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ABSTRACT 
 

This article presents a new meta-heuristic optimization algorithm based on the power of 

human thinking and decision-making, which will be called Gold Rush Optimization (GRO). 
The thinking and decision-making ability of humans were used in this paper to develop a 

approach to create an optimization method. The hypothetical interaction between human 

operators in search of gold, based on the sound volume received from metal detectors, was 

used to develop the method. Benchmark functions, engineering design examples, and truss 

structures (which were optimized using different algorithms previously) were used for 

validation and verification of the proposed algorithm. MATLAB was used for programming. 

The CEC 2005 benchmark functions obtained reached the global target minimum, and the 

numerical engineering and truss examples were improved compared to the previous 

algorithms. Therefore, the proposed algorithm can be used as an alternative for the 

previously developed meta-heuristic optimization algorithms, which can be used in all 

optimization fields. 
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List of symbols 

i the number of iteration 

lb minimum allowable search space 

ub maximum allowable search space 

rand is a random number in the interval (0.1) 

SOP is an operator who is successful in finding the optimal location 

N is the number of variables – the number of dimensions in the search space 
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ρ parameter is described the fatigue effect 

D coefficient of the distance 

rate loudness of each sound 

α probability of moving to the loudest sound or faring away from it 

β probability of moving to the loudest sound or faring away from it 

γ probability of moving to the loudest sound or faring away from it 

 

 

1. INTRODUCTION 
 

Meta-heuristic optimization techniques have become popular over the last decades. Different 

meta-heuristic methods have been proposed and used to solve complex problems such as 

engineering problems and solutions of truss structural. Meta-heuristic methods can be 

classified into three main categories: evolutionary (EA), physics-based, and Swarm 

Intelligence (SI) algorithms.  

EAs are usually inspired by evolution in nature, and the most popular in this branch are 

Genetic Algorithms (GA). GA proposed by Holland [1], Goldberg [2] and used by Ding [3] 

and Liang [4]. GA is inspired by Darwin’s theory about the biological evolutionary process. 

In general, optimization is achieved through the development of an initial random solution in 

EAs. New populations are formed through the combination and mutation of individuals in 

the previous population. Therefore, the best individuals have a higher probability of 

participating in creating the new population. Consequently, the new population is likely to 

be more superior than the previous generation(s), which means that the initial population is 

optimized throughout generations. Kooshkbaghi and Kaveh [5], introduced Artificial 

Coronary Circulation System (ACCS) algorithm, by inspired the growth of coronary arteries 

tree of the heart and coronary circulatory system in human beings, is applied to sizing 

optimization of truss structures. Some of the EAs are Genetic Programming (GP) Koza [6], 

and Biogeography-Based Optimizer (BBO) D. Simon [7], Differential Evolution (DE) Storn 

and Price [8], Evolutionary Programming (EP) Xin Yao [9] and Fogel [10], and Evolution 

Strategy (ES) Hansen [11], Rechenberg [12] and Kaveh [13]. 

The second main category of meta-heuristics is physics-based algorithms. Some 

algorithms in this category are Gravitational Local Search (GLSA) Webster [14], Kaveh and 

Ilchi Ghazaan [15] were produced Vibrating Particles System algorithm (VPS) inspired by 

free vibration of single degree of freedom systems with viscous damping. Also, they 

combined the vibrating particles system with multi-design variable configuration (MDVC-

UVPS) Kaveh and Ilchi Ghazaan [16] to optimize the large scale space trusses. Big Bang–

Big Crunch algorithm (BB–BC) formulated by Erol [17] and developed by Kaveh and 

Talatahari [18] have been formulated most recently, Gravitational Search Algorithm (GSA) 

proposed by Rashedi [19] is introduced using physical phenomena. Kaveh Kalateh-Ahani 

[20] introduced (CMA-ES) with Gaussian mutation (ES) and Covariance Matrix Adaptation 

(CMA) to achieve the optimized size of space trusses. Kaveh and Mahdavi [21], with laws 

of momentum and energy between collisions bodies, introduced the new algorithm, called 

Colliding Bodies Optimization (CBO). Enhanced Colliding Bodies Optimization (ECBO) 

introduced by Kaveh and Ilchi Ghazaan [22] improved the function of the CBO algorithm. 
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ECBO uses memory to save some best solutions. Kaveh and Talatahari [23] proposed a 

meta-heuristic algorithm called the charged system search (CSS). In order to explore the 

locations of the optimum, CSS uses the Coulomb and Gauss laws from physics and 

Newtonian laws from mechanics to guide the charged particles (CPs). Kaveh and Talatahari 

[24] used CSS for optimized truss problems. Kaveh and Motie Share [25] improved the 

function of the CSS algorithm and introduced Magnetic Charged System Search (MCSS). 

Kaveh and Mirzaei [26] used MCSS for optimized truss problems. Kaveh and Khayatazad 

[27], have introduced the Ray Optimization algorithm (RO) with dielectric materials and 

Snell’s refraction law. Black Hole (BH) algorithm [28], Central Force Optimization (CFO) 

[29], Curved Space Optimization (CSO) algorithm [30], Small-World Optimization 

Algorithm (SWOA) [31], Artificial Chemical Reaction Optimization Algorithm (ACROA) 

[32], water evaporation optimization (WEO) [33] and Galaxy-based Search Algorithm 

(GBSA) [34] have a different mechanism than the EAs. These algorithms move throughout 

the search space based on physical rules, including gravitational force, ray casting, 

electromagnetic force, inertia force, weights. 

The last subclass of meta-heuristics is the SI methods, which mostly follow the social 

behavior of swarms, herds, flocks, or schools of creatures in nature. The mechanism is very 

similar to physics-based algorithms, with the difference that search agents navigate using a 

simulation of creature collective and social intelligence. The most common SI technique is 

Particle Swarm Optimization (PSO). PSO formulated by Kennedy [35] simulates social 

situations and used by Kaucic [36]. The PSO algorithm uses multiple particles that chase the 

position of the optimal particle and their optimal positions obtained so far. In other words, a 

particle is moved based on its own best solution as well as the best solution obtained by the 

swarm. Gomes [37] has used of (PSO) algorithm as an optimization engine for reduced the 

mass of truss, Li LJ [38] have used heuristic particle swarm optimizer (HPSO), which is 

combined based on harmony search (HS) and standard particle swarm optimizer (PSO). 

Based on cuckoos’ breeding behavior, Young introduced a new algorithm called Cuckoo 

Search (CS) Yang X-S [39], Gandomi [40] used CS for optimized truss problems. Ivan 

Zelinka and Michal Bukacek [41] focused on swarm intelligence techniques and its practical 

use in gold rush game. Tejani [42] for optimization, the size of space trusses has used 

Symbiotic Organisms Search (SOS), which is the biological interactions between organisms 

in an ecosystem. Benson Isaac and Douglas Allaire [43] to optimization of black-box models 

propose a gold rush (GR) policy that relies on purely local information to identify the next 

best design alternative to query. Mirjalili [44] adopted by hunting strategy of humpback 

whales, which called the Whale Optimization Algorithm (WOA). By dolphin sound, Kaveh 

and Farhoudi [45] introduced the Dolphin Echolocation (DE), which, as a sound strikes an 

object and sound-wave, is reflected towards it. The remaining so far proposed SI techniques 

are as follows: Ant Colony Optimization (ACO) inspired by Dorigo [46] patterned from the 

behavior of ant colonies. Marriage in Honey Bees Optimization Algorithm (MBO) Abbass 

[47], teaching-learning-based optimization (TLBO) [48,49], Harmony Search (HS) [50], 

Tabu (Taboo) Search (TS) [51], Group Search Optimizer (GSO) [52], Monkey Search [53], 

Dolphin Partner Optimization (DPO) [54], Bee Collecting Pollen Algorithm (BCPA) [55], 

Grey Wolf Optimizer [56]. 

