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ABSTRACT 
 

In decentralized construction projects, costs are mostly related to investment, material, 

holding, logistics, and other minor costs for implementation. For this reason, simultaneous 

planning of these items and appropriate scheduling of activities can significantly reduce the 

total costs of the project undertaken. This paper investigates the decentralized multiple 

construction projects scheduling problem with the aim of minimizing 1) the completion time 

of the construction projects and 2) the costs of project implementation. Initially, a bi-

objective integer programming model is proposed which can solve small-size problems 

using the method. Then, a Priority Heuristic Algorithm (PHA), Non-dominate 

Sorting Artificial Bee Colony (NSABC) and Non-dominate Sorting Genetic Algorithm II 

(NSGA-II) are developed to handle large-size problems using a modified version of Parallel 

Schedule Generation Scheme (PSGS). The computational investigations significantly reveal 

the performance of the proposed heuristic methods over exact ones. Finally, the proposed 

methods are ranked using TOPSIS approach and metric definition. The results show that 

NSGA-II-100 (NSGA-II with 100 iterations), NSABC-100 (NSABC with 100 iterations) 

and PHA are ranked as the best known solution methods, respectively. 
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1. INTRODUCTION 
 

Nowadays; due to the expansion of modern cities as well as the advancement of new 

technologies, construction projects are becoming more complex. The complexities behind 

the process of supplying resources and accomplishment of activities complicate the planning 

process of a project. In the decentralized construction projects, planning takes place in two 

main areas. The first area is related to the scheduling of the activities which special attention 

should be paid to the amount of available resources, precedence relationships, and the 

resource transfer time between activities. All of them can affect the completion time of the 

projects. The second area; is related to the costs incurred in order to implement a project. 

The most important costs are the constructing workshops costs (it is called resource pool in 

literature), the ordering costs of non-renewable resources, the cost of holding these 

resources, the costs of resource deterioration, as well as the costs of transferring resources 

between activities. In fact, these actions are taken in order to support the implementation of 

the activities undertaken. From planning point of view, failure to addressing these two areas 

at the same time may lead to increased costs, which ultimately increases the total costs. The 

most important costs that may be imposed due to the lack of decision integration are 

presented as follow: 

 Increasing the time and cost of transferring resources between activities due to the lack of 

choosing the right location to build a resource pool. 

 Increasing ordering costs due to improper planning of order quantity. 

 Increasing holding or shortage costs due to improper planning of order time. 

 Increasing deterioration costs due to improper planning of dispatching non-renewable 

resources to activities. 

In all of the above situations, any kind of wrong decision might affect the total 

completion time of the construction projects. Therefore, an integrated decision on the 

planning of decentralized construction projects implementation is very important. In this 

paper, this important issue is being addressed. 

The well-known Resource Constrained Project Scheduling Problem (RCPSP) and its 

many variants have been receiving an increasing attention from researchers. Table 1 shows 

the research carried out in this area in the recent years based on number of projects and 

corresponding objective functions. 

 
Table 1 Segmentation of RCPSP literature 

Objective/Project Single project Multi-projects 

Single objective 

(Davari and Demeulemeester, 2019); 

(Almeida et al., 2018);(Myszkowski 

et al., 2018); (Lacomme et al., 2017); 

(Bilolikar et al., 2016);(Kaveh et al., 

2016); (He et al., 2016);(AlNasseri 

and Aulin, 2015) (Tran et al., 2015); 

(Myszkowski et al., 2015); (Van 

Peteghem and Vanhoucke, 2014); 

(Rostami et al., 2014) 

(Chen et al., 2018); (Chakrabortty 

et al., 2017); (Beşikci et al., 

2015); (Sonmez and Uysal, 2014); 

(Can and Ulusoy, 2014); (Beşikci 

et al., 2013) 
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Multi-objectives 

(Tirkolaee et al., 2019);(El-Abbasy et 

al., 2016); (Laszczyk and 

Myszkowski, 2019);(Wang and 

Zheng, 2018);(Lu et al., 2018); 

(Gutjahr, 2015); (Capa and Ulusoy, 

2015); (Tavana et al., 2014); (Gomes 

et al., 2014); (Ghoddousi et al., 2013) 

(Geiger, 2017); (Chen et al., 

2017); (Çebi and Otay, 2015); 

(Küçüksayacigil and Ulusoy, 

2014); (Wang et al., 2014);  

 

1.1 Literature review of decentralized multi-project scheduling problems  

Unlike the centralized projects, the scheduling process of decentralized projects has been 

less widely considered in the literature. In decentralized construction projects, the resources 

transferring time between activities should be taken into account because they affect the 

project completion time. This problem was investigated by Yang and Sum (1993) for the 

first time. They considered equal resource transferring time between activities. In fact, these 

times are only between resource pools and activities, and no transferring time is considered 

between activities. By considering different resources transferring time between activities, 

Krüger and Scholl (2009, 2010) studied the same problem by developing a mathematical 

model. By the help of priority rules, they categorized projects according to their priorities 

and allocated constrained resources to projects. The great weakness of their heuristic 

algorithm was to prioritize project implementation at the beginning of the algorithm and the 

transfer of resources from higher priority projects to lower priorities not being possible. To 

address this weakness, Adhau et al. (2012) with using the multi agent system- One of the 

well-known methods in solving robotic problems - tried to obtain the appropriate solutions 

for decentralized multi-project scheduling problems. This decentralized algorithm uses 

auctions based negotiation (DMAS/ABN) approach that contributes to resolving resource 

conflicts and allocating multiple different types of shared resources amongst multiple 

competing projects. They divided the resources into two categories. There are a number of 

resources that can be locally available due to the abundance. Other category of resources is 

scarce and should be shared between projects as global resources. Resource pool location in 

project scheduling problems was considered by Rostami et al. (2017) for the first time. To 

solve decentralized multi-project scheduling problem, they used an artificial bee colony 

hybrid algorithm (HABC). They showed that considering the resources pool location 

simultaneously with the scheduling of activities reduces total costs. In an special case, 

Rostami and Bagherpour (2020) developed a lagrangian relaxation method to obtain lower 

bounds for this problem. Recently, Wang et al. (2019) developed a bi-objective optimization 

model to make the resource transfer decisions in a decentralized project scheduling problem. 

This model aims to minimize the transfer cost and maximize solution robustness in the 

presence of activity duration variability. 

 

2.1 Literature review of project scheduling and material purchasing integration  

The decision integration between material purchases and the project scheduling has been 

considered by some researchers from the past three decades. This problem was first 

investigated by Aquilano and Smith (1980), where a combination of critical paths method 
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and material purchases was presented for the problem. After them, some researches were 

carried out on this subject. Among them Dodin and Elimam (2001) were considered this 

problem in situations where the durations are variable and awards are taken into 

consideration in purchasing. Also, Sajadieh et al. (2009) solved this problem with the aid of 

a genetic algorithm. Taking into account the batch ordering system, Fu (2014) present a 

hybrid genetic algorithm for the problem. Recently, Zoraghi et al. (2017) developed an 

integrated model for the planning of project implementation and material ordering 

simultaneously in a multi-mode resource constrained project scheduling problem under 

bonus–penalty policies. 

 

3.1 Research gap  

Based on the above mentioned discussion, only 7 research papers have been published on 

the decentralized projects scheduling problems so far, which only one article considered the 

resource pool location and periodic services altogether. Also, from researches conducted in 

the area of decision integration on project scheduling and material purchasing; only 2 papers 

were found in terms of incorporating batch ordering system in a centralized project 

environment. To the best of our knowledge, so far, no research was conducted on the 

consideration of batch order systems for the purchasing of materials in the decentralized 

construction projects environment; taking into account the resources pool location, periodic 

services, non-renewable resources deterioration, and sequence-dependent setup times. Thus; 

this paper deals with such a problem for the first time and introduce a bi-objective 

decentralized project scheduling problem as well. The first objective is to minimize the total 

project costs, and the second objective is to minimize the total completion time of the 

projects undertaken. Since the resource constrained multi-project scheduling problem is 

known as NP-hard (Salewski et al. (1997)), the problem developed in this paper by adding 

resources pool location will also be NP-hard. The rest of this paper is organized as follows: 

Section 2 defines the considered problem and presents a bi-objective mixed integer linear 

programming model. In order to solve this model with a commercial solver, a constraint   

method is developed in this section. Section 3 presents the solution methods for large-size 

instances, i.e. heuristic method, NSABC and NSGA-II that use a modified version of the 

PSGS. Section 4 provides computational results that include parameter tuning, the 

comparison of the results obtained by the proposed methods, and the ranking of the 

proposed methods based on defined metrics. Finally, section 5 summarizes the results and 

proposes future studies. 

 

 

2. PROBLEM STATEMENT AND MODELING 
 

In this section, first, the problem under consideration is comprehensively defined and then 

formulated by an integer programming model. The problem under study has the following 

assumptions and conditions: 

 There is a program including several decentralized construction projects, meaning that 

project distances are noticeable. In fact, the projects are distinct from each other due to 

their noticeable distances 
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 The distances between activities are measured by the straight line method. 

