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ABSTRACT 
 

Design optimization of structures with discrete and continuous search spaces is a complex 

optimization problem with lots of local optima. Metaheuristic optimization algorithms, due 

to not requiring gradient information of the objective function, are efficient tools for solving 

these problems at a reasonable computational time. In this paper, the Doppler Effect-Mean 

Euclidian Distance Threshold (DE-MEDT) metaheuristic algorithm is applied to solve the 

discrete and continuous optimization problems of the truss structures subject to multiple 

loading conditions and design constraints. DE-MEDT algorithm is a recently proposed 

metaheuristic developed based on a physical phenomenon called Doppler Effect (DE) with 

some idealized rules and a mechanism called Mean Euclidian Distance Threshold (MEDT). 

The efficiency of the DE-MEDT algorithm is evaluated by optimizing five large-scale truss 

structures with continuous and discrete variables. Comparing the results found by the DE-

MEDT algorithm with those of other existing metaheuristics reveals that the DE-MEDT 

optimizer is a suitable optimization technique for discrete and continuous design 

optimization of large-scale truss structures. 
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1. INTRODUCTION 
 

Discrete and continuous optimization of structures is known as a complex optimization 
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problem with many local optima. In this problem, optimization aims to minimize the weight 

of the structures subject to multiple loading conditions and design constraints [1]. Design 

constraints are the stress and displacement requirements, and design variables are the cross-

sectional areas of the structure members. These variables can be selected from a discrete set 

or can take a value from a continuous range. Although many researchers have investigated 

the weight minimization of the truss structures [2-8], it is still one of the most challenging 

problems to be demonstrated. The design optimization problem cannot be practically solved 

with traditional methods due to their limitations, such as requiring gradient information and 

dependency on the starting point. Metaheuristic Optimization Algorithms (MOAs), as 

probabilistic solvers, are free from these restrictions and solve this problem at a reasonable 

computational time. Since MOAs have these advantages, their developments have received 

considerable attention from the scientific community in recent years. 

MOAs are efficient and robust solvers developed to tackle hard optimization problems. 

Most of them are inspired by nature. Each MOA has two conflicting search mechanisms [9]: 

exploration (diversification or global search) and exploitation (intensification or local 

search). In the exploration phase, MOA deeply explores various regions of the search space 

during the early steps of the searching process. The exploitation phase is usually performed 

after the exploration stage. In this phase, the algorithm probes the neighborhood of better-

quality solutions. A good trade-off between exploration and exploration abilities leads to a 

well-organized MOA.  

According to the source of inspiration, MOAs can generally be categorized into three 

main groups: Evolutionary-based, Swarm-based, and Physics-based algorithms. 

Evolutionary-based algorithms mimic biological evolution mechanisms such as 

reproduction, mutation, and selection.  Genetic Algorithm (GA) [10],  Evolution Strategy 

(ES) [11], and Differential Evolution (DE) [12] are the most well-known evolutionary-based 

MOAs. Swarm-based algorithms are another type of MOAs that mimic the social behavior 

of animals living in swarms. The most famous examples of swarm-based MOAs are Particle 

Swarm Optimization (PSO) [13], Artificial Bee Colony (ABC) [14], and Cuckoo Search 

(CS) [15]. As the last group of MOAs, Physics-based algorithms are inspired by the physical 

phenomena to update candidate solutions iteratively. Gravitational Search Algorithm (GSA) 

[16], Charged System Search (CSS) [17], and Plasma Generation Optimization (PGO) [18] 

are the instances of physics-based optimization algorithms.       

In this paper, a newly developed population-based metaheuristic so-called Doppler 

Effect-Mean Euclidian Distance Threshold (DE-MEDT) algorithm is applied to the optimal 

design of large-scale truss structures with discrete and continuous design variables. 

Optimization aims to minimize the weight of the truss structures under stress and 

displacement constraints. DE-MEDT algorithm is a population-based metaheuristic inspired 

by the physical phenomenon called Doppler Effect (DE) [19]. In the cyclic body of the 

algorithm, a mechanism called Mean Euclidian Distance Threshold (MEDT) is also 

developed to improve the quality of the candidate solutions, which are called observers. 