This list shows that most of these algorithms are based on the rules governing the nature, 

https://www.researchgate.net/profile/Ivan-Zelinka?_sg%5B0%5D=4tJP8BrJkGYusr_2J9OGMU6jnn4PjN8qapGLqUkgTNJ5ydk_dM_tbVIsodYflClpK9j1XXI.1Vgo49YLgn2WFWbzWbsiSqdRaW0PJ6HLAiunKJETgEJe5AbF4aPUAYpZkHbwjxqOx3QthUAbTqPSnu_sk8_SkQ&_sg%5B1%5D=X5tgogt7eSExJhmROaVSwUP-HueTN2Cq1Kie95x7bTPJ-E7Ehe7eeS2MbFAsRfvV1lWX3aA.y7ebcinMuKsA-g5MmKlrN-9rA790Qvxw6GCOPGIMZv9WVeJ4RH9QpFGccCf_-U0XmteBlJsWbI67j5q6z34Jmw
https://www.researchgate.net/profile/Ivan-Zelinka?_sg%5B0%5D=4tJP8BrJkGYusr_2J9OGMU6jnn4PjN8qapGLqUkgTNJ5ydk_dM_tbVIsodYflClpK9j1XXI.1Vgo49YLgn2WFWbzWbsiSqdRaW0PJ6HLAiunKJETgEJe5AbF4aPUAYpZkHbwjxqOx3QthUAbTqPSnu_sk8_SkQ&_sg%5B1%5D=X5tgogt7eSExJhmROaVSwUP-HueTN2Cq1Kie95x7bTPJ-E7Ehe7eeS2MbFAsRfvV1lWX3aA.y7ebcinMuKsA-g5MmKlrN-9rA790Qvxw6GCOPGIMZv9WVeJ4RH9QpFGccCf_-U0XmteBlJsWbI67j5q6z34Jmw
https://www.researchgate.net/scientific-contributions/Michal-Bukacek-2110004024?_sg%5B0%5D=4tJP8BrJkGYusr_2J9OGMU6jnn4PjN8qapGLqUkgTNJ5ydk_dM_tbVIsodYflClpK9j1XXI.1Vgo49YLgn2WFWbzWbsiSqdRaW0PJ6HLAiunKJETgEJe5AbF4aPUAYpZkHbwjxqOx3QthUAbTqPSnu_sk8_SkQ&_sg%5B1%5D=X5tgogt7eSExJhmROaVSwUP-HueTN2Cq1Kie95x7bTPJ-E7Ehe7eeS2MbFAsRfvV1lWX3aA.y7ebcinMuKsA-g5MmKlrN-9rA790Qvxw6GCOPGIMZv9WVeJ4RH9QpFGccCf_-U0XmteBlJsWbI67j5q6z34Jmw
javascript:;
javascript:;


S. Sarjamei, M. S. Massoudi and M. Esfandi Sarafraz 

 

294 

animal communication, and how they are hunted or find food. However, in this article, 

optimization is based on the thinking and decision-making of the human. 

A gold rush is a discovery of gold sometimes accompanied by other precious metals and 

rare earth minerals that brings with it a burst of miners seeking their fortune. In Australia, 

New Zealand, Canada, Brazil, South Africa, and the United States, major gold rushes 

occurred in the 19th century, while there were smaller gold rushes elsewhere [57]. 

The objective of this research was to develop an approach in optimization using the 

thinking and decision-making superiority of humans to animals and nature. This study 

hypothesized that the afore-mentioned superior abilities of humans could improve the 

performance of the algorithm, hence reducing the benchmark function. 

 

2. MATERIALS AND METHODS 
 

2.1 Inspiration 

In this research, an optimization algorithm, “Gold Rush Optimization Algorithm” was 

developed. The optimization algorithm was created based on the thinking and decision-

making power of humans. A hypothetical situation was considered where a group of people 

was searching for gold. Each of the group members is called an “operator,” and the group 

operates in a circumscribed space called “search space.” Every operator was standing in a 

random spot using a metal detector in order to find gold, as shown in Fig. 1.  

 

 
Figure 1. Random spread of the operators in the search space (Photo reproduced from 

https://www.nhpr.org/post/hunting-treasure-nh-s-largest-metal-detecting-event#stream/0) 

 

A metal detector is an electronic device, which detects the presence of nearby metal that 

sounds present metal inclusions are hidden inside objects or metal objects buried 

underground. The sound generated by the metal detector changes according to the distance 

from metal objects. In other words, the sound gets louder when the device approaches a 

metal object and vice versa. The operator depending on the sound volume, could estimate 

the proximity of the buried gold (called “fitness”), and change their movement direction. In 
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every stage, the operators move altogether and listen to the sound until they hear an increase 

in the sound and then stop at that point. 

Every operator would also listen to the sounds produced by other devices and constantly 

monitor if any other devices create a louder sound. Also, every operator must consider the 

sources of error around themselves and their search space including 

1. The distance between the operators, and the more the distance, the sound is perceived 

less than the actual; 

2. The fatigue of the operators which increases after a few stages;  

3. Error in the type of metal found by the detector other than gold. 

One of the cons of the proposed GRO algorithm is the false sound received from the 

metal detector once it detects some type of metal other than gold, for instance, a can. In 

order to mitigate this risk, the operators not only consider the loudest sound but a group of 

average sounds, and once faced with unwanted metal items, they gradually remove them 

from the field. In the process of hearing, the sound is transmitted from ears by the 

vestibulocochlear nerve to the brainstem. 

Sensory cores analyze the information received from the brainstem. The analyzed 

information is transmitted to the upper parts of the brain called basal ganglia, which is the 

center for decision-making and emotion. Eventually, the brain makes a decision based on the 

detector sound, and one of the described errors may happen. 
The Papez Circle is a decision-making process in the brain. The Papez Circle enters 

different cycles such as hippocampus nuclei, amygdala nuclei. At this stage, based on which 

cores are selected or bypassed, different decisions are made by the human. 

The information goes to the thalamus, and brain cortex of the frontal lobe, respectively, 

that takes the final decision, as shown in. After the frontal lobe took the decision, it sends 

information through the fascicle to the parietal lobe, and the parietal lobe returns the 

information to basal ganglia. The position of the brain lobe, as shown in Fig. 2. Basal 

ganglia send the information from the lobes to the midbrain and ultimately to the spinal cord 

and organs, and then the move will take place [58]. 

 

 
Figure 2. Different lobes of the brain cortex (reproduced from 

https://www.knowyourbody.net/parietal-lobe.html) 

 

The advantage of the GRO algorithm is the selection of different movement options 

without a force in decision-making. In contrast, the algorithms that are based on the natural 
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laws or instinctual behavior of the animals entail some sort of force in decision-making. The 

brain analyzes the sounds and errors; according to that, the operator chooses the best 

direction as close as possible to gold. By using a team-work approach, the operators can get 

steadily closer to gold after only a few movements, which saves time and energy. 

2.2 Presentation of gold rush optimization 

Based on the above-mentioned hypothetical procedure, the GRO algorithm in the following 

equation is expressed. Finally, similar to the other metaheuristic approach, the proposed 

algorithm is an iterative process that starts by initializing the global parameters such that: 

For the location “i” lbi and ubi are the minima and the maximum allowable values. lbi and ubi 

are the search space of the operators. Rand in the interval (0.1) is a random number. As 

mentioned above, this algorithm is based on teamwork. Accordingly, for the best 

performance of the algorithm, more than one operator was selected. The size of the 

operators' population with 2 ≤operators. A successful operator (SOP) is an operator who is 

successful in finding the optimal location. 
Each of the operators has its transfer restrictions, which are the constraints of the 

problem. Afterward, the main constants are calculated, and the following steps explain the 

primary transformations involved in the pathway of the algorithm. 

Level 1: Initialization 

Initially, a group of operators enters the search space. Every operator stands randomly in 

one spot within the search space (boundary condition) is described in Eq. (1), holding a 

metal detector.  

 
   0

*      ,     1,2, ,i i i ilocation lb ub lb rand i N      (1) 

 

The N is the number of variables – the number of dimensions in the search space equals 

the number of variables. Each operator can move in N directions and find their next spot. 

Every operator determines the success of people in finding the excellent location they are 

standing based on the loudness of the sound received from the metal detector. An operator 

can determine their distance to gold based on the sound loudness. This way, an operator 

selects their best movement direction to approach the gold, which is the goal of all the 

operator group. 
Level 2: Monitoring-Choosing the best locations 
In this step, SOP should be generated. In the first iteration, top 10 percent of operators 

should be selected and stored in SOP. In second or more iteration, SOP of previous 

iterations should be compared with population of operators and top 10 percent of union of 

them should be selected and stored as SOP. 

Level 3: Fitness-distance 

The evaluation of the loudness of each sound (rate), people with an excellent chance to 

find gold, is calculated based on Eq. (2):  
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 
   

    
 

rate *
   

i

i

sound highest volume sound iD
i

sound highest volume sound lowest volume 




 
 (2) 

 

Considering the coefficients 𝜌𝑖 moreover, Di, the errors coming from the environment, 

operators are addressed, and the accuracy of the heard sound is increased. The epsilon (𝜀) is 

small positive number to avoid singularities. 

