  

 

 
Figure 2. Yield surface of the concrete damaged plasticity model in a plane stress situation 

 

The damaged plasticity model describes the uniaxial tensile and compressive response 

which is characterized by damaged plasticity as shown in Fig. 1. It is seen from Fig. 1.a that 

uniaxial tensile stress-strain response is linear elastic until the value of failure stress, and the 
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softening branch starts after violating this value. The uniaxial compressive response is linear 

elastic until the value of initial yield, followed by a hardening and a softening branch (see 

Fig. 1.b). It can also be seen from Fig. 1 that when the concrete member is unloaded from 

any point of strain softening branch of the stress-strain curve, the unloading response is 

weakened. The strain does not return to zero in an unloading situation, but some residual 

stresses remain present which is similar to the real behaviour of concrete [42]. 

In the CPD model, the elastic stiffness is characterized by two damage variables td  and 

cd , which are functions of plastic strains ( pl
c  and pl

t : equivalent plastic strain, pl
c  and 

pl
t : equivalent plastic strain rate). These two damage variables can take values from zero, 

representing the undamaged material, to one, which represents the total loss of the strength. 

Therefore, when 0E  is the initial undamaged elastic stiffness, the stress-strain relations 

under uniaxial tension and compression loading are respectively calculated as [40]: 

 

 

Figure 3. Simply supported prestressed concrete beam: (a) Full model; (b) Symmetric model 
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Under uniaxial cyclic behaviour, the concrete damaged plasticity model assumes that the 

reduction of the elastic modulus is given in terms of a scalar degradation variable td  as: 

 

0 0
1E ( d )E   (7) 

 

where 0d  is the stiffness degradation variable that is a function of the stress state and the 

uniaxial damage variables ( td , cd ): 

 

(a) (b) 
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01 1 1t c c t( d ) ( s d )( s d )     (8) 

 

where ts  and cs  are functions of the stress state. The stress-strain relations for the general 

three-dimensional multi-axial condition are given by scalar damage elasticity equation:  

 

0 0
1 el pl( d )D ( )      (9) 

 

 
(a)                (b) 

 
(c) 

Figure 4. History of performance index: (a) pf  = 0; (b) pf  = 750 MPa; (c) pf  = 1500 MPa 

 

where 0
elD  is the initial undamaged elasticity matrix and pl  is the strain at the end of the 

elastic part of the stress-strain curve. The linear elastic stress space is described by plasticity 

model based on a yield surface. The yield surface of the concrete damaged plasticity model 

is given in Fig. 2. It is worth noting that in a plane stress condition, the yield function 

presents a shape that is close to the real behavior of concrete. This shows that this material 

model can efficiently reflect the key characteristics of concrete. 

 

 

4. LAYOUT OPTIMIZATION PROCEDURE 
 

The main steps for the layout optimization of the prestressed concrete beams are given as 

follows: 
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Figure 5. Optimization history of non-prestressed concrete beam ( pf  = 0): (a) initial structure 

without loading; (b) initial structure with loading; (c) layout at iteration 30; (d) layout at iteration 

60; (e) layout at iteration 90; (f) optimal layout (iteration 138) 

 

1. Define 3D structural concrete, boundary conditions, external loading, bearing plates, 

prestressing steel, prestressing force, contact model, material properties and the finite 

element discretization. This step is fully carried out within the ABAQUS finite element 

software which provides a wide range of linear and nonlinear FEA meshing tools, 

material properties and contact modeling capabilities. 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 6. Optimization history of partially prestressed concrete beam ( pf  = 750 MPa): (a) initial 

structure without loading; (b) initial structure with loading; (c) layout at iteration 30; (d) layout 

at iteration 60; (e) layout at iteration 90; (f) optimal layout (iteration 113) 

 

2. Perform the nonlinear FEM analysis on the structural concrete and calculate the element 

sensitivity numbers according to Eq. (2). 