 The precedence relations between two consecutive activities are Finish to Start (FS). 

 The problem includes one type of renewable and one type of non-renewable resource 

which are shown by indices of 1 and 2 respectively. 

 The renewable resources have limitations and cannot be used by activities at any moment 

more than their capacity. These resources must be transferred between activities and have 

different setup times based on the sequence. 

 The non-renewable resources due to local procurement are not limited, but should be 

purchased with the help of a batch order system. It is assumed that shortage is not 

allowed for these resources. 

 To hold non-renewable resources, as well as to provide periodic services for renewable 

resources, we need to establish a resources pool for each resource type from among 

potential points. It is assumed that for each resource type only one resources pool should 

be established and it is possible to be established both resource pools in one potential 

point. 

 Renewable resources should refer to the resource pool at specific times for periodic 

services and return to the activities after these services. Periodic service times are set at 

the beginning of the project planning, and the assumption is that at the time of the 

periodic service, if the resource is in implementation of an activity, the resource will 

continue the implementing of current activity and then refer to the resource pool. 

 Non-renewable resources are stored after purchase in the resources pool. In the resource 

pool, the non-renewable resources do not deteriorate because of sufficient facilities in the 

pools. These types of resources begin to deteriorate after dispatching to activities, which 

cause the deterioration costs based on the linear time function. 

 The first objective of the problem is to minimize the total cost of the construction 

projects, including the resource pool construction cost, the resources transferring cost, the 

holding and deterioration costs of non-renewable resources, as well as the ordering costs. 

 The second objective of the problem is to minimize the project’s total completion times. 

For defining mathematical model, Table 2 presents the parameters and decision variables. 

 
Table 2: Parameters and decision variables 

Section Notation Description 

S
et

s 

I Set of Projects Activities 

( )
D

P i  the direct predecessors of the ith activity 

( )
I

P i  the direct/indirect predecessors of the ith activity 

L the potential centers of the resource pool 

K the required resources types 

T the time horizon of the projects 

In
d

ex
es

 i, j the activity number 

e the dummy activity of total projects 

l the centers of pool 

k The type of resource 

t, u the time 
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P
a

ra
m

et
er

s 
ijD  the time distance between i and j 

ijCT
 

the transportation cost for each unit of renewable 

resource between i and j 

ijs
 

the setup time of renewable resource when moves 

from i to j 

lkF  
the fixed cost of the building resource pool in the 

center l for type k 

ikr  the resource type k needed for the ith activity 

R the capacity of the renewable resources 

id  the duration time for the ith activity 

i  the deterioration coefficient for the ith activity 

t  
Equal 1 if the service needs at time t 

tCF
 

the fixed cost of each ordering in time t 

tCB
 

the buying cost of each nonrenewable resource in 

time t 

CH
 

the holding cost of each nonrenewable resource at 

each unit time 

CD  
the deterioration cost of each nonrenewable resource 

at each unit time 

M A large positive number  

D
ec

is
io

n
 V

a
ri

a
b
le

s 

ijx  
The amount of renewable resource transfer from 

activity i to j ( ijx integer ) 

lkE  
Equals 1 if the resource pool related to resource k 

constructed in the center l (  0,1
l

E  ) 

ijz  
Equals 1 if the renewable resource transferred from i 

to j (  0,1
ij

z  ) 

ity  
Equals 1 if the processing of activity i starts at time t 

(  0,1
it

y  ) 

it  

Equals 1 if the processing of activity i starts before t 

(  0,1
it
  ) 

tQ
 

The amount of nonrenewable resource ordered at 

time t (
t

integerQ  ) 

tI
 

The inventory of nonrenewable resource in resource 

pool at time t ( 0
t

I  ) 

t  

Equals 1 if a batch of nonrenewable resources is 

ordered at time t (  0,1t  ) 

it  
Equals 1 if the nonrenewable resource is sent to 

activity i at time t (  0,1
it
  ) 
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In this part an integer linear programming model is presented which can obtain global 

optimal solution for the small-size instances. To simplify the solving procedure, a specific 

number has been assigned to each specific activity. Also, a dummy activity e is provided for 

the project completion where the duration, setup time, distances from all real activities and 

the non-renewable resources required is zero and the renewable resources required is R. 

Based on the defined parameters and decision variables, the linear mathematical 

programming model is defined as follows: 

The objective function (1) minimizes the total cost of projects implementation. These 

costs include the resource pool construction cost, renewable resource transferring cost, the 

holding and deterioration cost of non-renewable resources, fixed costs of the ordering and 

variable costs of the resource purchasing. It should be noted that the fixed costs of ordering 

are not dependent on the order quantity, and in fact represents the logistics costs of each 

batch. 

 

 

2

  

  

  

  

lk lk

l k

ij ij

i I L j

i i it it

i t t

t t t t t

t t t

Min F E

x CT

CD r ty t

CH I CF CB Q

 



 



 
  

 

  



 

  

  

 (1) 

 

The objective function (2) minimize the completion time of projects that is equal to 

starting time of dummy activity. 

 

  et

t

Min ty  (2) 

 

Constraint (3) forces that one location must be selected as a resource pool for each 

resource type: 

 

1             lk

l

E k K    (3) 

 

Constraint (4) states that if the renewable resource pool is not established in the location 

l, this type of resource should not be getting out of this location: 

 

1          ,lj lz E l L j I    (4) 

 

Constraint (5) states that it is not possible to transfer renewable resource from i to j more 

than the requirement of activity i. This constraint also prevents the transfer of resources from 
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activity i to all activities that are its direct or indirect predecessors: 

 

 1 1     ( ), ( )   

0                          ( )   

ij ij i l I

ij I

x z r i I L r R j P i

x i I and j P i

     

   
 (5) 

 

Constraint (6) indicates that the total input resources to an activity should be equal to the 

sum of its output resources: 

 

 

=            ji ij

j I L j

x x i I and i e
 

     (6) 

 

Constraint (7) forces that the total input renewable resources to an activity should be 

equal to the amount of requirement resources of that activity: 

 

 
1           ji i

j I L

x r i I
 

    (7) 

 

Constraint (8) indicates that the total resources get out of the resource pool must be equal 

to the resource capacity: 

 

lj

l j

x R  (8) 

 

Constraint (9) states that the start time of the implementing of each activity should not be 

earlier than the completion of all corresponding predecessor activities: 

 

+           , ( )it jt j D

t t

ty ty d i I j P i      (9) 

 

Constraint (10) states that an activity can start to be implemented when the required 

renewable resource is completely received. The time of sweep among pool and activity must 

be added to the entry time, if the related resource needs time for periodic services (Part I). 

To calculate the sweep time, an auxiliary variable it
 is used which can be calculated by Part 

II. It is also necessary to restrict the transfer of resources from an activity to activities that 

have an earlier start time that is controlled by constraint (Part III): 
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   

 

1

0

1

1

) 2 + + + + 2

                                             ( 0, 1), ,      

)                   ,   0

) 

ji l it jt j ji ji jl t jt it

t t t

l l

it iu i

u t

ij

I M z E ty ty d D s D

j I L d y i I l L

II y i I t T and

III z t

  

 
 


 

    
 

      

    



  



         ,    jt it

t t

y ty i j I   
 

(10) 

 

Constraint (11) states that an activity can be started to be processed where its required 

non-renewable resources receive from the resource pool: 

 

2+           it it li l

t t l

ty t D E i I      
(11) 

 

Constraint (12) forces that each activity must only be start to process at one time: 

 

1          it

t

y i I    (12) 

 

Constraint (13) forces that the non-renewable resources should only be dispatched to 

activity at one time: 

 

1          it

t

i I     (13) 

 

Equation (14) calculates the value of inventory at time t. 

 
1 2 0+       ( =0)    t t t i it

i

I I Q r I t T     (14) 

 

Constraint (15) forces that the variable t
Q should not get a positive value if the resource is 

not ordered at time t: 

 

        t tQ M t T    (15) 

 

Also, constraint (16) states that the sum of purchased non-renewable resources should not 

be less than the total required non-renewable resources: 

 

2t i

t i

Q r   (16) 

 

Finally, equation (17) defines the model decision variables. 
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 , , , ,   0,1     

                   

 0                        

lk ij it it it t

ij t

t

E z y and

x and Q Integer

I

   



 

 (17) 

 

As stated above, the proposed model is an integer linear programming model that can 

create optimal Pareto front for small-size instances. In this paper, the constraint   method is 

used to conduct a single-objective model. In this method, the second objective function is 

considered as a constraint, i.e. 
et pf

t

ty  . By changing the value of pf  equal to m times 

in interval min max,  , m Pareto solution can be generated. It should be noted that the quality 

of generated Pareto front depends on the value of pf . 