Due to the frequent movements of the operators, they get tired gradually, which affects 

their search quality. In fact, in each movement stage of the group, the operators have less 

movement efficiency than the previous stages, and in each stage, their movement range is 

shortened. To overcome such a problem, we introduce a parameter 𝜌𝑖 is described in Eq. (3) 

in order to measure the fatigue effect, which is the cause of poor quality detection. In fact 𝜌𝑖 

is a control parameter of the exploitation and the exploration process. Using the parameter 𝜌𝑖 

the rate of the movement of each operator in each stage is calculated. 

 

2i

iter

iter

max
    (3) 

 

The distance between the operators affects the perception of the sound heard by each 

operator. Due to the attenuation of sound in the air, the one with the longest distance is 

perceived less than actual. In order to calculate the attenuation of sound, the distance Di 

between the operators in Eq. (4) is considered based on the coefficient of the distance. This 

way, the loudness of a sound can be accurately evaluated. The indices i and j indicate the 

current position of the two operators. 

 

   
2 2

i i j i jD x x y y      (4) 

 

Level 4: Think-Decisions-move 

In this step, each operator can make different decisions based on a combination of the 

sounds. Each operator thinks and decides to move towards which direction based on the 

sound received from their own and others’ metal detectors. Sometimes metals other than 

gold is found, and consequently, in order to mitigate the risk of capturing metals other than 

gold, the operators do not necessarily move towards the loudest sound. In other words, the 

operators may need to move towards or away from the loudest sound. 

Each operator can move towards or against the loudest sound. Finally, the final result 

(location) is multiplied by Rate to get the updated location in Eq. (5). 

 

               *     *newlocation i location i dm rate j rate i location j location i rand      
 (5) 

 

Therefore, an operator does not always move towards the loudest sound but sometimes 

may move away from it. Therefore, a random number (between 0.0 and 1.0) is chosen, and 
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this number is compared with the ranges of 𝛼 in Eq. (6). 

 

1                       

1                        

towards a loudest sound rand

away from a loudest sound ran
m

d
d






 


  

  
 (6) 

 

md means move direction. The first range (𝛼 > 𝑟𝑎𝑛𝑑) corresponds to moving towards 

the loudest sound, and the second range (𝛼 < 𝑟𝑎𝑛𝑑) corresponds to moving away from the 

loudest sound. Using this strategy in the GRO algorithm prevents getting trapped in a local 

optimum and instead select the answers by the movement towards a global optimum. 

Level 5: Correct location 

Also, the sound heard by the operator is analyzed in the frontal lobe of the brain, which 

makes different decisions. Considering the selection of different nuclei by basal ganglia in 

Papez Circle, a wide range of decisions are taken for the operator to move towards a specific 

direction. The decisions are finalized in the frontal lobe, and movement is made towards a 

direction.  
If the location obtained in Eq. (5) violates the constraints of the problem, the Eq. (7) is 

used to create new locations. Therefore, a random number (between 0.0 and 1.0) is chosen, 

and this number is compared with the ranges of 𝛽 and 𝛾 where 0 < 𝛽 <  𝛾 < 1. Each 

operator according to the above parameters selects one of the following activities: 

 

 

                                              

                                

                             

choose a neighboring location rand

new location i select a new location randomly rand

do not move rand



 










 




 

(7) 

 

Interpolation is used to find a location in the neighborhood. 
Level 6: Termination 

Eventually, steps 4 to 6 are repeated in a loop until one of the terminating criteria as 

below is achieved: 

1. The maximum number of allowed attempts (Maxiter) is 400. 

2. No further change in the best location is observed (after several iterations without 

improvement). 

3. The difference between the values of the SOP function and the global optimum is less 

than a pre-fixed anticipated threshold. 

4. If the difference between the objective values of the best and the worst location 

becomes less than a specified accuracy. 

The pseudo-code of the GRO algorithm is presented as follows. 

Pseudo-code for the proposed algorithm GRO: 

Initialize 
Step 1. Initialize the gold rush algorithm parameters. 

1-1: Number of operator (i=1,2,…,n) 

1-2: Every operator stands randomly 

Step 2. Determines the success of people in finding an excellent location. 

Step 3. A number of the SOP are chosen and recorded. 
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Search 

Step 4. Set the parameter 𝛼, 𝛽, and 𝛾 

While (iter<Max number of iterations) 

   For each operator 

      For each operator + some of SOP 

       Each operator determines the following parameters: fatigue, distance, and rate. 

       Calculate the location of the current search operator by Eq. 5. 

       Allocate the probability of the moving towards or away from the loudest sound using 

the parameters 𝛼, 𝛽, and 𝛾.  

        Update locations. 
       End for 
    End for 

Step 6. 

    Calculate the success of people in finding an excellent location (SOP). 

    Update the best location of all the operators. 
End while 

Memorize the best location of the operators. 

Step 7. If not (terminate) iter=iter+1; go to Step 4; 

 

The algorithm uses the number of function evaluations equal to (number of population + 

number of SOPs)*number of iterations. 

 

The flowchart of the GRO algorithm is illustrated in Fig. 3. 

 

 
Figure 3. The flowchart of the GRO algorithm 
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3. RESULTS AND DISCUSSION 
 

The GRO algorithm was benchmarked on several benchmark functions. The benchmark 

functions by CEC 2005 used by researchers Kamalinejad  [44]. These functions are chosen 

to compare the results with the previous meta-heuristics. 25,72,200,272,582-bar truss 

problem and five constrained classical engineering design problems, namely cantilever 

beam, tension/compression spring, welded beam, pressure vessel, three-bar truss, are 

employed to verify the ability of the proposed GRO algorithm (problems have several 

constraints). For verifying the results, the GRO algorithm is compared with (QEA) [59], 

(MVO) [60], (WOA) [44], (CSA) [61], etc. MATLAB version R2018b was used for 

programming and optimization. 

 

3.1 Benchmark function 

A previous study Tsoulos [44] has used several unimodal and multimodal benchmark 

functions by CEC 2005  and obtained the optimal answer. It is possible to split the 

benchmark functions used into two groups: unimodal, multimodal. For benchmarking the 

exploitation of algorithms, used Unimodal benchmark functions that have one global 

optimum and for benchmarking the exploration of algorithms, used multi-modal benchmark 

functions that have a global optimum as well as multiple local optima. It should be noted 

here that the variables numbers of the test functions are also considered to be 30. Using 

GRO, those functions were re-evaluated, as listed in Table 1. The maximum run was tuned 

at 20. The coefficients 𝛼 = 0.5, 𝛽 = 0.5, and 𝛾 = 0.85 are considered for evaluating 

benchmark functions. Table 2 summarizes and compared the results of WOA [44], PSO [37],  

GSA [19], DE [8] and current work (GRO). The performance of the algorithm has been 

suitable and competitive in unimodal functions (exploitation capacity algorithm). The GRO 

algorithm can hence provide very good exploitation. In multimodal functions (exploration 

capacity algorithm) the ability to get the best answer or close to the best answer. A 

perspective view for some of functions are shown in Fig. 4. result Fig. 5 show that the 

behavior of the GRO algorithm in most cases is the rapid convergence of the initial iteration 

steps. Also, a good combination and balance of exploitation and exploitation supports the 

GRO algorithm, which helps this algorithm find the global optimum. 