MEDT mechanism also decreases the possibility of trapping into local optima. The 

performance of the DE-MEDT algorithm is demonstrated through five large-scale truss 

structures. The results found by the DE-MEDT algorithm are compared with those of some 

other state-of-the-art metaheuristics existing in the literature.    
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The remaining sections of this paper are organized as follows. In Section 2, the DE-

MEDT algorithm is comprehensively explained, and its pseudo-code is presented. In Section 

3, the objective of the optimization problem is mathematically stated. In the subsections of 

Section 3, the performance of the DE-MEDT metaheuristic algorithm is illustrated through 

five large-scale truss structures under stress and displacement constraints, and its results are 

compared with those of some other state-of-the-art metaheuristics in the literature. The 

concluding remarks are finally driven in Section 4.  

 

 

2. DOPPLER EFFECT-MEAN EUCLIDIAN DISTANCE THRESHOLD  
 

Doppler Effect-Mean Euclidian Distance Threshold (DE-MEDT) algorithm is a physics-

based metaheuristic that has been recently proposed by Kaveh et al. [19]. The proposed DE-

MEDT metaheuristic algorithm has been developed based on the Doppler Effect (DE) 

phenomenon and a new mechanism called Mean Euclidian Distance Threshold (MEDT). In 

DE-MEDT algorithm, the search agents are defined as observers, and the population size is 

fixed equal to the number of observers in the search space. Thus, the DE-MEDT algorithm 

is a population-based optimizer in which each candidate solution containing a number of 

optimization variables is considered as an observer. The proposed algorithm comprises three 

main phases to perform the optimization process. These phases include initialization, 

position updating of the observers based on the DE equation, and MEDT mechanism. Some 

idealized assumptions are considered to update the position of observers based on DE 

formulation. By incorporating the MEDT mechanism in the cyclic body of the algorithm, the 

quality of the observers is improved, and the algorithm can find promising optimum 

solutions. The MEDT mechanism, due to having some suitable features, decreases the 

possibility of being trapped in local minima and makes a good balance between the 

exploration and exploitation tendencies of the algorithm.  

 

2.1 Initialization phase  

Like other population-based metaheuristics, DE-MEDT starts with a set of candidate 

solutions called observers (𝑋) as shown in Eq. (1), which is generated stochastically.  

 

𝑋 =

[
 
 
 
 
 

𝑥1,1 ⋯ 𝑥1,𝑗 𝑥1,𝑑−1 𝑥1,𝑑

𝑥2,1 ⋯ 𝑥2,𝑗 ⋯ 𝑥2,𝑑

⋯ ⋯ 𝑥𝑖,𝑗 ⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑛𝑂𝑠−1,1 ⋯ 𝑥𝑛𝑂𝑠−1,𝑗 ⋯ 𝑥𝑛𝑂𝑠−1,𝑑

𝑥𝑛𝑂𝑠,1 ⋯ 𝑥𝑛𝑂𝑠,𝑗 𝑥𝑛𝑂𝑠,𝑑−1 𝑥𝑛𝑂𝑠,𝑑 ]
 
 
 
 
 

 (1) 

 

in which 𝑋 denotes a set of candidate solutions generated randomly using Eq. (2), 𝑥𝑖,𝑗 

represents the 𝑗th position of the 𝑖th solution, 𝑛𝑂𝑠 is the number of candidate solutions 

(observers), and 𝑑 is the dimension size of the problem being optimized. 
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𝑥𝑖,𝑗 = 𝑥𝑗,𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 × (𝑥𝑗,𝑚𝑎𝑥 − 𝑥𝑗,𝑚𝑖𝑛)   ;    𝑖 = 1,2,… , 𝑛𝑂𝑠,    𝑗 = 1,2, . . , 𝑑 (2) 

 

where 𝑟𝑎𝑛𝑑 is a random value generated between 0 and 1, 𝑥𝑗,𝑚𝑎𝑥 and 𝑥𝑗,𝑚𝑖𝑛 are the upper 

and lower bounds of the 𝑗th design variable, respectively. Each randomly-generated 

candidate solution is then evaluated and sorted in ascending order. Thus, the first and last 

members will become the initial population's best and worst candidate solutions, 

respectively.  