 

 

3. SOLUTION METHODOLOGIES 
 

3.1 Modified parallel schedule generation scheme (MPSGS) 

The priority rule-based scheduling methods are considered by researchers due to high speed 

in reaching to the final solution. Parallel schedule generation scheme is a time increment 

algorithm which, according to priority rules, schedules those that are most appropriate from 

eligible activities. The steps of PSGS algorithm are presented as follows: first a priority list 

of activities is provided as input. Then, by defining a variable that represents time, the 

eligible activities are scheduled based on priority. When the resource constraint is violated 

or the list of eligible activities is empty, the variable related to the time will be updated. This 

process continues until all activities are scheduled. This algorithm is primarily designed for 

the RCPSP problem and loses its effectiveness in the developed problems. For this reason, 

in this section, PSGS algorithm is modified based on the problem discussed in this article 

and is used to obtain feasible schedules in the proposed methods. It is inspired by the 

heuristic algorithm presented in Rostami et al. (2017) to develop MPSGS algorithm, in this 

paper. The variables and parameters used in this algorithm are defined as follows: 

,i i : index of activities,  

j: index of an activity (or a pool) where the renewable resource exists in it,  

( )RSF t : set of actual renewable resources at time t,  

( )RSG t : set of potential renewable resources at time t,  

( )A t : set of eligible activities at time t,  

( )B  : set of processing activities at times of periodical services,  

( )MRS i : table of descended sorting cumulative renewable resources for activity i,  

ist : start time of processing activity i,  

( )i t : allocable renewable resources in activity i at time t, 

jiDis : time distance of renewable resource in activity (or pool) j from activity i, 
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Also, in this algorithm some inputs are required which includes the location of renewable 

( 1l ) and non-renewable ( 2l ) resource pool, the prioritized list of activities ( PA ), the 

prioritized list of renewable resources allocation to activities (
i

PRA ), as well as the 

dispatching time of non-renewable resources to each activity (
i

dt ). 

At the beginning, the variable related to the time (t) is considered equal to zero. In this 

step, the set ( )A t  is formed that consists of activities whose all direct and indirect precedence 

activities have been terminated. Also, the sets of ( )RSF t , ( )RSG t  as well as variable ( )i t  

are calculated. Actual resources are those resources that are ready to be assigned to an 

activity at time t, i.e. resources that are either in the pool or in an activity that has been 

completed before t. The distance of actual resources located in activity (or pool) j from 

activity i can be calculated from equation (18): 

 

+s           ( )ji ji jiDis D j RSF t    (18) 

 

Unlike actual resources, a potential resource is a renewable resource that is running in an 

activity and released at a time after t. The distance of potential resources in activity j from 

activity i can be calculated by relation (19): 

 

 12          ( ) ji j j ji ji jl t jt it
t

Dis st d t D s D j RSG t         
 
 
 
  (19) 

 

Also, ( )i t
 
is equal to the sum of actual and potential resources that are at time t in 

activity i and are not assigned to another activity. 

Then, based on the PA  list, the activity with the highest priority is selected from ( )A t . In 

the next step, the ( )MRS i table is formed for the activity with the help of the
i

PRA . Initially, 

the activities and resource pool are sorted according to the
i

PRA list and are placed in the first 

column of ( )MRS i  table. In the second column, the cumulative ( )i t  are computed for these 

activities. Then 
1i

r  value is compared with the cumulative values of the second column. The 

first row in which the relation ( )
ji

tr   is true indicates that the activity i for its procedure 

needs those resources placed from the first up to that specified rows. After the formation of

( )MRS i , the starting time of activity i is calculated from equation (20): 

 

  2max max ,i ji i l i
j

st Dis dt D   (20) 

 

In Eq. (20), j represents the activities that the renewable resources allocated to the 

activity i. Also, 2l i
D  represents the distance of non-renewable resource pool from activity i. 
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Then the scheduled activity is removed from ( )A t  and ( )RSF t , ( )RSG t  and ( )i t  are 

updated. When ( )A t    or ( )RSF t    the value of t will be updated. In this way, t increases 

to a point which at least one potential resource turns into an actual resource. This amount 

increase is displayed by _t step . If during the implementation of the activity or at the end of 

implementation the due date of period servicing is reached, the resources must return to the 

pool and after servicing come back again to the place of activity (21): 

 

1_ 2 ( )
j jst d

j j l j u

u t

t step min st d t D j RSG t




  
     

  
  (21) 

 

And this process continues until all activities are scheduled. The pseudo- code of MPSGS 

algorithm is described as follows: 

 

Inputs: 
Location of renewable resources 

Location of nonrenewable resource 

PA list 

PRAi list 

dti values 

Resources allocation and scheduling: 
Until scheduling all of activities do 

Step0. Set t=0, 

Step1. Update ( )A t , ( )RSF t , ( )RSG t  and ( )i t , 

Step2. Choose the most priority activity from ( )A t , 

Step3. Construct the ( )MRS i  for this activity based on PRAi list, 

Step4. Calculate the starting time of this activity 

Step5. Remove the scheduled activity from ( )A t , 

Step6. If ( )RSF t    or ( )A t   then go to Step 7 otherwise go to Step2, 

Step7. Update t and go to Step1, 

End. 
 

3.2 Priority rule-based heuristic algorithm (PHA) 

In this section, a two-stage priority rule-based heuristic algorithm is proposed to generate a 

local optimum Pareto front in a short time. This algorithm, according to the definition of 

different priority rules, can create a Pareto front with up to 64 different solutions. At the first 

stage, allocation of resources and scheduling of activities are specified while planning of 

non-renewable resources order and also dispatching them to the activities are considered as 

the second stage. 

As stated in Section 3.1, the MPSGS method has 5 inputs. Here, for each input, different 

priority rules are given that the combination of these rules creates 64 different settings (

8 2 2 2   ). In order to generate diverse solutions, it has been tried to use priority rules, 
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some of which will minimize the completion time of projects, and others to minimize 

imposed costs. 

There are two types of cost-based and time-based point of views for renewable resource 

pool location. From the location point of view, it can also be based on P-median or P-center 

problems. Finally, it is also necessary to consider the activities that are being processed 

during the periodic services. For this reason, in order to select the optimal location for the 

renewable resource pool, 8 priority rules can be presented, as shown in Table 3. 

 
Table 3: Priority rules related to location of renewable resources 

Priority 

rule 

Point of 

view 1 

Point of 

view 2 

Point of 

view 3 
Calculation method 

1 

W
it

h
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u
t 

co
n
si

d
er
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g
 t

h
e 

ac
ti

v
it

ie
s 

in
 p

er
io

d
ic

 s
er

v
ic

e 
ti

m
es

 

T
im

e-
o
ri

en
te

d
 

P-median  
1 1 1

( 0 )

min
i l i l i

l L
i A

Arg r D s





 
 
 
  

2 P-center    1 1 1
(0)

min max
l L

i l i l i
i A

Arg r D s
 

  

3 

C
o
st

-o
ri

en
te

d
 

P-median 
1

( 0 )

1 1,min
i

l L
i A

l l iArg r CTF




 
 

 
  

4 P-center   1 1 1,
(0)

min max
l i l i

l L i A

Arg F r CT
 

  

5 

W
it

h
 c
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si
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T
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e-
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d
 

P-median  
1 1 1 1 1,

( 0 ) ( )

min 2
i l i l i j l j

l L
i A j

Arg r D s r D
 


 


 

 
 
   

6 P-center       1 1 1 1 1,
(0) ( )

min max max , max 2
l L

i l i l i j l j
i A j

Arg r D s r D
   

  

7 

C
o
st

-o
ri

en
te

d
 

P-median 
1 1

( 0 ) ( )

1 1, 1,min 2
i j

l L
i A j

l l i l jArg r CT r CTF
 


 

 
  

 
   

8 P-center      1 1 1, 1 1,
(0) ( )

min max max , max 2
l

l L
i l i j l j

i A j
Arg F r CT r CT

   
  

 

Unlike renewable resources, the non-renewable resources have no considerable periodic 

services, so they do not need to return back to the pool. Therefore, from the location point of 

view, the non-renewable resource pool location is similar to the P-median problem. Table 4 

shows the priority rules for choosing the location of non-renewable resource pool. 

 

Table 4: Priority rules related to location of nonrenewable resources 

Priority rule Point of view 1 Point of view 2 Calculation procedure 

1 Time-oriented P-median  2 2,
min

i l i
l L

i

Arg r D

  
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2 Cost-oriented P-median  22 2,min
i

l L
i

l l iArg r CTF


  

The priority list of activities is also created through two predefined priority rules, the 

earliest start time (EST) and the shortest processing time (SPT). In order to produce a 

priority list of allocation of renewable resources to each activity, two different priority rules 

are used. In the first rule, priority is given based on the lowest value ji
Dis . In the second rule, 

priority is given to the highest value ( )j t . 