 
Table 1: Benchmark functions re-evaluated using GRO (range is the boundary of the function’s 

search space, and fmin is optimum) 

Unimodal Benchmark function V-no variable range fmin 
2

1 1
( ) ii

n
F x x


  30 ] 10 ,[ 0 100x    0.0 

2 1 1
( ) i ii i

nn
F x x x

 
    30 ] 1[ 0,10x    0.0 

 
2

13 1
( )

i

jji

n
F x x


   30 ] 10 ,[ 0 100x    0.0 

   
2 22

14 1
( ) 100 1i i ii

n
F x x x x

    
    30 ] 10 ,[ 0 100x    0.0 
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 4

5 1
( ) 0,1ii

n
F x ix random


   30 ] 1.2 1[ 8, .28x    0.0 
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Table 2: Comparison of optimization results obtained for the unimodal and multimodal 

benchmark functions 

Function 
GRO  WOA  PSO  GSA  DE  

ave std ave std ave std ave std ave std 

F1 4.65E-26 3.20E-09 1 .41E −30 4 .91E −30 0 .0 0 0136 0 .0 0 0202 2 .53E −16 9 .67E −17 8 .2E −14 5 .9E −14 

F2 7.34E-24 1.84E-11 1 .06E −21 2 .39E −21 0 .042144 0 .045421 0 .055655 0 .194074 1 .5E −09 9 .9E −10 

F3 1.12E-3 3.156 5 .39E −07 2 .93E −06 70 .12562 22 .11924 896 .5347 318 .9559 6 .8E −11 7 .4E −11 

F4 19.5756 2.3657 27 .86558 0 .763626 96 .71832 60 .11559 67 .54309 62 .22534 0 0 

F5 0.01954 0.0176 0 .001425 0 .001149 0 .122854 0 .044957 0 .089441 0 .04339 0 .00463 0 .0012 

F6 -12563 347.9934 −5080.76 695.7968 −4841.29 1152.814 −2821.07 493.0375 −11080.1 574.7 

F7 0.0045 4.5687 0 0 46 .70423 11 .62938 25 .96841 7 .470068 69 .2 38 .8 

F8 0.05764 1.2E-04 7 .4043 9 .897572 0 .276015 0 .50901 0 .062087 0 .23628 9 .7E −08 4 .2E −08 

F9 0.000198 1.2578 0 .0 0 0289 0 .001586 0 .009215 0 .007724 27 .70154 5 .040343 0 0 

F10 0.09624 0.4567 0 .339676 0 .214864 0 .006917 0 .026301 1 .799617 0 .95114 7 .9E −15 8E −15 
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Figure 4. A perspective view for some of the functions 

 

 
Figure 5. Convergence curve for f1,f2 and f7 functions 

 

3.2 Cantilever beam design problem 

Chickermane [62] and Gandomi [63] designed a cantilever beam design problem that 

includes five hollow elements with a square-shaped cross-section problem, as illustrated in 

Fig.6. This problem aims to minimize beam weight in which, considering constraints such as 

vertical constraint displacement of the lowest weight of the beam is taken into account. The 
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coefficients 𝛼 = 0.5, 𝛽 = 0.5, and 𝛾 = 0.85 are considered. The number of population was 

tuned 20 operators.  There are five squares of which the first block is fixed, and the fifth one 

burdens a vertical load. Fig.6 shows that each element is defined by one variable while the 

thickness is constant, so there is a total of five structural parameters that define the shape of 

a cross-section of the cubes. The total cost function, constraints and considered variable 

ranges are presented in Ref [63]. 

 

 
Figure 6. Cantilever beam design problem 

 

Table 3 summarizes the variables and cost functions in the literature and current work. 

Taking into account the studies performed previously and the several algorithms used to 

reduce the cost function (cantilever beam), the results obtained for reducing the cantilever 

beam weight is significantly improved compared to the previous studies (CS) [63], (SOS) [64], 

(MVO) [60], (QEA) [59]. In previous studies, the lowest cost function (QEA) [59] was 

1.3382, whereas this study achieves a cost function of 1.336562, which is considerably lower 

than previous studies. GRO found minimum weight and constraints are 𝑔(𝑥) = 0.42315.  Based on 

the results obtained for the cost function in the earlier studies, the constraints of the current 

research are closer to the boundary conditions. This table shows the optimum values of the 

decision variables over 30 independent runs corresponding to GRO Best solution. To find a 

design with the optimum weight by the GRO algorithm, which requires 3300 function 

evaluations. Fig. 7 illustrates the performance of the GRO concerning the fitness and 

convergence problem of the cantilever beam design. As can be seen from the convergence 

curve, the initial slope is suitable and the algorithm reaches the range of good answers in its 

initial iterations. In fact, the convergence speed GRO algorithm is very good and competitive. 

The statistical simulation results (average and standard deviation) are reported in Table 3. 

As can be seen in Table 3, the standard deviation of the results by GRO is minimal. 

Furthermore, from Table 3, it can be seen that the worst searching quality of GRO is similar 

to optimal weight of CS [63], SOS [64], and MVO [60] algorithm. Based on the results of 

standard deviations, it proves the stability of the algorithm is strong enough. To put it 

another way, it is an adequate search capability, it is a sufficient search capacity, and 

convergence is quite good. 
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Figure 7. Convergence curve of cantilever beam design problem by the GRO method 

 

Table 3: Comparison of the results for the cantilever beam design problem 

Method 
Optimal sections (in2)    Optimal 

weight 
Mean Worst 

Standard 

deviation X1 X2 X3 X4 X5 

(CS) [63] 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999 N/A N/A N/A 

(SOS) [64] 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996 N/A N/A N/A 

(MVO) [60] 6.02394 5.30601 4.49501 3.4960 2.15272 1.33995 N/A N/A N/A 

(QEA)[59] 5.8594 5.3125 4.6563 3.46875 2.2031 1.3382 1.3532 1.4072 0.015096 

Present work 

(GRO) 
6.028099 5.3036577 4.4678013 3.524043 2.1507254 1.336562 1.338997 1.33993 0.001021 

(Not available= N/A) 

 

3.3 A tension/compression spring design problem 

Belegundu [65] and Arora [66] designed a tension/compression spring problem, as 

illustrated in Fig.8. This problem aims to minimum deflection, surge frequency, and shear 

stress of the lowest weight of spring is taken into account. As seen in Fig.8, the number of 

active coils (N=X3), coil diameter (D=X1), and wire diameter (d=X2) are the considered 

variables. The coefficients 𝛼 = 0.5, 𝛽 = 0.5, and 𝛾 = 0.85 are considered. The number of 

population was tuned 25 operators. The total cost function, constraints and considered 

variable ranges are presented in Ref [66]. 
 

 
Figure 8. Tension/compression spring design problem 

 

Table 4 summarizes the variables and cost functions in the literature and current work. 

The results obtained for reducing the (tension/compression spring) weight is significantly 

improved compared to the previous studies (WOA) [44], (CSA) [61], (MBA) [67], (MCSS) 

[68]. However, the values found in (MBA) [67] and (CSA) [61] are nearly identical to those 
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found in GRO. In this study achieves a cost function of 0.01260682. GRO found minimum weight 

and constraints are 𝑔1(𝑥) = −5.7422𝑒 − 07, 𝑔2(𝑥) = 0.0, 𝑔3(𝑥) = 4.06593, 𝑔4(𝑥) =
−4.0659. Based on the results obtained for the cost function in the earlier studies, the 

constraints of the current research are closer to the boundary conditions. This table shows 

the optimum values of the decision variables over 30 independent runs corresponding to 

GRO Best solution. To find a design with the optimum cost function by the GRO algorithm, 

which requires 4200 function evaluations. Fig. 9 illustrates the performance of the GRO 

concerning the fitness and convergence problem of the tension/compression spring. As can 

be seen from the convergence curve, the initial slope is suitable and the algorithm reaches 

the range of good answers in its initial iterations. In fact, the convergence speed of GRO 

algorithm is very good and competitive. 
 

 
Figure 9. Convergence curve of tension/compression spring design problem by the GRO method 

 

Table 4: Optimum and statistical results for the tension/compression spring design 

 Optimal design variables 

costf  Mean Worst 
Standard 

deviation Methods 
1( )x d  2 ( )x D  3( )x N  

(WOA) [44] 0 .051207 0 .345215 12 .004032 0 .0126763 0 .0136 N/A 0 .0026 

(CSA) [61] 0.051689028 0.356716954 11.28901179 0.01266523 0.012665998 0.0126701 1.357079e_6 

(MBA) [67] 0.051656 0.355940 11.344665 0.012665 0.012713 0.012900 6.30e−05 

(MCSS) [68] 0.051627 0.356290 11.275456 0.0126069 0.012712 0.012982 4.7831e−5 

Present 

work 
0.051627 0.356289 11.27546 0.01260682 0.01266991 0.012891 3.86159e-05 

(Not available= N/A) 

 

The statistical simulation results (average and standard deviation) are reported in Table 4. 