 

2.2. Position updating of the observers based on DE equation 

In the cyclic body of the algorithm, the observers update their positions based on the DE 

formulation with some idealized rules. The primary formulation of the DE can be stated as 

follows [20]: 

 

𝑓𝑜 = 𝑓𝑠 (
𝑣 + 𝑣𝑜

𝑣 + 𝑣𝑠
) (3) 

 

where 𝑓𝑜 is the frequency perceived by the observer, 𝑓𝑠 is the frequency of the source, and 𝑣, 

𝑣𝑜, and 𝑣𝑠 are respectively the velocity of the wave in a stationary medium, and the 

velocities of the observer and source with respect to this medium. The mathematical 

relationship between the wavelength and frequency is stated as follows [21]:  

 

𝑣 = 𝑓𝜆 (4) 
 

where 𝑣, 𝑓, and 𝜆 respectively denote the propagation speed in the medium (𝑚 𝑠⁄ ), the 

frequency (𝐻𝑧), and wavelength (𝑚). According to this equation, the frequency and 

wavelength are inversely proportional to each other so that an increase in frequency leads to 

decreasing in wavelength and vice versa [21]. Using Eq. (4), the mathematical relationship 

between the wavelength and frequency can be also obtained for both observer and source as 

follows: 

 

𝑓𝑜 =
𝑣

𝜆𝑜

 (5) 

𝑓𝑠 =
𝑣

𝜆𝑠

 (6) 

 

In the implementation of DE-MEDT, the velocities of the observer and source are used, 

and the effect of perceived frequency by the observer and emitted frequency by the source 

are eliminated from the DE equation. Considering this idealized assumption, the propagation 

speed in the numerator of Eqs. (5) and (6) are respectively replaced with the velocities of 𝑣𝑜 

and 𝑣𝑠: 

 

𝑓𝑜 =
𝑣𝑜

𝜆𝑜

 (7) 
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𝑓𝑠 =
𝑣𝑠

𝜆𝑠

 
(8) 

 

By substituting Eqs. (5) and (6) in Eq. (1) and manipulating it, the new velocity, 𝑣𝑜
𝑛𝑒𝑤, as 

stepsize for updating the position of the observers is calculated, as shown in Eq. (9). In the 

DE-MEDT algorithm, the new position of the 𝑖th observer (i.e., position updating equation 

of the observers) is calculated, which is shown in Eq. 10. Fig. 1 schematically illustrates the 

observers' position updating based on the DE equation. 

 

 
Figure 1. Position updating of the observers in the DE-MEDT algorithm  

 

𝑣𝑜
𝑛𝑒𝑤 =

𝜆𝑜

𝜆𝑠

× 𝑣𝑠 × (
𝑣 + 𝑣𝑜

𝑣 + 𝑣𝑠
) (9) 

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖 + 𝑣𝑜

𝑛𝑒𝑤 (10) 

 

in which 
𝜆𝑜

𝜆𝑠
  is considered as a random vector generated between 0 and 1. 𝑣𝑜, 𝑣𝑠, and 𝑣 

are respectively the velocities of the observer, source, and propagation velocity of the 

medium, which are calculated by the following equations:  

 

𝑣𝑜 = 𝑥𝑑𝑒𝑡 − 𝑥𝑖 (11) 

𝑣𝑠 = 𝑥𝑑𝑒𝑡 − 𝑥𝑛𝑂𝑠 (12) 

𝑣 = 𝑥𝑑𝑒𝑡 (13) 
 

where 𝑥𝑑𝑒𝑡 is the position of the determinative agent. For calculating 𝑥𝑑𝑒𝑡, the observer with 

better quality (i.e., objective function value) than the ith observer (𝑥𝑖) is selected randomly 

from the sorted population. The randomly selected observer is called a determinative 

observer (𝑥𝑑𝑒𝑡). 𝑥𝑛𝑂𝑠 is the position of the last observer in the sorted population. In the 
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sorted population, candidate solutions (observers) are arranged based on the objective 

function values in ascending order. Therefore, the first and last observers are the best and 

worst solutions of the population, respectively.  

 

2.3 MEDT mechanism 

DE-MEDT algorithm is equipped with a mechanism to afford a chance to escape from local 

optima and prevent probable premature convergence. Thus, a new mechanism called Mean 

Euclidian Distance Threshold (MEDT) is proposed in the present algorithm. This 

mechanism is performed after determining the new position of the 𝑖th observer by Eq. (10). 

The following scheme mathematically states how this mechanism performs, and Fig. 1 

schematically indicates the procedure of this mechanism during the course of iterations.  