Assuming there is no limit to the availability of non-renewable resources at a proper time, 

for each combination created from the above priority rules, the start time of the activities is 

determined. After determining the starting time of the activities, the purchasing time of non-

renewable resources must be determined, as well as dispatching them to the activities. The 

first condition to be taken into account is that the time of dispatching the non-renewable 

resources to activity i should not be longer than 2
_

i i l i
max dt st D  . In this equation, l2 is the 

location of non-renewable resource pool, and _
i

max dt  is the latest allowed time to dispatch 

the non-renewable resource to activity i. In order to determine the time of dispatching the 

resources to each activity i, the holding cost of resources at the pool and the deterioration 

cost of the resources at the site of activity should be first determined. It should be 

determined which cost is lower. To do this, there should be a simple comparison between 

the cost coefficients for each activity. For each activity i that i
CD CH  is true, it is better to 

hold the nonrenewable resources in the pool until _
i

max dt  and then be dispatched to the 

activity site. The dispatched resources are used immediately after arrival. Also, for each 

activity i that i
CD CH  is not true, it is better to dispatch the resources to the activity 

immediately after procurement and remain in activity site until processing begins. 

A greedy search algorithm is also used to plan the purchase of nonrenewable resources. 

In this way, at the beginning of the algorithm, it is assumed that for each activity i the 

required resources are ordered once and the ordering time is equal to _
i

max dt . The 

purchasing plus deterioration cost of this feasible solution is shown at the beginning of the 

algorithm with 0
FF  and is equal to Eq. (22): 

 

0 _ 2 _ 2 2i imax dt i max dt i i l i

i i i

FF CF r CB CD r D      (22) 

 

Then activities are sorted ascending by _
i

max dt . 

Using the greedy search algorithm, the first activity is compared with the second activity, 

whether it is cost-effective to order the required resource for the second activity 

simultaneously with the resources related to the first activity. For this purpose, the order cost 

is calculated using two modes, i.e. simultaneous order and separate order. If the cost of the 

simultaneous order be lower, then it is economical to order the required resource for both 
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these activities simultaneously. Then the third activity is compared with these two activities, 

and this process continues. If the cost of separate order be lower, the first activity is ordered 

individually and removed from the list of activities and the second activity is considered as 

the first activity and the next activity takes place in the second activity position. This 

comparison continues until the last activity. The amount of cost after applying the changes 

can be calculated from equation (23), in which [i] represents the activity in rank i, and g is 

the index of the step of calculation. 

 

 
   

[1] [2] [2][2],2

[2] [2] [1] [2],2

1 _ _ _

, _ _

g g max dt max dt max dtFF FF r CB CB CF

min CD CH max dt max dt r

   

   

 (23) 

 

After determining optimal ordering and the scheduling of the purchase orders for non-

renewable resources, the two objectives function of the problem can be calculated. To save 

the optimal Pareto's results, the Pareto set is used. This set will update every time a solution 

is obtained, so that all the solutions in it are non-dominant. After executing the algorithm for 

all 64 different settings, the solutions in the Pareto set are identified as the output of the 

algorithm. The pseudo-code of PHA is as follows: 

 
For setting 1 to 64 do 

Stage1. Location/Resource allocation/Scheduling: 

Determine location of renewable resources 

Determine location of nonrenewable resources 

Determine PA list 

Determine PRAi list 

Set dti=max_ dti 

Schedule activities with MPSGS 

Stage2. Resources ordering and dispatching: 

Run greedy search algorithm, 

Determine optimum resource ordering and dispatching, 

Calculate objective1 and objective2, 

Update Pareto set, 

End for, 

Output optimum Pareto set. 
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3.3 Non-dominated sorting artificial bee colony (NSABC) 

The basic artificial bee colony method is one of the population-based meta-heuristic 

methods inspired by the intelligent behavior of bee honey in finding food. This algorithm 

was first developed by Karaboga and Basturk (2007). Subsequently, various versions of this 

algorithm were proposed for solving multi-objective problems. Among them can be noted 

the study of Akbari et al. (2012) in which a MOABC algorithm was developed with the aid 

of a grid-based approach to generate pareto front solutions. Akay (2013) presented three 

different multi-objective methods by changing the selection and fitness strategies in the 

original ABC. Also, Zhong et al.(2014), by dividing the original colony into three sub-

colonies, presented a method called dMOABC. But recently, a new development of the ABC 

algorithm for solving multi-objective problems has been proposed by Kishor et al.(2016), 

entitled NSABC. They used the non-dominated sorting and crowding distance used in the 

NSGA-II algorithm (Deb et al. (2002)) to obtain optimal and diverse solutions. In this paper, 

we will adapt their approach to the problem and use it to solve large-size instances. 

The NSABC algorithm is structurally similar to the original ABC algorithm, and uses 

only one archive to store the optimal Pareto front. The pseudo-code of the NSABC 

algorithm is as follows, as proposed by Kishor et al. (2016): 
 

Step1. Population initialization 

Step2. Generate archive 

Step3. Iteration=1 

Step4. While Iteration<Iter_max do 

Step5. Employee bee phase 

Step6. Onlooker bee phase 

Step7. Scout bee phase 

Step8. Update archive 

Step9. Iteration=Iteration+1 

Step10. End while 

Step11. Return archive 

 

In the structure of this algorithm, as the original ABC algorithm, the food sources number 

is selected randomly, that is the half of the population size. In each food source, an 

employee bee is looking for suitable food and nectar extraction and returns to the hive and 

begins to dance in the dance area. In this area, onlooker bees will select the most appropriate 

nectars with a probability function and update the archive through it. If a food source, after 

several search stages, namely Max_trial, has no proper nectar, is abandoned by the 

employee bee and a scout bee is used to search for a new food source around the hive. This 

process will continue until the stop condition. 

In this algorithm, the archive is updated with the help of the non-dominated sorting and 
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crowding distance used in the NSGA-II algorithm. In updating the archive, the most 

important parameters for selecting are the rank of the solution and the crowding distance, 

respectively. A solution with a lower ranking and greater crowding distance is more 

favorable for selecting. The members of population are placed in different fronts. Each 

solution is assigned a rank such that all non-dominated solutions are assigned a rank 1; the 

second best solutions which are only dominated by rank 1 are assigned rank 2; and so on. 

The crowding distance is calculated for each member of each rank. This parameter indicates 

the degree of proximity of the member to other members of the rank. The larger of this 

parameter will lead to diversity in the population. The crowding distance of solution i and 

related to objective function k is equal to: 

1 1

max min

k k

i ik

i k k

f f
d

f f

 





 (24) 

 

So that 
k

if 1  and
k

if 1  are the values of objective function k for the sorted neighbors before 

and after of i. Also, 
kfmax  and 

kfmin  are maximum and minimum of objective function k, 

respectively. Finally, the crowding distance of solution i will be equal to: 

 

1

n
k

i i
k

CD d


  (25) 

 

To design a quick method, the objective functions are obtained with the help of the 

MPSGS structure presented in Section 3.1. Given that this algorithm has 5 inputs, hence the 

form of the genotype will be as follows: 

A matrix 2 l  is considered to determine the locations for the construction of the 

renewable and non-renewable resource pool (the first row refers to the renewable resource 

pool). The numbers inside this matrix are in range [0,1]. In each row, the largest number is 

selected as the location of the corresponding pool. Fig. 1 shows a representation of resource 

pools location. 

 

 
Figure 1. Representation of resources pools location 

 

In order to generate the PA list, a string with n (the number of activities of the whole 

projects) cells is used that contains numbers in the interval [0,1]. The larger the number of a 

cell represents the higher the priority for processing the activity corresponding to the cell’s 

index. Fig. 2 shows the representation of the PA list. 
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Figure 2. Representation of PA list 

Also, for each activity i, a string with n + 1 cells and numbers in the interval [0,1] is used 

to generate the 
i

PRA
 
list. The cells from 1 to n are related to the activity index, and the last 

cell in the string is related to the location of the renewable resource pool. The larger 

numbers reveal higher priorities for transferring resources from the activity corresponding to 

the cell’s index to activity i. In order to avoid generating infeasible solutions, it is forbidden 

to transfer resources from activities that the activity i is predecessor of them to i. Fig. 3 

shows the representation of 
i

PRA  list for each activity i. In this figure it is supposed that 

activity i is a predecessor of activities 4 and 6. 

 

 
Figure 3. Representation of 

i
PRA list 

 

Ultimately, a string with n cells is used to determine the times of dispatching non-

renewable resources to activities. The numbers assigned to this string are integer in the 

interval [0, T], where T is the time horizon of the projects. Fig. 4 illustrates the 

representation of determining i
dt . 

 

 
Figure 4. Representation of 

i
dt setting 

 

It should be noted that the feasibility of generated solutions must be checked out 

continuously at any iteration, because during generation of any new solution, the created 

strings may violate the constraints of the problem. Here, the only string that may be 

infeasible is the PA list, because there are precedence relations between activities. In this 

string, if the priority of activity j exceeds at least one of its predecessors, the priority number 

of activity j will be replaced by its predecessors. This process continues until generating a 

feasible string. 

Initially, the random food sources are generated as much as population size, i,e. NP. Half 
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of this population is allocated to the employee bees and half to the onlooker bees. Equation 

(26) is used to generate any random food source i: 

 

     maxmin min
( ) ( ) (0,1) ( ) ( )         1,..., , 1,...,

i i
d d rand d d d D i NPX X X X      (26) 

 

In this equation, 
min

( )dx  and max ( )dx  are respectively the lower and upper bound for each 

dimension d and  , ,
i i

d PA PRA dt . Then the objective function of each food source is 

calculated. Also for each food source, the parameter of trial is considered equal to zero. At 

the beginning of the algorithm, all generated random food source is stored in the archive. 