Furthermore, from Table 4, it can be seen that the average searching quality of GRO is also 

better than (WOA) [44], (MBA) [67] and (MCSS) [68]. Based on the results of standard 

deviations, it proves the stability of the algorithm is strong enough. To put it another way, it 

is an adequate search capability, it is a sufficient search capacity, and convergence is quite 

good. 
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3.4 A welded beam design problem 

Rao [69] designed a welded beam design problem, as illustrated in Fig.10. This problem 

aims to minimize the weight of the welded beam in which, considering constraints such as 

minimum shear stress (𝜏 ), bending stress (𝜎), buckling load (PC), end deflection (𝛿). The 

coefficients 𝛼 = 0.75, 𝛽 = 0.6, and 𝛾 = 0.85 are considered. The number of population was 

tuned 25 operators. Fig.10 shows that, the four design variables are: (h= X1), (l= X2), (t = 

X3), and (b= X4). 

 

 
Figure 10. Welded beam design problem 

 

The total cost function, constraints and considered variable ranges are presented in Ref 

[69]. 

Table 5 summarizes the variables and cost functions in the literature and current work. 

Taking into account the studies performed previously and the several algorithms used to 

reduce the cost function (welded beam), the results obtained for reducing the welded beam 

weight is significantly improved compared to the previous studies (QEA) [59], (CSA) [61], 

(WOA) [44] and (SSOA) [70]. In previous studies, the lowest cost function (CSA) [61] was 

1. 7248523, whereas this study achieves a cost function of 1.7278560, which is the results are 

quite similar. GRO found minimum weight and constraints are 𝑔1(𝑥) = −5.9690, 𝑔2(𝑥) =
−75.2661, 𝑔3(𝑥) = −0.0011, 𝑔4(𝑥) = −3.3874, 𝑔5(𝑥) = −0.0796, 𝑔6(𝑥) = −0.2356, 

𝑔7(𝑥) = −2.8045. Based on the results obtained for the cost function in the earlier studies, 

the constraints of the current research are closer to the boundary conditions. This table 

shows the optimum values of the decision variables over 30 independent runs corresponding 

to GRO Best solution. To find a design with the optimum cost function by the GRO 

algorithm, which requires 40000 function evaluations. Fig. 11 illustrates the performance of 

the GRO concerning the fitness and convergence problem of the welded beam design. As 

can be seen from the convergence curve, the initial slope is suitable and the algorithm 

reaches the range of good answers in its initial iterations. In fact, the convergence speed of 

GRO algorithm is very good and competitive. 
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Figure 11. Convergence curve of welded beam design problem by the GRO method 

 
Table 5: Optimum and statistical results for the welded beam design 

 Optimal design variables 

costf  Mean Worst 
Standard 

deviation Methods 1( )x h  2 ( )x l  
3( )x t  4 ( )x b  

(QEA)[59] 0.21875 3.1094 8.7656 0.21875 1.742706 1.926865 2.709145 0.197686 

(WOA) [44] 0 .205396 3 .484293 9 .037426 0 .206276 1 .730499 1 .7320 N/A 0 .0226 

(SSOA) [70] 0.2057296 3.4704888 9.0366236 0.2057297 1.7248524 1.724855 1.724871 4.32E-06 

(CSA) [61] 0.2057296 3.4704886 9.0366239 0.2057296 1.7248523 1.724852 1.724852 1.1945e_15 

Present 

work 
0.2046242 3.4917238 9.0485875 0.2057020 1.7278560 1.733021 1.740871 0.003094 

(Not available= N/A) 

The statistical simulation results (average and standard deviation) are reported in Table 5. 

From Table 5, it can be seen that the worst searching quality of GRO is also better than the 

QEA algorithms. Based on the results of standard deviations, it proves the stability of the 

algorithm is strong enough. To put it another way, it is an adequate search capability, it is a 

sufficient search capacity, and convergence is quite good. 

 

3.5 A pressure vessel design problem 

Sandgren [71] designed a pressure vessel design problem that both ends of the vessel are 

capped, and the head has a hemispherical shape, as illustrated in Fig.12. This problem aims 

to minimize the total cost consisting of material, forming, and welding of a cylindrical 

vessel, as shown in Fig.12. The coefficients 𝛼 = 0.75, 𝛽 = 0.6, and 𝛾 = 0.85 are 

considered. The number of population was tuned 20 operators. Fig.12 shows the considered 

variables are the thickness of the shell (TS=X1), the thickness of the head (Th= X2), the 

inner radius (R= X3), and the length of the cylindrical section of the vessel (L=X4), not 

including the head. TS and Th are integer multiples of 0.0625 inch, R and L, the available 

thickness of the rolled steel plates, are continuous. 
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Figure 12. Schematic of a section of pressure vessel in pressure vessel design problem 

 

The total cost function, constraints and considered variable ranges are presented in Ref 

[71].  
 

Table 6  Optimum results for the pressure vessel 

 Optimal design variables 

costf  Mean Worst 
Standard 

deviation Methods 1( )sx T  
2 ( )hx T  

3( )x R  
4 ( )x L  

(MVO) [60] 0.812500 0.437500 42.0907382 176.738690 6,060.8066 N/A N/A N/A 

(WOA) [44] 0 .812500 0 .43750 42 .098269 176 .63899 6059 .7410 6068 .05 N/A 65 .6519 

(CSA) [61] 0.812500 0.437500 42.0984453 176.636598 6059.71436 6342.4991 7332.841 384.945 

(MBA) [67] 0.7802 0.3856 40.4292 198.4964 5,889.3216 6200.64765 6392.5062 160.34 

(QEA) [59] 0.765625 0.378906 39.5625 211.1641 5,887.3969 6527.735 7391.332 422.98 

Present 

work 
0.77818755 0.3846585 40.320598 199.9863563 5,885.30256 6,097.1875 6,291.4618 87.1246 

(Not available= N/A) 

 

Table 6 summarizes the variables and cost functions in the literature and current work. 

Taking into account the studies performed previously and the several algorithms used to 

reduce the cost function (pressure vessel), the results obtained for reducing the pressure 

vessel cost function is significantly improved compared to the previous studies (QEA) [59], 

(MBA) [67], (CSA) [61], (WOA) [44], (MVO) [60]. In previous studies, the lowest cost 

function (QEA) [59] was 5,887.3969, whereas this study achieves a cost function of 

5,885.30256, which is considerably lower than previous studies. GRO found minimum function 

and constraints are 𝑔1(𝑥) = −7.5238𝑒 − 12, 𝑔2(𝑥) = −1.3725𝑒 − 12, 𝑔3(𝑥) = 0.0011, 

𝑔4(𝑥) = −40.0136. Based on the results obtained for the cost function in the earlier studies, 

the constraints of the current research are closer to the boundary conditions. This table 

shows the optimum values of the decision variables over 30 independent runs corresponding 

to GRO Best solution. To find a design with the optimum cost function by the GRO 

algorithm, which requires 3300 function evaluations. Fig. 13 illustrates the performance of 

the GRO concerning the fitness and convergence problem of the welded beam design. As 

can be seen from the convergence curve, the initial slope is suitable and the algorithm 

reaches the range of good answers in its initial iterations. In fact, the convergence speed of 

GRO algorithm is very good and competitive. 
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Figure 13. Convergence curve of pressure vessel design problem by the GRO method 

 

The statistical simulation results (average and standard deviation) are reported in Table 6. 

Based on the results of standard deviations, it proves the stability of the algorithm is strong 

enough. To put it another way, it is an adequate search capability, it is a sufficient search 

capacity, and convergence is quite good. 

 

3.6 The three-bar truss design problem 

Sadollah [67] and Gandomi [63] designed a three-bar truss design problem, as illustrated in 

Fig.14. This problem aims to minimize the weight of the truss. The coefficients 𝛼 =
0.75, 𝛽 = 0.6, and 𝛾 = 0.85 are considered. The number of population was tuned 20 

operators. The considered constraint satisfying the stress, deflection, and buckling is taken 

into account. The considered variables are the cross-section of the truss bar. Fig.13 shows 

A1, A2, and A3 are a cross-section of the truss bar also A1 = A3 are considered. 

The total cost function, constraints and considered variable ranges are presented in Ref 

[67]. 