3. Evaluate the efficiency of the resulting topology according to Eq. (5).  

4. Compute the prescribed volume for the next iteration using Eq. (4). 

5. Add or remove elements according to the value of their sensitivity numbers. 

(a) (b) 

(c) 
(d) 

(e) (f) 
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Figure 7. Optimization history of fully prestressed concrete beam ( pf  = 1500 MPa): (a) initial 

structure without loading; (b) initial structure with loading; (c) layout at iteration 30; (d) layout 

at iteration 60; (e) layout at iteration 90; (f) optimal layout (iteration 136) 

 

6. Repeat the steps of 2-5 until the performance index is less than unity.  

7. Select the optimal layout that corresponds to the maximum performance index. 

It should be noted that the ABAQUS scripting interface is used in this step to integrate 

the optimization procedure (BESO) and finite element tools. 

 

(a) (b) 

(c) 
(d) 

(e) (f) 
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Figure 8. Prestressed concrete beam with different heights: (a) h = 500 mm; (b) h = 1500 mm 

 

 
(a)               (b) 

Figure 9.  Performance index history with different heights: (a) h = 500 mm; (b) h = 1500 mm 

 
 

5. NUMERICAL EXAMPLE 
 

 

In this section, a pretensioned simply supported beam is presented to demonstrate the 

efficiency of the proposed method in finding optimal topologies of prestressed concrete 

beams. Several issues relating to the topology optimization of prestressed concrete beams 

such as the effects of prestressing stress, height constraint and geometrical discontinuities  

on optimal layouts are addressed in the example. Fig. 3.a shows the dimensions of the 

concrete beam with a rectangular cross section. The beam length to height size ratio is 8:1. 

The bottom right corner is a roller support and the bottom left corner is a fixed support. The 

width of the beam is assumed to be 300 mm. Two vertical forces of F = 500 kN are applied 

to the upper side of the structure. The prestressing steel with a diameter of 40 mm is placed 

at a distance of 150 mm from the bottom of the beam. It is assumed that bearing plates of 

300 200 mm are used in the loaded points and supports. The ER = 1% is specified in the 

optimization process. 

(a) (b) 
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The concrete has the Young's modulus E = 31900 MPa and Poisson’s ratio 0.15  . The 

Young's modulus and Poisson’s ratio of the prestressing steel are assumed to be E = 190 GPa 

and 0.3  . The mass density of concrete and steel are considered to be 24 and 78 3KN m . 

Due to symmetry, only a quarter of concrete beam and prestressing steel are modeled using 

4960 8-node hexahedral elements and 320 wedge elements respectively (see Fig. 3.b). The full 

interaction between the elements of two materials is assumed. The surface-to-surface contact 

with small sliding between concrete and prestressing steel is considered in the analysis. An 

elasto-plastic model is employed for prestressing steels. The prestressing steel is meshed with 

the same size as that of the concrete to get more proper contact.  

 

5.1 The effects of prestressing stress 

The optimum value of prestressing force needs to be taken into account when analyzing and 

designing the prestressed concrete beams. To study the influence of prestressing force, the 

concrete beam is optimized with different values of prestressing stress: 
pf  = 0, 750 and 

1500 MPa (namely nonprestressed, partially prestressed and fully prestressed). The 

performance index histories with various prestressing stress are shown in Fig. 4. It can be 

seen that the performance indices gradually increase in the optimization process and drop 

quickly after they approach their peak values. This can be referred to the breakdown of load 

transfer mechanism due to the element removal in a single iteration. The maximum 

performance index are respectively calculated as 1.64, 1.68 and 1.57 for the beam with 

prestressing stress of 
pf  = 0, 750 and 1500 MPa. It can be observed that the concrete 

structure with prestressing stress of 
pf  = 750 MPa has a higher performance index. This 

means that the concrete beam with partial prestressing has better performance than the 

nonprestressed and fully prestressed concrete beams.  