 

𝒊𝒇 𝑟1 < 𝑝𝑎 × (1 − 𝐶𝐼) 

𝑥𝑖,𝑚
𝑛𝑒𝑤 = 𝑥1,𝑚

𝑛𝑒𝑤 × 𝑟2 × 𝑆𝑅𝐼𝐼𝑡𝑒𝑟 

𝒆𝒏𝒅 

(14) 

 

where 𝑟1 is a random number in the range of [0,1]. 𝑝𝑎 is a probability ratio determining how 

likely this mechanism works. 𝐶𝐼 is the convergence index indicating the convergence of the 

solution in the current iteration. This index can be determined by using Eq. (15). 𝑚 is a 

random integer number, which can be generated from 1 to the number of design variables 

(𝑑). 𝑥𝑖,𝑚
𝑛𝑒𝑤 and 𝑥1,𝑚

𝑛𝑒𝑤 denote the position of 𝑚th design variable of the 𝑖th and the first newly 

generated observers, respectively. 𝑥1
𝑛𝑒𝑤 is not necessarily the best observer and is just the 

first newly generated observer in the current iteration. 𝑟2 is a random number in the range of 
[−1,1]. 𝐼𝑡𝑒𝑟 denotes the current iteration number. 𝑆𝑅𝐼𝐼𝑡𝑒𝑟 represents the Scatter Radius 

Index (SRI) in the current iteration. This radius determines how much the observer's 

positions are ideally close to each other in the search space of the current iteration. It can be 

calculated by averaging all agents' Euclidian distances of the current iteration, as shown in 

Eq. (16). Eq. (14) indicates that if  𝑟1 < 𝑝𝑎 × (1 − 𝐶𝐼), one dimension of the  𝑥𝑖
𝑛𝑒𝑤 obtained 

by using Eq. (10) is selected, and its value is regenerated with the value equal to 𝑥1,𝑚
𝑛𝑒𝑤 ×

𝑟2 × 𝑆𝑅𝐼𝐼𝑡𝑒𝑟. This regeneration will wisely improve the quality of the solutions and decrease 

the possibility of being trapped in local optima.  
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Figure 2. Schematic representation of performing MEDT mechanism during the course of 

iterations 

 

𝐶𝐼 = {
𝛼 × 𝑁𝑆𝑅𝐼𝐼𝑡𝑒𝑟     𝑖𝑓 𝑁𝑆𝑅𝐼𝐼𝑡𝑒𝑟 < 1 𝛼⁄  

1                          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
 (15) 

𝑆𝑅𝐼𝐼𝑡𝑒𝑟 =
1

𝑛𝑂𝑠
∑𝐸𝐷𝑖

𝑛𝑂𝑠

𝑖=1

 (16) 

 

where 𝛼 is a sensitive parameter, determines the converge criterion of the algorithm. 

𝑁𝑆𝑅𝐼𝐼𝑡𝑒𝑟 is the normalized value of the 𝑆𝑅𝐼𝐼𝑡𝑒𝑟, calculates by using Eq. (17). 𝑛𝑂𝑠 is the 

number of candidate solutions (i.e., observers). 𝐸𝐷𝑖 denotes the Euclidian distance of 𝑖th 

observer from the mean position of the observers, which is calculated using Eq. (18).   
 

𝑁𝑆𝑅𝐼𝐼𝑡𝑒𝑟 =
𝑆𝑅𝐼𝐼𝑡𝑒𝑟

𝑚𝑎𝑥(𝑈𝐵 − 𝐿𝐵)
 (17) 

𝐸𝐷𝑖 = √∑(𝑥𝑖,𝑗 − 𝑀𝑒𝑎𝑛𝑗)
2

𝑑

𝑗=1

 (18) 

 

where 𝑈𝐵 and 𝐿𝐵 denote to the lower and upper bounds of the given problem, respectively. 

𝑀𝑒𝑎𝑛𝑗 is the average value of the 𝑗th design variable, which is calculated by Eq. (19). By 

calculating the average position of all design variables (𝑗 = 1,2, . . , 𝑑), the average position 

of the algorithm agents (𝑀(�̅�)), as in Eq. (20), is obtained.  