In the employee bee phase, each employee bee tends to select an employee bee in its 

neighborhood (1 2to NP ) randomly (with the index m). Also, a dimension is chosen 

randomly from among the dimensions (with the index j). Then, each food source is 

optimized with the aid of equation (27): 

 

 1
( ) ( ) ( ) ( ) ( )mi i i i

V j j j j jX r X X     (27) 

 

In this equation, 
1

  controls the generation of the solution in the neighborhood i, and 

( )
i

jr  is a random number in the interval [-1,1]. After generating candidate solution
i

V , if 
i

V  

dominates
i

X , then the candidate solution replaces 
i

X and trial = 0. If 
i

X  dominates
i

V , then 

the replacement does not happen, and the trial increases by one unit. If 
i

V  and 
i

X  are non-

dominated, then a random solution is taken from these two as the new position of the food 

source i and then the trial increases by one unit. 

In the onlooker bee phase, firstly, the employee bees share information from their food 

sources in the dance area. Then each onlooker bee selects one of the food sources to update 

their position. The selection happens through a probability density function. In the selection 

process, the chance of choosing more fitness food source is higher. In this paper, the fitness 

function of each food source can be calculated according to Eq. (28), which is inspired by 

the research of Akbari et al. (2012): 

 
( )

( )
i

dom i
fit

FoodNumber
X   (28) 

 

In this equation, ( )dom i  shows the amount of food sources dominated by the food source 

i. With the help of the fitness function (28), a food source with probability 
i

P  is selected by 

the onlooker bees with the aid of a roulette wheel method: 

 
( )

( )

i

i

i

fit X
P

fit X



 (29) 

 

After choosing the appropriate food sources by the onlooker bees, the candidate solutions 
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are obtained by equation (30): 

 

 2
( ) ( ) ( ) ( ) ( )

i i i i k
V j j j j jX r X X     (30) 

 

In this equation, k is related to the selected employee bee and the j index is chosen 

randomly from the dimensions. If 
i

V  dominates
i

X , then the candidate solution replaces
i

X . If 

i
X  dominates

i
V , then the replacement does not happen. If 

i
V  and 

i
X  are non-dominated, then 

a random solution is taken from these two as the new position of the food source i. If a food 

source after several attempts (Max_trial) fails to generate suitable nectars, it is abandoned by 

the employee bee and a new food source is generated randomly with the help of the scout 

bees. 

At any iteration, the archive should be therefore updated. All the solutions in the current 

swarm are merged with the archive solutions and form a new population. NP solutions are 

selected by using the update method mentioned above and thus the archive will be updated. 

The process of this algorithm continues to reach the termination condition, i.e. the maximum 

iteration. 

 

3.4 Non-dominated sorting genetic algorithm II (NSGA-II) 

Genetic algorithm is one of the best – known population-based evolutionary meta-heuristic 

methods, first proposed by Holland (1975). Many versions of this algorithm have been 

already developed for solving multi-objective problems. One of the most famous multi-

objective genetic methods is called NSGA-II, which was developed by Deb et al (2002). 

Like GA, his method uses crossover and mutation operators to generate new offspring. But 

for ranking and selecting the suitable population for the next generation, it uses the non-

dominated sorting and crowding distances described in Section 3.3. 

In this paper, the representation of the method is similar to the NSABC algorithm 

presented in Section 3.3 and also the MPSGS structure presented in Section 3.1 is used to 

calculate the objective functions. Initially, NP chromosomes are generated randomly that 

their objective functions are computable. Then, cP  parent is selected from the initial 

population, which is done by the binary selection mechanism. The two chromosomes of the 

population are selected randomly and primarily the solution rank and secondarily the 

crowding distance are compared. A solution with a lower ranking and greater crowding 

distance is more favorable for selecting. After selecting the parents, the pairs are randomly 

selected and the offspring are generated by hyper-crossover. Hyper-crossover uses two types 

of one-point and two-point crossover operators randomly for each chromosome. This 

process will improve the evolution of the population. It should be noted there are four 

genotypes in a chromosome that each of them uses randomly one type of crossover to 

generate child. Fig. 5 shows the mode of one-point and two-point crossover operator. 
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Figure 5. Hyper crossover scheme 

 

Also, a small portion of the population, i.e. mP , is mutated. Here an insert mutation is used 

for this operator. Fig. 6 shows the insertion mutation. 

 

 
Figure 6. Insert mutation scheme 

 

when using operators, the infeasible solutions may be generated that can be converted to a 

feasible solution by using the way presented in Section 3.3. After the generation of new 

offspring, these children are merged with the primary population, and with the non-

dominated sorting engine, the solution ranks and crowding distances are obtained. With 

respect to these two criteria, the NP of the best solutions is selected as the next generation 

population. This process continues until it reaches the stop condition, i.e. the maximum 

iteration. 
 

 

4. EXPERIMENTAL INVESTIGATIONS 
 

In order to evaluate performance of the proposed methods, in this section a number of 

random generated instances is solved by these methods and various Pareto fronts are then 

created. To generate random instances, the benchmark problems presented by Kolisch and 

Sprecher (1997) are used. Activities, predecessors’ relations, durations and the amount of 

renewable resources required are extracted from benchmark problems in the literature. Other 

parameters are generated randomly and through the presented formula in Table 5. It should 

be noted that the total amount of available renewable resources are determined by Resource 

Scarcity (RS) factor for each setting. This factor reflects the portion of average resources 

required per total available renewable resources. Clearly, with the increase of RS factor, the 

resource allocation planning becomes more difficult. 
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Table 5: Random generation of parameters 

Parameters Random generation formula 

ijD  
Integer from uniform [0,5] for one project 

Integer from uniform [5,15] for different projects 

ijs
 

Integer from uniform [0,5] for one project 

Integer from uniform [5,10] for different projects 

lkF  Integer from uniform  50, 200  

2ir  
Integer from uniform  0,10  

i  Uniform  0, 0.3  

t  
Periodic every 15 time units (i.e. 

15 30 45 ... 1      ) 

ktP
 

Uniform       800,1400 0, 1,5max
k

t A   

tCF
 

Uniform  10, 20  

tCB
 

Uniform  1, 3  

CH
 

Uniform  0.3,1.2  

CD  Uniform  0.3,1.2  

ijCT  Uniform  1, 5  

The number of potential location 3 

The number of construction projects (npr) 3 

 

In multi-objective algorithms, the metrics are used to evaluate quantitative performance. 

In this paper, three different metrics are defined which are as follows: 

- Generational Distance (GD): This criterion shows the mean distance of the Pareto front 

obtained by the algorithm from the best obtained Pareto fronts. The zero value is 

favorable for GD metric. This metric is obtained by Eq. (31) in which idis
 
is Euclidean 

distance of each solution i on the Pareto front obtained by the algorithm from the nearest 

solution in the best Pareto front, and n is the number of solutions in the Pareto front: 

 

1

2
n

i
i

dis

GD
n





 (31) 

 

- Maximum Spread (MS): This criterion shows the coverage of the best Pareto front by the 

Pareto front of the algorithm, which is calculated by Eq. (32): 

 

       
2 2

max max min min max max min min

1, 1 1, 1 2, 2 2, 2

max min max min

1, 1, 2, 2,

min , max , min , max ,
1

2
opt opt opt opt

opt opt opt opt

f f f f f f f f
MS

f f f f

     
     
     
     

 (32) 
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In the above equation, max

i
f and min

i
f  show the maximum and minimum value of the i-th 

objective function in the Pareto front of the algorithm. Also, max

,i opt
f  and min

,i opt
f  are the highest and 

lowest values of the i-th objective function in the best Pareto front. The favorable value for MS 

metric is 1. 

- CPU Running Time (CRT): This criterion shows the time to reach the final Pareto front 

by each algorithm. 

 

4.1 Parameters tuning mechanism 

The performance of meta-heuristics methods depends heavily on their parameters. In the 

literature, there are various methods for tuning the parameters of these algorithms. In this 

paper, the Sum of Squares Error (SSE) index is used which was employed by Rostami et al. 

(2015). 

In the NSABC algorithm the parameters NP, Iter_max, 
1

 , 
2

  and Max_trial should be 

determined. Considering that in the PHA method, the number of members of the Pareto 

front is up to 64, so for the fair comparison between the algorithms, the NP value is 

considered to be 64. The value of the Iter_max is determined in the experiments of next 

section, and with this value, the parameter Max_trial is considered to be 5% of the Iter_max. 

For determining the appropriate values of the two important parameters 
1

  and 
2

  a full 

factorial design is conducted. The levels of these two parameters in the experiment are 

shown in Table 6. 
 