 

 
Figure 14. The three-bar truss design problem (A1=A3) 

 

Table 7 summarizes the variables and cost functions in the literature and current work. The 
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studies performed previously and the several algorithms used to reduce the cost function 

(three-bar truss). The results obtained is significantly improved compared to the previous 

studies (MVO) [60], (MBA) [67], (CSA) [61], (CS) [63], (QEA) [59]. In previous studies, the 

lowest cost function (CSA) [61] was 263.8958433, whereas this study achieves a cost function 

of 263.895843, which is the results are quite similar. GRO found minimum weight and constraints are 

𝑔1(𝑥) = −8.72857𝑒 − 13, 𝑔2(𝑥) = 1.46412, 𝑔3(𝑥) = 0.535876. Based on the results 

obtained for the cost function in the earlier studies, the constraints of the current research are 

closer to the boundary conditions. This table shows the optimum values of the decision 

variables over 30 independent runs corresponding to GRO Best solution. To find a design with 

the optimum weight by the GRO algorithm, which requires 3300 function evaluations. Fig. 15 

illustrates the performance of the GRO concerning the fitness and convergence problem of the 

cantilever beam design. As can be seen from the convergence curve, the initial slope is 

suitable and the algorithm reaches the range of good answers in its initial iterations. In fact, the 

convergence speed of GRO algorithm is very good and competitive. 

 

 
Figure 15. Convergence curve of three-bar truss design problem by the |GRO method 

Table 7: Comparison of the results for the three-bar truss design problem 

Method 
Optimal sections (in2) Optimal truss 

weight 
Mean Worst 

Standard 

deviation X1 X2 

(CS) [63] 0.78867 0.40902 263.9716 264.0669 N/A 0.00009 

(QEA) [59] 0.792969 0.396484 263.9339 N/A N/A N/A 

(MBA) [67] 0.7885650 0.4085597 263.8958522 263.897996 263.915983 3.93e_3 

(MVO) [60] 0.78860276 0.40845307 263.8958499 N/A N/A N/A 

(CSA) [61] 0.7886751284 0.408248308 263.8958433765 263.8958 263.8958 1.012254e-10 

Present work 

(GRO) 
0.7886819160 0.408229110 263.89584341 263.89476 263.89594 7.13842e-3 

(Not available= N/A) 

 

The statistical simulation results (average and standard deviation) are reported in Table 7. 

Based on the results of standard deviations, it proves the stability of the algorithm is not 

strong enough. To put it another way, it is an adequate search capability, it is a sufficient 

search capacity, but convergence is not quite right. 
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3.7 A 25-bar spatial truss structure 

Kaveh [45] and Hasançebi [72] studied a 25-bar spatial truss design problem, which is a 

widespread problem in the previous study. The schematic topology and element numbering, 

as illustrated in Fig. 16. there are 10 nodes, of which four are fixed. 

The elements (cross-sectional area members) are classified into 8 design groups. All of 

the groups are presented in [45]. Therefore, this problem has 8 parameters. The material 

properties assumptions for this problem are as follows: Material density (ρ)= 0.0272 N / cm3 

(0.1 lb/in3), Modulus of elasticity (E) = 68.947 MPa (10,000 ksi), Displacement limitation = 

0.35 in, Maximum displacement = 0.3504 in. Stress limitations of the member for the 25-bar 

truss design problem and the subject to two loading conditions are presented in [45]. 

 

 
Figure 16. 25-bar spatial truss in design problem (Photo reproduced from [45]) 

 

This example has been studied in both continuous and discrete forms. In this study solve 

the continuous version of this problem. The coefficients 𝛼 = 0.5, 𝛽 = 0.5, and 𝛾 = 0.85 are 

considered. The number of population was tuned 20 operators. Table 8 summarizes the 

cross-sectional area members and shows the best optimal weight in the literature and current 

work. 

 
Table 8: Performance comparison for the 25-bar truss problem 

Methods 
Element group  (Optimal sections (in2)) Weight 

(lb) Mean Worst 
Standard 

deviation 1 2 3 4 5 6 7 8 

EBA [73] 0.0100 1.9789 3.0047 0.0100 0.0100 0.6888 1.6783 2.6527 545.1688 546.4464 N/A N/A 
TLBO [48] 0.0100 2.0712 2.9570 0.0100 0.0100 0.6891 1.6209 2.6768 545.0900 545.41 N/A 0.42 

WEO [33] 0.0100 1.9814 3.0023 0.0100 0.0100 0.6827 1.6778 2.6612 545.166 N/A N/A N/A 
GWO [13] 0.0159 1.8017 3.4000 0.0399 0.0164 0.6334 1.7062 2.6149 549.3771 564.1920 N/A 6.9961 

IGWO [13] 0.0124 1.9624 3.0204 0.0266 0.0109 0.6841 1.6862 2.6526 545.4819 549.6747 N/A 2.8113 

Present work 0.0100 1.9347 3.0517 0.0100 0.0101 0.6956 1.6953 2.6253 545.1519 546.0214 546.8697 0.55183 

(Not available= N/A) 
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Taking into account the results obtained for reducing the 25-bar truss weight is 

significantly improved compared to the previous studies 545.1688, 545.166, 549.3771 and 

545.4819 lb for the EBA [73], WEO [33], GWO [13] and IGWO [13] algorithm, 

respectively. In previous studies, the lowest welded beam weight TLBO [48] was 545.0900. 

whereas this study achieves a weight of 545.1519, which is the results are quite similar. To 

find a design with the optimum weight by the GRO algorithm, which requires 11000 

function evaluations. Fig. 17 shows the convergence diagrams in terms of the number of 

iterations for this example. The maximum values of displacements in the x, y, and z-

directions are 8 (in), 7.61 (in), and 2.15 (in), respectively. Based on the results, the variables 

of the current research are closer to the boundary conditions. The statistical simulation 

results (average and standard deviation) are lists in Table 8. As can be seen from the 

convergence curve, the initial slope is suitable and the algorithm reaches the range of good 

answers in its initial iterations. In fact, the convergence speed of GRO algorithm is very 

good and competitive. 

 

 
Figure 17. 25-bar spatial skeletal tower design problem 

 

3.8 A 72-bar spatial truss structure 

Aslani [74] and Kaveh [75] studied a 72-bar spatial truss design problem, which is a 

widespread problem in the previous study. The schematic topology and element numbering, 

as illustrated in Fig. 18. There are 20 nodes, of which four are fixed. 
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Figure 18. 72-bar spatial truss in design problem (Photo reproduced from [75]) 

 

The material properties assumptions for this problem are as follows: Material density 

(ρ)= 0.1 lb/in3 (2767.990 kg/m3), Modulus of elasticity (E) = 10,000 (ksi) (68,950 MPa). 

The elements (cross-sectional areas members), which are classified into 16 design groups. 

All of the groups are presented in Ref [74]. Therefore, this problem has 16 parameters. 

The minimum and the maximum cross-sectional area of each member is taken as 0.10 in2 

(0.6452 cm2) and 4.00 in2 (25.81 cm2). The stress limitations of members for the 72-bar 

truss design problem are limits of ±25 ksi (±172.375 MPa). Displacement limits of 

uppermost nodes are subjected to the ±0.25 in (±0.635 cm) in x and y directions. The 

loading conditions are presented in Ref [74]. 

This example has been studied in both continuous and discrete forms. In this study solve 

the continuous version of this problem. The coefficients 𝛼 = 0.5, 𝛽 = 0.5, and 𝛾 = 0.85 are 

considered. Using 30 operators over 200 iterations. Table 9 summarizes the cross-sectional 

area members and shows the best optimal weight in the literature and current work. 
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Table 9: Performance comparison for the spatial 72-bar tower truss problem 

Element group 

Optimal sections 

EBA [73] CBO [22] GWO [13] IGWO [13] 
SSOA 

[70] 

GRO present 

work 

1 1.8592 1.9170 2.0347 1.8585 1.8823 1.8501 

2 0.4931 0.5031 0.4546 0.5021 0.5126 0.5128 

3 0.1003 0.1000 0.1094 0.1002 0.1003 0.1000 

4 0.1018 0.1001 0.1000 0.1000 0.1001 0.1000 

5 1.2853 1.2721 1.5148 1.3011 1.2442 1.2450 

6 0.5131 0.5050 0.5876 0.5151 0.5161 0.5159 

7 0.1007 0.1000 0.1970 0.1000 0.1000 0.1000 

8 0.1025 0.1000 0.1501 0.1001 0.1001 0.1000 

9 0.5121 0.5184 0.3973 0.5311 0.5312 0.53101 

10 0.5255 0.5362 0.4312 0.5122 0.5166 0.51645 

11 0.1003 0.1000 0.1000 0.1008 0.1000 0.1000 

12 0.1030 0.1000 0.1000 0.1030 0.1006 0.1000 

13 0.1560 0.1569 0.2157 0.1560 0.1562 0.1562 

14 0.5547 0.5374 0.6051 0.5472 0.5486 0.5486 

15 0.4063 0.4062 0.3792 0.4202 0.4027 0.4027 

16 0.5962 0.5741 0.8182 0.5793 0.5726 0.5955 

Weight (lb) 380.0582 379.75 400.3635 379.7615 379.6699 379.6241 

Average optimized 

weight (lb) 
389.1439 380.03 409.9525 380.6811 379.9030 379.9004 

Standard deviation on 

average weight (lb) 
N/A 0.278 4.7978 0.7315 0.1150 0.1173 

 