 

𝑀𝑒𝑎𝑛𝑗 =
1

𝑛𝑂𝑠
∑𝑥𝑖,𝑗

𝑛𝑂𝑠

𝑖=1

 (19) 

𝑀(�̅�)  = [𝑀𝑒𝑎𝑛1,𝑀𝑒𝑎𝑛2, … ,𝑀𝑒𝑎𝑛𝑗, … ,𝑀𝑒𝑎𝑛𝑑] (20) 

 

After position updating of each observer using Eq. (10) and (14), the design variables of 

the observer (i.e., 𝑥𝑖
𝑛𝑒𝑤) are controlled to be in the range between lower and upper bounds of 

the given problem. If the 𝑗th design variables of the newly generated candidate solution (i.e., 

𝑥𝑖,𝑗
𝑛𝑒𝑤) be out of the permissible range, its value will be replaced by the boundary value of the 

closer one, which is mathematically shown in Eqs. (21) and (22).  

 

𝑥𝑖,𝑗
𝑛𝑒𝑤 = 𝑚𝑎𝑥(𝑥𝑗,𝑚𝑖𝑛, 𝑥𝑖,𝑗

𝑛𝑒𝑤) (21) 

𝑥𝑖,𝑗
𝑛𝑒𝑤 = 𝑚𝑖𝑛(𝑥𝑗,𝑚𝑎𝑥 , 𝑥𝑖,𝑗

𝑛𝑒𝑤) (22) 

 

where 𝑥𝑗,𝑚𝑖𝑛 and 𝑥𝑗,𝑚𝑎𝑥 denote to the minimum and maximum permissible value of the 𝑗th 

design variable of the given problem.  
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2.4 Evaluating and sorting the observers  

After checking the newly generated observer (𝑥𝑖
𝑛𝑒𝑤) to be in the permissible range using Eq. 

(21) and (22), it is evaluated. When all observers of the current population are evaluated, the 

greedy strategy is performed. According to this strategy, the observers generated in the 

current iteration and those created in the previous iteration are merged. Then, the merged 

population is sorted in ascending order, and the first 𝑛𝑂𝑆 observers of the sorted population 

are selected. The selected observers are considered as the current population and will be 

used in the next iteration. Employing the strategy illustrates the intensification ability of the 

DE-MEDT algorithm. 

 

2.5 Termination of DE-MEDT algorithm  

In the last step, the termination criterion of the DE-MEDT algorithm is controlled. Like 

most of the MOAs, the maximum number of iterations (𝑀𝑎𝑥𝑖𝑡𝑒𝑟) is considered as the 

stopping condition of the algorithm. If the current iteration number is smaller or equal to 

𝑀𝑎𝑥𝑖𝑡𝑒𝑟, the algorithm will return to update the position of the observers. But if the current 

iteration number is larger than 𝑀𝑎𝑥𝑖𝑡𝑒𝑟, the DE-MEDT algorithm will terminate and report 

the best position of the observer found by the algorithm. 

 

2.6 Pseudo-code of the DE-MEDT algorithm   

The pseudo-code of the DE-MEDT algorithm is detailed in Algorithm 1.  

 

Algorithm 1 Pseudo code of the DE-MEDT algorithm.   

1: % Initialization phase  

2: 𝑛𝑂𝑠: number of observers as candidate solutions 

3: 𝑀𝑎𝑥𝑖𝑡𝑒𝑟: maximum number of iterations as stopping criterion of the algorithm  

4: 𝛼  and 𝑝𝑎: algorithm-specific parameters of the algorithm 

5: Initialize the observers' positions randomly using Eq. (2). 

6: Evaluate the objective function value of observers' positions and sort them. 

7: while (𝑖𝑡𝑒𝑟 ≤  𝑀𝑎𝑥𝑖𝑡𝑒𝑟) do 
8:  Calculate the average position of the observers (𝑀(�̅�)) using Eqs (19) and (20).  

9:  Determine the 𝐸𝐷𝑖 using Eq. (18). 

10:  for every observer (𝑖 → 𝑛𝑂𝑠) do 

11:   % Position updating of the observers based on DE equation 

12:   Find the determinative agent (𝑥𝑑𝑒𝑡) 

13:   Calculate 𝑣𝑜, 𝑣𝑠, and 𝑣 using Eqs. (11-13), respectively.  

14:   Calculate the new position of the 𝑖th observer using Eqs. (9) and (10).   

15:   Determine the scatter radius index of the current iteration (𝑆𝑅𝐼𝐼𝑡𝑒𝑟) using Eq. (16) 

16:   Normalize the 𝑆𝑅𝐼𝐼𝑡𝑒𝑟to the search space of the given problem using Eq. (17). 

17:   Calculate the convergence index (𝐶𝐼) using Eq. (15). 