Table 6: Factors and their levels for NSABC 

Factors Level 

1
  0.6, 0.8, 1 

2
  0.6, 0.8, 1 

 

In order to tune these two parameters, 5 instances with varying dimensions and RS=0.2 

are tested. Each instance will be run 3 times per each setting, and GD
MS

   values for each 

run are reported. It should be noted that the best Pareto front for each instance is achieved 

with regard to the Pareto front obtained in all settings and selecting 64 members with the 

highest non-dominant rank. Based on these results, the best solution (BS), standard deviation 

(SD) and sum of square error (SSE) are calculated. The results of this experiment illustrate 

that the best setting for 
1

  and 
2

  are 0.6 and 1, respectively. Appendix 1 shows the details 

of the parameter setting of the NSABC algorithm. 

In the NSGA-II the parameters NP, Iter_max, cP  and mP  should be determined. 

Considering that in the PHA method, the number of members of the Pareto front is up to 64, 

so for the fair comparison between the algorithms, the NP value is considered to be 64. The 

value of the Iter_max is determined in the experiments of next section. For determining the 

appropriate values of the two important parameters cP  and mP  a full factorial design is 

conducted. The levels of these two parameters in the experiment are shown in Table 7. 
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Table 7: Factors and their levels for NSGA-II 
Factors Level 

cP  40%, 50%, 60% 

mP  3%, 5%, 7% 

 

In order to tune these two parameters, such as NSABC algorithm action, the best solution 

(BS), standard deviation (SD) and sum of square error (SSE) are calculated. The results of 

this experiment illustrate that the best setting for cP  and mP  are 50% and 7%, respectively. 

Appendix 2 shows the details of the parameter setting of the NSGA-II. 

 

4.2 Comparison among existing methods 

In this section, the proposed solution methods are evaluated. The mathematical 

programming model is coded by GAMS™ software. Also, heuristic and meta-heuristic 

algorithms are coded in the C # programming language. The proposed models are executed 

in a PC with CPU specifications of Intel Core i7 3.1 GHz and 8 GB of RAM and their 

results are reported. 

Initially, the performance of heuristic methods is compared with ε-constraint  method. 

Since the problem in this paper is a NP-hard problem, solving problems with the 

mathematical programming model is very time-consuming, and so this model is only used to 

solve small-size instances. In order to compare the performance of solving methods with the 

optimal Pareto front obtained by the mathematical model, 30 different instances are 

randomly generated and the results are presented in Table 8. These instances are categorized 

in 6 different setting. It should be noted that in order to reach the optimum Pareto front in a 

reasonable time (here is 18000 Sec.), the value of m is equal to 15, and, consequently, Np is 

considered to be 15. Also, Fig. 7 shows the Pareto fronts obtained by solving methods for 

one of these instances with 15 activities and RS=0.15. 

 
Table 8: The results for small-size instances 

# of activities RS factor Method 
Avg. of Indicators # of unsolved 

instances by MIP GD MS CRT 

10 

0.1 

PHA 1.21 0.98 8.90 

- NSABC 0.59 1.00 21.73 

NSGA-II 0.85 1.00 16.42 

0.15 

PHA 1.38 0.97 9.17 

- NSABC 0.87 1.00 23.52 

NSGA-II 0.97 1.00 19.04 

0.2 
PHA 1.63 0.97 9.45 

- 
NSABC 1.02 1.00 24.86 
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NSGA-II 1.09 1.00 20.61 

15 

0.1 

PHA 1.42 0.97 15.56 

- NSABC 1.07 1.00 39.85 

NSGA-II 1.18 1.00 30.65 

0.15 

PHA 1.77 0.96 15.89 

1 
NSABC 1.35 0.99 41.66 

NSGA-II 1.36 1.00 32.76 

0.2 

PHA 2.23 0.94 16.31 

3 NSABC 1.54 0.98 43.17 

NSGA-II 1.71 0.98 34.16 

 

Comparison of the above results shows the appropriate performance of the proposed 

heuristic and meta-heuristic methods. As it is known, the Pareto front of the heuristic 

methods has little difference with the optimum Pareto front. Therefore, these heuristic 

methods can be relied on solving large-size instances. 

 

 
Figure 7. Pareto front of solution methods for an small-size instance with 15 activities and 

RS=0.15 
 

In order to compare the performance of the proposed algorithms for large-size problems, 

100 instances with different dimensions and setting are generated randomly (5 different 

random instances in each setting). These problems are solved using the algorithms proposed 

in this paper and the results of the defined metrics are presented in tables 9-11 accordingly. 

In these tables, the NSABC and NSGA-II algorithms are examined considering two modes 

associated with 100 and 200 iterations. 

Table 9 shows the results of the GD index for the solution methods. As it is clear, by the 

average NSABC-200 algorithm has the lowest GD value. Also, the results show that by 
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increasing the number of iterations, the NSABC method is improved over NSGA-II. The 

results show that the performance of the PHA algorithm is significantly reduced by 

increasing the dimensions of the problems under consideration. 

 
Table 9: GD results for solving methods 

# of 

activities 

RS 

factor 
  PHA NSABC-100 

NSGA-II-

100 
NSABC-200 NSGA-II-200 

30 

0.1 
 

4.68 3.96 3.86 3.53 3.58 

0.15 
 

5.37 4.45 4.46 4.09 4.11 

0.2 
 

5.99 4.49 4.85 4.12 4.33 

0.25 
 

6.13 4.51 4.90 4.14 4.48 

0.3 
 

6.85 5.29 5.47 4.39 4.69 

60 

0.1 
 

23.98 16.51 17.32 15.92 16.88 

0.15 
 

24.73 17.07 18.06 16.13 17.14 

0.2 
 

25.31 17.11 18.38 16.21 17.09 

0.25 
 

25.89 17.67 18.35 16.28 17.36 

0.3 
 

27.16 18.16 18.52 16.49 17.93 

90 

0.1 
 

45.44 28.37 30.34 27.04 29.53 

0.15 
 

47.38 28.73 31.05 27.34 29.94 

0.2 
 

48.16 29.14 31.29 28.74 30.20 

0.25 
 

48.47 29.60 31.89 29.11 30.60 

0.3 
 

49.61 29.68 31.84 29.52 30.65 

120 

0.1 
 

102.12 56.55 60.83 48.66 56.92 

0.15 
 

105.33 58.43 61.35 51.31 58.11 

0.2 
 

109.87 59.03 61.94 52.26 58.49 

0.25 
 

110.95 61.07 63.27 52.17 60.36 

0.3   115.95 62.05 65.14 54.19 61.50 

Avg.   46.97 27.59 29.16 25.08 27.69 

 

Table 10 shows the results of the MS index for the solution methods. As it is seen, by the 

average NSGA-II-200 algorithm has the highest MS value. Also, the results show that by 

increasing the number of iterations, the NSABC method is improved over NSGA-II. The 

results show that the performance of the PHA algorithm is significantly reduced by 

increasing the dimensions of the problems under consideration. 
 

Table 10 MS results for solving methods 

Instance No. # of activities   PHA 
NSABC-

100 

NSGA-

II-100 

NSABC-

200 

NSGA-

II-200 

30 

0.1 
 

0.97 0.98 1.00 1.00 1.00 

0.15 
 

0.94 0.98 1.00 1.00 1.00 

0.2 
 

0.91 0.98 1.00 1.00 1.00 

0.25 
 

0.90 0.97 0.98 1.00 1.00 

0.3 
 

0.88 0.97 0.95 0.99 0.99 

60 
0.1 

 
0.90 1.00 1.00 1.00 1.00 

0.15 
 

0.88 0.99 1.00 1.00 1.00 
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0.2 
 

0.87 0.98 1.00 1.00 1.00 

0.25 
 

0.85 0.98 0.98 1.00 1.00 

0.3 
 

0.83 0.96 0.98 0.99 0.98 

90 

0.1 
 

0.71 0.99 0.99 1.00 1.00 

0.15 
 

0.68 0.98 0.99 0.99 1.00 

0.2 
 

0.67 0.96 0.98 0.98 0.99 

0.25 
 

0.65 0.96 0.98 0.98 0.99 

0.3 
 

0.65 0.93 0.97 0.97 0.98 

120 

0.1 
 

0.71 0.95 0.97 0.99 0.98 

0.15 
 

0.69 0.94 0.96 0.98 0.98 

0.2 
 

0.66 0.94 0.97 0.97 0.97 

0.25 
 

0.62 0.95 0.96 0.97 0.97 

0.3   0.61 0.93 0.95 0.97 0.96 

Avg.   0.780 0.966 0.981 0.989 0.990 

 

Finally, Table 11 shows the results of the CRT index for the solution methods. As can be 

seen, by the average PHA algorithm has the lowest CRT value. Also, the results show that 

by increasing the number of iterations, the CPU running time of NSABC method is 

increased faster than other existing methods. The results show that the performance of PHA 

algorithm remains acceptable for this metric by increasing the dimensions of the problems. 
 