Taking into account the results obtained for reducing the 72-bar truss weight is better 

than previous algorithms. Results show that the best optimal weight obtained by GRO is 

379.6241 while it is 380.0582, 379.75, 400.3635, 379.7615 and 379.6699 lb for the EBA 

[73], CBO [22], GWO [13], IGWO [13] and SSOA [70] algorithm, respectively. To find a 

design with the optimum weight by the GRO algorithm, which requires 33000 function 

evaluations. Fig. 19 shows the convergence diagrams in terms of the number of iterations for 

this example. As can be seen from the convergence curve, the initial slope is suitable and the 

algorithm reaches the range of good answers in its initial iterations. In fact, the convergence 

speed of GRO algorithm is very good and competitive. 

 

 
Figure 19. 72-bar spatial skeletal tower design problem 
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Based on the results, the variables of the current research are closer to the boundary 

conditions. The statistical simulation results (average and standard deviation) are lists in 

Table 9. As can be seen, the standard deviation shows that GRO is very small. Furthermore, 

it can be seen that the average searching quality of GRO is also better than other algorithm. 

 

3.9 A 200-bar planar truss structure 

Kaveh and Zaerreza [70] studied a 200-bar planer truss design problem. The schematic 

topology and element numbering, as illustrated in Fig. 20. There are 77 nodes, of which two 

are fixed. The members are all made of steel. 

 

 
Figure 20. 200-bar spatial truss in design problem(Photo reproduced from[70]) 
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The material properties assumptions for this problem are as follows: Material density 

(ρ)= 0.283 lb/in2, Modulus of elasticity (E) = 30,000 (ksi). The elements (cross-sectional 

areas members), which are classified into 29 design groups. All of the groups are presented 

in Ref [70]. Therefore, this problem has 29 parameters. 

The minimum and the maximum cross-sectional area of each member is taken as 0.10 in2 

and 20 in2. Stress limitations of members for the 200-bar truss design problem are limits of 

±10 ksi. The optimization process does not include any displacement constraints. The 

loading conditions are presented in Ref [70]. 

In this study solve the continuous version of this problem. The coefficients 𝛼 = 0.5, 𝛽 = 

0.5, and 𝛾 = 0.85 are considered. Using 30 operators over 200 iterations. Table 10 

summarizes the cross-sectional area members and shows the best optimal weight in the 

literature and current work. 
 

Table 10: Performance comparison for the planar 200-bar tower truss problem 

Element group 
Optimal sections 

TLBO [48] WEO [33] CSP [75] SSOA [70] GRO present work 

1 0.1460 0.1144 0.1480 0.100315 0.145800 

2 0.9410 0.9443 0.9460 0.945976 0.940145 

3 0.1000 0.1310 0.1010 0.101669 0.100000 

4 0.1010 0.1016 0.1010 0.101119 0.100023 

5 1.9410 2.0353 1.9461 1.948657 1.940580 

6 0.2960 0.3126 0.2979 0.290019 0.295755 

7 0.1000 0.1679 0.1010 0.101494 0.100000 

8 3.1210 3.1541 3.1072 3.113037 3.119168 

9 0.1000 0.1003 0.1010 0.100209 0.100000 

10 4.1730 4.1005 4.1062 4.118997 4.170924 

11 0.4010 0.4350 0.4049 0.407309 0.401063 

12 0.1810 0.1148 0.1944 0.100247 0.181012 

13 5.4230 5.3823 5.4299 5.406352 5.422000 

14 0.1000 0.1607 0.1010 0.109823 0.100067 

15 6.4220 6.4152 6.4299 6.406481 6.422000 

16 0.5710 0.5629 0.5755 0.470731 0.570145 

17 0.1560 0.4010 0.1349 0.430735 0.156000 

18 7.9580 7.9735 7.9747 7.968047 7.957485 

19 0.1000 0.1092 0.1010 0.119819 0.100000 

20 8.9580 9.0155 8.9747 8.974186 8.957422 

21 0.7200 0.8628 0.70648 0.888874 0.720022 

22 0.4780 0.2220 0.4225 0.226645 0.477602 

23 10.8970 11.0254 10.8685 11.14610 10.897000 

24 0.1000 0.1397 0.1010 0.221872 0.100080 

25 11.8970 12.0340 11.8684 12.14581 11.897000 

26 1.0800 1.0043 1.0340 1.096515 1.079267 

27 6.4620 6.5762 6.6859 5.72775 6.460494 

28 10.7990 10.7265 10.8111 10.35575 10.798389 

29 13.9220 13.9666 13.8465 14.18211 13.921755 

Weight (lb) 25488.15 25674.83 25476.9 25291.024 25484.0022 

Max (𝜎member) 9.99997 9.99696 10.01273 11.44526 10.00000 

Average optimized 25533.14 26613.45 25547.6 25763.978 25694.943 
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weight (lb) 

Standard deviation on 

average weight (lb) 
27.44 702.80 135.09 270.444 298.481 

 
Taking into account the results obtained for reducing the 200-bar truss weight is closer to 

previous algorithms. Results show that the best optimal weight obtained by GRO is 

25484.0022 while it is 25488.15, 25674.83, 25476.9 and 25291.024 lb for the TLBO [48], 

WEO [33], CSP [75] and SSOA [70] algorithm, respectively. To find a design with the 

optimum weight by the GRO algorithm, which requires 23000 function evaluations. Fig. 21 

shows the convergence diagrams in terms of the number of iterations for this example. As 

can be seen from the convergence curve, the initial slope is suitable and the algorithm 

reaches the range of good answers in its initial iterations. In fact, the convergence speed of 

GRO algorithm is very good and competitive. 

Based on the results, the variables of the current research are closer to the boundary 

conditions. The statistical simulation results (average and standard deviation) are lists in 

Table 10. Furthermore, based on the results of the standard deviation, it shows that the 

stability of the algorithm is strong enough. As was shown in Table.10, some methods with 

better answers violated the stress constraint.  

 

 
Figure 21. 200-bar spatial skeletal tower design problem 

 

3.10. A 272-bar transmission truss structure 

Kaveh and Massoudi [76] studied a 272-bar planer truss design problem. The schematic 

topology and element numbering, as illustrated in Fig. 22. There are 65 nodes, of which four 

are fixed. The members are all made of steel. 

The material properties assumptions for this problem are as follows: Modulus of elasticity 

E = 2e8 (KN/m2). The elements (cross-sectional areas members), which are classified into 28 

design groups. All of the groups are presented in Ref [76]. Therefore, this problem has 28 

parameters. All nodal coordinate and member end nodes are shown in Ref [76]. 

The minimum and the maximum cross-sectional area of each member is taken as 0.10 in2 

and 20 in2. Stress limitations of members for the 272-bar truss design problem are limits of 
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±275000 KN/m2. Displacement limits of nodes 1,2,11,20,29 are subjected to the 100 mm in 

the x and y-directions and 20 mm in the z-direction. The loading conditions are presented in 

Ref [76]. 
 

 
Figure 22. 272-bar spatial truss in design problem(Photo reproduced from[76]) 

 

In this study solve the continuous version of this problem. The coefficients 𝛼 = 0.5, 𝛽 = 

0.5, and 𝛾 = 0.85 are considered. Using 30 operators over 200 iterations. Table 11 

summarizes the cross-sectional area members and shows the best optimal weight in the 

literature and current work. 
 