The optimal topologies have resulted in material volume reductions of 25, 32 and 27 percent 

respectively for the structure with the prestressing stress of 0, 750 and 1500 MPa compared 

to the volume of the initial structure. The optimization histories and the optimal topologies 

with different values of prestressing stress are illustrated in Figs. 5-7. It can be seen that the 

value of prestressing stress highly affect optimal topologies, and that the optimal layouts 

varies with the change in the value of prestressing stress. It can also be observed that the 

number of bars in the final optimal topology considerably decreases with an increase in the 

value of prestressing stress. This shows that with an increase in prestressing stress, external 

loads transmit along a straighter load path. It can be concluded that the value of prestressing 

stress should be taken into account as an important factor for design of reinforcement layout 

in prestressed concrete beams. 
 

5.2 The effects of height constraints 

In practice, the design space of a concrete beam is often limited and significantly affects the 

optimal configurations of the structure. For instance, the height of a concrete bridge has to 

be limited in order to satisfy functional requirements [39]. Therefore, the designer should 

know how to select an initial design domain for finding the optimal structure in a given 

design space. 

The effect of geometric restrictions such as height constraints on the optimal layouts of 
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prestressed concrete beams is investigated in this section. Fig. 8 illustrates the fully 

prestressed concrete beam ( 𝑓𝑝  = 1500 MPa) with various heights (h = 500 and 1500 mm). 

Fig. 9 shows the performance index history of the beam, and Figs. 10-11 depict the topology 

optimization histories and final optimal structures. 
It can be seen from Fig. 9 that the performance index of the initial structure is equal to 

unity while the maximum performance indices for the structure with the height of 500 and 

1500 mm are 1.76 and 2.19 respectively. As expected, the maximum performance index 

increases with an increase in the beam height.  

 

 
 

Figure 10. Optimization history of fully prestressed concrete beam (h = 500 mm): (a) initial 

structure without loading; (b) initial structure with loading; (c) layout at iteration 30; (d) layout 

at iteration 60; (e) layout at iteration 90; (f) optimal layout (iteration 106) 

 

(a) 
(b) 

(c) (d) 

(e) (f) 
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A comparison between Figs. 10 and 11 demonstrates that different optimal layouts are 

obtained for the same concrete beam with various height constraints. It can be confirmed 

that appropriate optimal topologies and reinforcement layout designs should be developed 

for the prestressed concrete beam with different heights. 

 

 
 

Figure 11. Optimization history of fully prestressed concrete beam (h =1500 mm): (a) initial 

structure without loading; (b) initial structure with loading; (c) layout at iteration 30; (d) layout 

at iteration 60; (e) layout at iteration 90; (f) optimal layout (iteration 120) 

(a) 
(b) 

(c) (d) 

(e) (f) 
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(a)                (b) 

Figure 12. Simply supported prestressed concrete beam with openings: (a) Full model; (b) 

Symmetric model 

 

 
(a)               (b) 

 
(c) 

Figure 13. Performance index history of beam with opening: (a) pf  = 0; (b) pf  = 750; 

 (c) pf  = 1500 MPa 
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Figure 14. Optimization history of non-prestressed concrete beam ( pf  = 0): (a) initial structure 

without loading; (b) initial structure with loading; (c) layout at iteration 20; (d) layout at iteration 

40; (e) layout at iteration 60; (f) optimal layout (iteration 108) 

 

5.3 The effects of openings 

The purpose of this example is to examine the effect of geometrical discontinuities on the 

optimal layouts of prestressed concrete beams. Four openings are modeled on the vertical 

faces of the concrete beam as shown in Fig. 12.a. Due to symmetry, only a quarter of the 

concrete beam is modeled in the analysis (see Fig. 12.b). Fig. 13 shows the performance 

index histories of the concrete member under different values of prestressing stress ( pf  = 0, 

750 and 1500 MPa). The maximum performance indices for these cases are calculated as 

(a) (b) 

(c) (d) 

(e) (f) 
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1.59, 1.50 and 1.41 respectively. It is seen again that the maximum performance index 

decreases with an increase in the value of prestressing stress. The optimization histories and 

optimal topologies of the concrete beam with openings are depicted in Figs. 14-16.  
A comparison between Figs. 14-16 and Figs. 5-7 reveals that the presence of geometrical 

discontinuities induces changes in inclined bars on the concrete beam. This is due to the fact that 

the load transfer path is cut by the openings. It can be observed that the presence of openings can 

significantly affect the optimal layouts in the prestressed concrete beams, and that the load-

carrying system varies with the change in dimensions and size of openings. 