Table 11: CRT results for solving methods 

Instance No. # of activities   PHA 
NSABC-

100 

NSGA-

II-100 

NSABC-

200 

NSGA-II-

200 

30 

0.1 
 

41.78 117.87 109.25 223.16 207.96 

0.15 
 

43.21 123.82 110.09 228.20 209.47 

0.2 
 

44.19 125.11 112.25 236.80 214.24 

0.25 
 

46.19 128.32 113.47 239.44 218.00 

0.3 
 

47.82 128.18 115.61 246.14 218.75 

60 

0.1 
 

143.79 302.82 278.39 621.99 568.05 

0.15 
 

144.82 305.11 283.68 626.32 575.65 

0.2 
 

145.50 308.17 294.30 632.18 583.31 

0.25 
 

147.68 307.03 293.59 635.08 598.02 

0.3 
 

153.72 311.49 299.52 642.47 598.13 

90 

0.1 
 

224.66 526.36 467.27 1090.02 967.18 

0.15 
 

228.66 531.57 480.15 1097.55 981.79 

0.2 
 

234.09 536.04 483.01 1107.30 998.03 

0.25 
 

237.86 535.14 478.29 1102.89 991.72 

0.3 
 

242.71 539.66 489.28 1113.30 1012.81 

120 

0.1 
 

403.28 973.41 859.55 1993.35 1735.34 

0.15 
 

405.32 984.35 870.49 2004.90 1738.28 

0.2 
 

409.79 992.38 882.14 2029.31 1765.01 

0.25 
 

415.09 1004.57 885.13 2045.85 1786.95 

0.3   433.55 1019.41 901.13 2074.24 1818.92 

Avg.   209.69 490.04 440.33 999.52 889.38 
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4.3 Ranking the methods 

In this section, five heuristic methods presented in this paper, namely PHA, NSABC-100, 

NSGA-II-100, NSABC-200 and NSGA-II-200 are ranked using a scenario-based TOPSIS 

method based on the defined metrics. Considering that in multi-criteria ranking methods, the 

significance of each criterion depends on the expert's judgment, thus ranking of solution 

methods is performed in 18 different scenarios based on different weights of the metrics. Table 

12 shows the weights of the metrics at each scenario. These weights are adjusted so that the 

variability of the significance of each metric is met in comparison with other metrics. 

 
Table 12: Weight of metrics based on scenarios 

Metrics S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 

GD 0.8 0.8 0.8 0.6 0.6 0.4 0.1 0.2 0.0 0.1 0.3 0.3 0.1 0.0 0.2 0.3 0.1 0.3 

MS 0.1 0.2 0.0 0.3 0.1 0.3 0.8 0.8 0.8 0.6 0.6 0.4 0.1 0.2 0.0 0.1 0.3 0.3 

CRT 0.1 0.0 0.2 0.1 0.3 0.3 0.1 0.0 0.2 0.3 0.1 0.3 0.8 0.8 0.8 0.6 0.6 0.4 

 

Then, the algorithms are ranked for each scenario using the TOPSIS method. The 

TOPSIS approach is implemented for all scenarios and iSW  values for each algorithm in 

each scenario are reported in Table 13. 
 

Table 13: SW values for all scenarios 

Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 

PHA 0.18 0.00 0.30 0.22 0.46 0.56 0.38 0.00 0.57 0.70 0.33 0.61 0.93 0.95 0.87 0.77 0.88 0.69 

NSABC-100 0.87 0.89 0.83 0.86 0.76 0.72 0.80 0.89 0.72 0.68 0.82 0.70 0.65 0.65 0.65 0.66 0.65 0.68 

NSGA-II-100 0.81 0.81 0.79 0.81 0.76 0.75 0.84 0.88 0.78 0.73 0.81 0.74 0.71 0.71 0.71 0.72 0.71 0.73 

NSABC-200 0.82 1.00 0.70 0.78 0.54 0.44 0.62 1.00 0.43 0.30 0.67 0.39 0.07 0.05 0.13 0.23 0.12 0.31 

NSGA-II-200 0.80 0.88 0.69 0.77 0.54 0.45 0.65 0.93 0.47 0.34 0.68 0.40 0.15 0.15 0.18 0.25 0.18 0.33 

 

As a result, Table 14 shows the rank of the algorithms for each scenario. 
 

Table 14 ranking of methods for all scenarios 

Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 

PHA 5 5 5 5 5 3 5 5 3 2 5 3 1 1 1 1 1 2 

NSABC-100 1 2 1 1 2 2 2 3 2 3 1 2 3 3 3 3 3 3 

NSGA-II-100 3 4 2 2 1 1 1 4 1 1 2 1 2 2 2 2 2 1 

NSABC-200 2 1 3 3 4 5 4 1 5 5 4 5 5 5 5 5 5 5 

NSGA-II-200 4 3 4 4 3 4 3 2 4 4 3 4 4 4 4 4 4 4 

 

The results of Table 14 show that the NSABC algorithm is more suitable for situations in 

which the GD metric is more important (scenarios 1 to 6). Also, when the MS metric is the 

most important index (scenarios 7 to 12), the NSGA-II algorithm is recommended. Finally, 

when the CRT metric is considered by decision maker (scenarios 13 to 18) the PHA will 

have the best performance. 
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Based on the results of Table 14, the Friedman test can be used to rank algorithms. The 

Friedman test is one of the nonparametric tests, which without the need for a normality 

assumption, as an alternative to the ANOVA method, identifies the same or different rank of 

the methods. In the case of different ranking algorithms (reject the null hypothesis), paired 

comparison of methods is necessary. For this purpose Wilcoxon signed ranks test can be 

used. Table 15 shows the results of Friedman test. 

 
Table 15: Friedman test result 

Methods Mean Rank Chi-Square df Asymp. Sig. 

PHA 3.22 

24.000 4 0.000 

NSABC-100 2.22 

NSGA-II-100 1.89 

NSABC-200 4.00 

NSGA-II-200 3.67 

 

According to the Table 15, it is clear that the null hypothesis of Friedman test is rejected. 

For this reason, the paired comparisons are conducted by Wilcoxon signed ranks test and its 

results are presented in Table 16. 

 
Table 16: Wilcoxon signed ranks test result 

 

PHA - 

NSABC100 

PHA - 

NSGAII100 

PHA - 

NSABC200 

PHA - 

NSGAII200 

NSABC100 - 

NSGAII100 

NSABC100 - 

NSABC200 

NSABC100 - 

NSGAII200 

NSGAII100 - 

NSABC200 

NSGAII100 - 

NSGAII200 

NSABC200 - 

NSGAII200 

Z -1.625a -2.678a -1.210b -.948b -1.039a -3.410b -3.562b -2.903b -3.342b -1.189a 

Asymp. 

Sig. (2-

tailed) 

.104 .007 .226 .343 .299 .001 .000 .004 .001 .234 

a. Based on negative ranks. 

b. Based on positive ranks. 

 

Thus Table 17 shows the result of the paired comparison of solution methods. 

 
Table 17: Paired comparison of the algorithms 

Rank Methods NSGA-II-100 NSABC-100 PHA NSGA-II-200 NSABC-200 

1 NSGA-II-100 - 
No 

difference 

Significant 

difference 

Significant 

difference 

Significant 

difference 

2 NSABC-100   - 
No 

difference 

Significant 

difference 

Significant 

difference 

3 PHA   
 

- No difference No difference 

4 NSGA-II-200   
  

- No difference 

5 NSABC-200         - 

 

The computational experiments presented in this paper can be concluded as follows: 

1- From the GD index’s point of view, the NSABC-200 algorithm has shown the best 

performance.  
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2- According to GD index, the performance of the PHA algorithm is significantly reduced 

by increasing the dimensions of the problems. 

3- From the point of view of MS index, the NSGA-II-200 algorithm has shown the best 

performance.  

4- According to MS index, the performance of the PHA algorithm is significantly reduced 

by increasing the dimensions of the problems. 

5- From the point of view of CRT index, the PHA algorithm has shown the best 

performance.  

6- By increasing the number of iterations, the CPU running time of NSABC method is 

increased faster than other existing heuristic methods. 

7- According to CRT index, the performance of PHA algorithm remains acceptable by 

increasing the dimensions of the problems. 

8- For the ranking of the algorithms, a scenario-based TOPSIS method is used. The results 

of Friedman’s test and Wilcoxon signed ranks show that the NSGA-II-100 has totally the 

highest rank according to defined scenarios, followed by NSABC-100 and PHA in the 

following ranks. 
9- From decision maker’s point of view, the NSABC algorithm is more suitable for 

situations in which the GD metric is more important. Also, when the MS metric is the 

most important index, the NSGA-II algorithm is recommended. Finally, when the CRT 

metric is more important, the PHA will have the best performance. 

 

 

5. CONCLUSION REMARK AND FURTHER RECOMMENDATIONS 
 

In this paper, a multi-objective decentralized multiple construction projects scheduling 

problem with considering periodic services of renewable resources and ordering policies of 

non-renewable resources was proposed. The first objective function was to minimize the 

completion time of the construction projects, and the second objective function was to 

minimize the total cost of project implementation. In order to describe the constraints and 

solving small-size problems, a mixed integer linear programming model was proposed using 
ε-constraint  method, which can obtain the optimal Pareto front. Also, by incorporating a new 

version of the Parallel Schedule Generation Scheme (PSGS), a Priority-rule based Heuristic 

Algorithm (PHA); a Non-dominate Sorting Artificial Bee Colony (NSABC) algorithm and a 

Non-dominate Sorting Genetic Algorithm (NSGA-II) were also developed. 