Table 11: Performance comparison for the 272-bar transmission truss structure 
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Optimal sections (mm2) 

SSOA [70] 
GRO present 

work 
SSOA [70] 

GRO present 

work 
 

SSOA 

[70] 

GRO present 

work 
 SSOA [70] 

GRO present 

work 

1 1,000.551 1000.0002 8 1,001.777 1001.1048808 15 9,320.549 9321.0719492 22 1,003.288 1000.0000341 

2 1,240.013 1239.9505 9 1,000.188 1000.0001337 16 1,000.028 1000.0000458 23 7,982.259 7982.2199375 

3 2,491.871 2491.8674 10 1,000.457 1000.0007011 17 1,000.307 1000.0042656 24 1,000.445 1000.0000537 

4 1,017.829 1017.6729 11 10,217.022 10217.068875 18 1,002.518 1000.0004589 25 1,000.591 1000.0000409 

5 9,618.809 9618.8241 12 1,000.064 1000.0000351 19 8,389.809 8389.699625 26 1,000.053 1000.0009980 

6 1,000.000 1000.0 13 1,000.015 1000.0001074 20 1,000.814 1000.0000351 27 7,504.298 7504.2977558 

7 12,063.816 12063.829366 14 1,000.005 1000.0001171 21 1,000.004 1000.0000937 28 1,000.076 1000.0007226 

Volume (cm3) 1,168,200.624 1,168,069.32690         

Average 

volume (cm3) 
1,168,668.715 1,168,701.004         

Standard 

deviation 

(cm3) 

310.7557 339.2781         
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Taking into account the results obtained for reducing the 272-bar truss volume is better 

than the previous algorithm. Results show that the best optimal volume obtained by GRO is 

1,168,069.32690, while it is 1,168,200.624 for the SSOA [70] algorithm, respectively. To 

find a design with the optimum volume by the GRO algorithm, which requires 23000 

function evaluations. Fig. 23 shows the convergence diagrams in terms of the number of 

iterations for this example. As can be seen from the convergence curve, the initial slope is 

suitable and the algorithm reaches the range of good answers in its initial iterations. In fact, 

the convergence speed of GRO algorithm is very good and competitive. Based on the 

results, the variables of the current research are closer to the boundary conditions. The 

statistical simulation results (average and standard deviation) are lists in Table 11. 

Furthermore, based on the results of the standard deviation, it shows that the stability of the 

algorithm is strong enough. 

 

 
Figure 23. 272-bar spatial skeletal tower design problem 

 

3.11 A 582‑bar spatial truss tower 

Sonmez [77] studied a 582-bar spatial skeletal tower design problem. The schematic 

topology and element numbering, as illustrated in Fig. 24. There are 153 nodes, of which 10 

are fixed. This problem has been studied with both discrete [72] and continuous [77] 

variables. In this study, we have been considered the continuous variables. 

The material properties assumptions for this problem are as follows: Material density ρ= 

0.28 lb/in3 (7.833 t/m3), Modulus of elasticity (E) = 29,000 ksi (200 GPa). The elements 

(cross-sectional areas members), which are classified into 32 design groups according to Fig. 

24. Therefore, this problem has 32 parameters. The minimum and the maximum cross-

sectional area of each member is taken as 0.99 in2 (6.45 cm2) and 49.91 in2 (322 cm2). Stress 

limitations of members for the 582-bar truss design problem are used as specified by the 

ASD-AISC [78] code, as follows: 
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Yield stress of steel (Fy) = 124 psi (253.1 MPa). Slenderness ratio dividing the elastic and 

inelastic buckling regions (CC) = 
22 yE F . Where 

i
  is calculated according to the 

slenderness ratio: 
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(9) 

 

Slenderness ratio ( )i i ikl r  , Effective length factor ( ) 1k  , Member length ( )il , 

Radius of gyration ( )ir  Displacement limits of uppermost nodes are subjected to the 8.0 cm 

in all directions. The loading conditions are presented in Ref [79]. 

 

 
Figure 24. 582-bar spatial skeletal tower design problem (Photo reproduced from ( Sonmez 
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2018)) 

The coefficients 𝛼 = 0.7, 𝛽 = 0.5, and 𝛾 = 0.7 are considered. Using 50 operators over 

1000 iterations. Table 12 summarizes and lists the optimal values of the cross-sectional area 

members and shows the best optimal weight in the literature and current work.  

 
Table 12: Performance comparison for the spatial 582-bar tower truss problem 

Element group 

Optimal sections (in2) 

ABC ACO FA GWO Jaya 

GRO 

present 

work 

1 19.35 19.26 19.26 19.26 19.26 8.99 

2 168.72 154.35 156.32 148.07 157.87 180.17 

3 36.62 36.61 36.57 36.64 36.56 26.95 

4 126.89 130.32 121.31 132.60 126.99 143.20 

5 33.49 33.38 33.44 33.36 33.39 21.37 

6 19.28 19.26 19.29 19.34 19.26 14.04 

7 111.31 104.20 100.53 106.00 104.46 125.88 

8 30.55 30.51 30.54 30.49 30.50 17.54 

9 19.27 19.25 19.25 19.44 19.27 8.65 

10 136.07 90.37 96.20 90.47 95.33 100.60 

11 27.36 27.65 27.70 27.65 27.61 13.42 

12 148.40 141.96 126.50 147.69 141.78 213.92 

13 143.60 156.74 168.58 162.03 155.98 168.15 

14 93.70 103.11 109.58 104.47 102.76 102.35 

15 190.20 168.09 135.30 159.36 166.31 203.78 

16 40.48 35.85 37.71 36.39 35.86 44.37 

17 18.34 18.37 19.25 18.15 18.14 14.82 

18 97.90 132.71 144.45 119.21 131.71 152.13 

19 31.13 28.41 28.52 28.61 28.39 26.42 

20 18.29 18.31 18.14 18.57 18.15 14.85 

21 84.64 87.97 91.18 87.66 90.63 90.75 

22 26.93 26.20 26.20 26.30 26.22 37.94 

23 18.34 18.19 18.34 20.51 18.21 8.48 

24 53.60 52.80 50.45 51.54 50.77 109.17 

25 26.29 26.28 26.39 26.29 26.26 20.54 

26 18.27 18.24 18.15 18.80 18.15 14.48 

27 30.99 21.98 79.85 26.37 22.81 50.34 

28 30.99 26.26 26.23 26.21 26.22 13.54 

29 18.22 19.07 33.84 21.36 18.17 8.65 

30 8.98 9.20 18.53 18.21 8.38 8.89 

31 26.29 26.22 28.35 26.34 26.21 13.93 

32 26.23 26.31 41.00 28.35 26.25 6.50 

Weight (t) 134.993 133.131 136.417 133.709 133.066 129.9826 

Average optimized 

weight (t) 
136.744 133.614 142.333 134.305 133.081 130.984 

Standard deviation on 

average weight (t) 
0.979 1.618 3.147 0.313 0.010 0.163 

All algorithms are from Sonmez [77] 
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Taking into account the results obtained for reducing the 582-bar truss volume is better 

than previous algorithms. Results show that the best volume obtained by GRO is 129.9826, 

while it is 133.131, 134.993, 136.417, 133.709, and 133.066 lb for the ACO, ABC, FA, 

GWO and Jaya [77] algorithm, respectively. To find a design with the optimum weight by 

the GRO algorithm, which requires 55000 function evaluations. Fig. 25 shows the 

convergence diagrams in terms of the number of iterations for this example. As can be seen 

from the convergence curve, the initial slope is suitable and the algorithm reaches the range 

of good answers in its initial iterations. In fact, the convergence speed of GRO algorithm is 

very good and competitive.  

 

 
Figure 25. 582-bar spatial skeletal tower design problem 

 

Based on the results, the variables of the current research are closer to the boundary 

conditions. The statistical simulation results (average and standard deviation) are lists in 

Table 12. Furthermore, based on the results of the standard deviation, it shows that the 

stability of the algorithm is strong enough. 

 

 

5. CONCLUSIONS 
 

In this research, a new approach called GRO was developed based on the thinking and 

decision-making abilities of a human. The algorithm achieved the ideal CEC 2005 

benchmark function using the minimum number of iterations, therefore increasing 

calculation speed. Compared with previous engineering design examples such as the 

benchmark function, engineering examples including cantilever beam, tension/compression 

spring, pressure vessel, three-bar truss and a truss with 72, 272, and 582-bar, the proposed 

algorithm in this work has been able to achieve better results and a lower cost function, 

which leads to a reduced structure weight. But in 25-bar, welded beam and 200 bar truss, the 

proposed algorithm results close to best answer and previous algorithms performed better. 
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Consequently, this algorithm can be used as an alternative for previous algorithms used to 

optimize skeletal and continuous structures. The proposed future research should focus on 

multi-objective GRO and Sense of sight should be considered along with sense of hearing 
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