 

 
Figure 15. Optimization history of partially prestressed concrete beam ( pf  = 750 MPa): (a) 

initial structure without loading; (b) initial structure with loading; (c) layout at iteration 20; (d) 

layout at iteration 40; (e) layout at iteration 60; (f) optimal layout (iteration 96) 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 16. Optimization history of fully prestressed concrete beam ( pf  = 1500 MPa): (a) initial 

structure without loading; (b) initial structure with loading; (c) layout at iteration 20; (d) layout 

at iteration 40; (e) layout at iteration 60; (f) optimal layout (iteration 80) 

 

One of the most practical applications of topology optimization is to find optimal Strut-

and-Tie Models (STMs) in concrete structures. A strut-and-tie model is an internal truss, 

comprising of concrete struts and steel ties that are connected at nodes to transform the 

applied loads through discontinuity regions to the supports [34]. It has been found that 

STMs can effectively be used for the flexural and shear design of structural concrete in 

disturbed regions [43-45]. The optimal topologies presented in Figs. 6 and 7 are idealized to 

the STMs shown in Fig. 17. It should be noted that the dashed and solid lines respectively 

(a) (b) 

(c) (d) 

(e) (f) 
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represent the concrete struts and steel ties. It can be found from a comparison between Figs. 

17.a and 17.b that the value of prestressing stress considerably affects the optimal STMs in 

the prestressed concrete beam. It can also be seen that the applied loads are transferred from 

bearing plates to the supports through concrete struts tied by respectively three and two steel 

ties for the concrete structure with 
pf  = 750 and 1500 MPa. This shows that optimal STMs 

in the prestressed concrete beams considerably depend on the value of prestressing stress. 

 

  
(a)                (b) 

Figure 17. Optimal strut-and-tie models obtained by present method: (a) partially-prestressing; 

(b) fully-prestressing 

 

 

Figure 18. Optimal strut-and-tie models predicted by Schlaich et al. [30]: (a) partially-

prestressing; (b) fully-prestressing 

 

It has been recognized that conventional methods involving a trial-and-error iterative 

process based on the designer’s intuition have no efficiency in finding appropriate STMs in 

prestressed concrete structures with complex geometry and loading conditions [39]. The 

STMs predicted by one such traditional method [46] for prestressed concrete beams are 

shown in Fig. 18. It is confirmed from a comparison between Figs. 17 and 18 that the STMs 

generated by the present method generally differ from those obtained by Ref. [46] and are in 

better agreement with the actual load-carrying systems in prestressed concrete beams [32]. 

This can be attributed to accurate modeling of the prestressing steels, contact between 

concrete and steel, and nonlinear behavior of concrete along with a efficient topology 

optimization method to find the load transfer mechanism in prestressed concrete beams. 
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6. CONCLUSION 
 

This paper presents the BESO method for topology optimization of prestressed concrete 

beams considering material nonlinearity. The proposed method was implemented in the 

ABAQUS finite element software which provides a wide range of contact and nonlinear 

modelling tools. A pretensioned prestressed beam was presented to show the efficiency of 

the proposed framework in finding optimal layouts in prestressed concrete beams. Several 

issues relating to topology optimization of prestressed concrete beams such as prestressing 

stress, height constraint and geometrical discontinuity were studied in the example. The 

results show that the proposed method can effectively be used for the layout optimization of prestressed 

concrete beams. 
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