By defining three metric GD, MS and CRT, the solution methods were evaluated. With 

the aim of obtaining the lowest GD, the results showed that the best known solution method 

is NSABC. The most appropriate method for optimizing the MS metric is the NSGA-II. 

Also the PHA is the fastest solution method (the best CRT). The computational results 

showed that increasing the number of iterations has no significant effect on the improvement 

of the Pareto front, and therefore it is recommended to set the iteration number over 100. 

Finally, using TOPSIS approach, the proposed heuristic methods were ranked. Based on 

the 18 scenarios defined in terms of weight of metrics, the decision maker can choose the 

best known solution method. The results of Friedman and Wilcoxon signed ranks tests 

showed that NSGA-II-100 has totally the highest rank according to defined scenarios, 
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followed by NSABC-100 and PHA in the following ranks. Since this paper has dealt with 

deterministic construction project information, future research can be conducted on fuzzy 

multi objective project scheduling problem under periodic services. 
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APPENDIX 1: PARAMETERS TUNING OF NSABC IS SHOWN IN TABLE 17 
 

Table 17: Parameters setting of NSABC 

Instances 1
  

2
    

Run 
  BS SD SSE 

Run 1 Run 2 Run 3 

15j-3p 

0.6 

0.6 
 

1.49 1.92 1.59 
 

1.15 

1.0 0.90 

0.8 
 

1.44 1.27 1.27 
 

0.3 0.11 

1 
 

1.19 1.15 1.28 
 

0.1 0.02 

0.8 

0.6 
 

2.47 1.57 1.27 
 

1.4 1.92 

0.8 
 

2.24 2.52 2.00 
 

1.9 3.77 

1 
 

1.79 1.92 2.61 
 

1.8 3.12 

1 

0.6 
 

2.60 2.11 2.68 
 

2.3 5.37 

0.8 
 

2.10 2.33 1.94 
 

1.7 2.93 

1   2.00 1.82 2.39   1.6 2.71 

30j-3p 

0.6 

0.6 
 

5.08 4.79 5.62 
 

4.69 

1.0 1.02 

0.8 
 

5.50 5.07 4.92 
 

0.9 0.85 

1 
 

4.97 4.69 5.21 
 

0.6 0.34 

0.8 

0.6 
 

5.11 5.14 5.01 
 

0.7 0.48 

0.8 
 

5.40 5.60 5.36 
 

1.3 1.78 

1 
 

5.48 5.20 5.74 
 

1.4 1.98 

1 

0.6 
 

5.23 5.21 5.40 
 

1.0 1.07 

0.8 
 

5.21 4.95 5.19 
 

0.8 0.59 

1   5.26 5.15 4.93   0.8 0.60 

60j-3p 

0.6 

0.6 
 

18.96 20.24 19.37 
 

17.65 

3.4 11.34 

0.8 
 

17.99 19.25 20.56 
 

3.3 11.14 

1 
 

19.53 17.65 18.05 
 

1.9 3.68 

0.8 

0.6 
 

18.27 19.97 18.60 
 

2.6 6.64 

0.8 
 

20.53 18.22 19.77 
 

3.6 13.08 

1 
 

18.76 20.11 18.02 
 

2.7 7.42 

1 

0.6 
 

22.14 19.52 20.67 
 

5.7 32.73 

0.8 
 

19.62 19.13 19.76 
 

3.2 10.52 

1   19.91 19.71 18.91   3.3 10.94 

90j-3p 

0.6 

0.6 
 

31.65 35.37 34.24 
 

30.73 

5.9 34.78 

0.8 
 

32.88 33.17 31.54 
 

3.4 11.29 

1 
 

32.16 33.52 30.73 
 

3.1 9.87 

0.8 
0.6 

 
34.13 33.74 34.73 

 
6.1 36.72 

0.8 
 

31.70 34.88 32.74 
 

4.7 22.26 
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1 
 

34.11 32.69 32.35 
 

4.2 17.94 

1 

0.6 
 

35.20 33.19 31.57 
 

5.2 26.82 

0.8 
 

37.56 36.18 34.26 
 

9.4 88.88 

1   34.97 31.08 33.68   5.2 26.85 

120j-3p 

0.6 

0.6 
 

77.55 70.62 83.90 
 

66.05 

21.7 471.97 

0.8 
 

75.94 66.05 82.26 
 

19.0 360.77 

1 
 

73.07 73.95 69.55 
 

11.1 124.22 

0.8 

0.6 
 

83.19 76.83 69.29 
 

20.5 420.82 

0.8 
 

79.15 70.82 80.12 
 

19.8 392.88 

1 
 

71.27 75.07 70.16 
 

11.2 125.63 

1 

0.6 
 

76.13 66.37 73.81 
 

12.7 162.15 

0.8 
 

88.58 75.31 71.58 
 

25.0 624.19 

1   68.10 80.82 72.29   16.2 261.31 

 

 

APPENDIX 2: PARAMETERS TUNING OF NSGA-II IS SHOWN IN TABLE 18 
 

Table 18: Parameters setting of NSGA-II 

Instances cP   mP     
Run 

  BS SD SSE 
Run 1 Run 2 Run 3 

15j-3p 

40% 

3% 
 

2.24 2.11 2.10 
 

1.13 

1.8 3.11 

5% 
 

2.23 2.38 2.03 
 

1.9 3.59 

7% 
 

1.92 1.92 1.94 
 

1.4 1.89 

50% 

3% 
 

1.56 1.57 2.21 
 

1.2 1.54 

5% 
 

1.50 1.51 1.17 
 

0.5 0.28 

7% 
 

1.28 1.13 1.35 
 

0.3 0.07 

60% 

3% 
 

1.52 1.46 1.31 
 

0.5 0.29 

5% 
 

1.30 1.45 1.72 
 

0.7 0.47 

7%   1.17 1.23 1.41   0.3 0.09 

30j-3p 

40% 

3% 
 

5.71 6.15 6.11 
 

4.55 

2.5 6.38 

5% 
 

5.63 6.30 5.69 
 

2.4 5.55 

7% 
 

5.23 5.62 5.97 
 

1.9 3.65 

50% 

3% 
 

5.29 4.89 4.95 
 

0.9 0.83 

5% 
 

4.87 4.55 4.84 
 

0.4 0.19 

7% 
 

4.66 4.70 4.62 
 

0.2 0.04 

60% 

3% 
 

5.07 4.97 4.79 
 

0.7 0.52 

5% 
 

4.93 4.66 4.66 
 

0.4 0.17 

7%   4.59 4.78 4.72   0.3 0.09 

60j-3p 

40% 

3% 
 

23.21 23.57 23.99 
 

18.06 

9.6 91.94 

5% 
 

22.17 23.28 23.05 
 

8.3 68.97 

7% 
 

22.67 20.43 21.55 
 

6.2 39.01 

50% 

3% 
 

20.59 21.02 19.76 
 

4.2 18.03 

5% 
 

19.15 19.26 18.75 
 

1.8 3.10 

7% 
 

18.63 18.06 18.77 
 

0.9 0.83 

60% 3% 
 

19.31 20.05 19.94 
 

3.0 9.05 
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5% 
 

19.18 19.01 19.30 
 

1.9 3.70 

7%   18.56 19.04 18.43   1.2 1.35 

90j-3p 

40% 

3% 
 

41.89 40.16 41.09 
 

31.86 

16.0 254.50 

5% 
 

38.22 38.82 39.60 
 

12.2 148.51 

7% 
 

38.66 38.24 36.67 
 

10.5 109.94 

50% 

3% 
 

35.33 35.91 33.70 
 

5.6 31.77 

5% 
 

34.04 33.53 34.18 
 

3.6 12.85 

7% 
 

32.35 33.64 33.17 
 

2.3 5.09 

60% 

3% 
 

33.77 33.48 33.78 
 

3.1 9.91 

5% 
 

32.07 34.04 33.08 
 

2.5 6.25 

7%   33.18 31.86 33.86   2.4 5.72 

120j-3p 

40% 

3% 
 

96.37 90.40 93.00 
 

68.71 

42.7 1825.90 

5% 
 

89.93 87.80 83.60 
 

32.2 1036.81 

7% 
 

81.67 89.87 82.89 
 

28.6 817.30 

50% 

3% 
 

74.02 76.92 77.20 
 

12.9 167.70 

5% 
 

76.59 72.81 75.42 
 

11.1 123.95 

7% 
 

71.16 74.38 74.62 
 

8.6 73.11 

60% 

3% 
 

75.82 73.71 78.51 
 

13.1 171.57 

5% 
 

78.75 68.71 74.76 
 

11.7 137.42 

7%   77.59 68.89 69.60   8.9 79.65 
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