18:   if  𝑟1 < 𝑝𝑎 × (1 − 𝐶𝐼) do 
19:    % MEDT mechanism 
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20:    Update the 𝑖th observer position using Eq. (14).  

21:   end if 

22:   Checking boundary conditions of design variables using Eqs. (21) and (22).  

23:   Evaluate the new position of the 𝑖th observer.   

24:  end for  

25:  Merge population of the current and previous iterations.  

26:  Sort merged population and select the first 𝑛𝑂𝑠 observers of them.  

27:  𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1; 
28: end while 

29: Report the observer with the best objective function value in the population.  

 

 

3. DESIGN EXAMPLES  
 

In this section, five large-scale truss structures are investigated to evaluate the performance 

of the DE-MEDT optimizer. The optimization results achieved by the DE-MEDT algorithm 

are compared with other optimization techniques existing in the literature.  

Optimization aims to minimize the weight of these truss structures while satisfying some 

constraints on stress and displacement. Eq. (23) mathematically states a formulation for 

weight minimization of these structures under their certain design constraints.  

 

Find {𝑋} = [𝑥1, 𝑥2, … , 𝑥𝑛𝑔];    𝑥𝑖  𝜖 𝐷 

𝑇𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑊({𝑋}) = ∑𝑥𝑖

𝑛𝑔

𝑖=1

∑ 𝜌𝑗𝐿𝑗

𝑛𝑚(𝑖)

𝑗=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑔𝑘({𝑋}) ≤ 0;    𝑘 = 1,2, … , 𝑛𝑐 

(23) 

 

where {𝑋} is the vector of design variables; 𝑛𝑔 is the number of element groups (i.e., 

number of design variables); 𝑥𝑖 is the value of the cross-sectional area in the 𝑖th element 

group; 𝐷 denotes to the design space, and the values of cross-sectional areas of truss 

members are selected from it; 𝑊({𝑋}) is the weight of the truss structure; 𝑛𝑚(𝑖) is the 

number of truss elements in the 𝑖th element group; 𝜌𝑗 and 𝐿𝑗 are the material density and 

length of the 𝑗th member of the 𝑖th element group, respectively; 𝑔𝑘({𝑋}) represents the 𝑘th 

design constraint, and 𝑛𝑐 is the number of design constraints existing in the truss 

optimization problem. It is worth mentioning that, in discrete design optimization of truss 

structures, the cross-sectional areas are selected from a discrete set of sections. However, in 

continuous design optimization, the cross-sectional areas can take a value from a continuous 

range.  

This paper uses the penalty method to handle the design constraints. According to this 

approach, a penalty term is added to the objective function, as in Eq. (24).  
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𝑊𝑃({𝑋}) = (1 + 𝜀1. 𝜈)𝜀2 ×  𝑊({𝑋});     𝜈 = ∑𝑚𝑎𝑥[0, 𝑔𝑘({𝑋})]

𝑛𝑐

𝑖=1

 (24) 

where 𝑊𝑃({𝑋}) is the penalized weight of the truss structure, 𝜈 denotes to the sum of the 

violation ratios of design variables. The constant 𝜀1 is set equal to 1, and 𝜀2 is obtained as 

follows: 

  

𝜀2 = 1.5 + 1.5 ×
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
 (25) 

 

The truss structures optimized by DE-MEDT in the following subsections are a 160-bar 

transmission tower, a 693-bar double-layer barrel vault, a 942-bar truss tower, a 1016-bar 

double-layer grid, and a 1410-bar dome-shaped structure. In all test examples, the 

population size (number of observers) is equal to 𝑛𝑂𝑠 = 30. The algorithm-specific 

parameters (𝛼 and 𝑝𝑎) are similar to the source paper, which are 10 and 0.5, respectively. 

Due to the stochastic nature of metaheuristics, 20 independent runs (𝑁𝐼𝑅𝑠 = 20) are 

performed to get statistically meaningful results. The computer codes for the algorithm and 

structures are prepared in the MATLAB software environment, and the truss structures are 

analyzed using the direct stiffness method.  

 

3.1 A 160-bar transmission tower  

Discrete sizing optimization of the truss structure is a challenging issue in structural design. 

In the first design example, the DE-MEDT optimizer is evaluated for sizing optimization of 

a 160-bar transmission tower with 38 discrete design variables. The schematic of the 

structure is shown in Fig. 3. Detailed information on this design example can be found in 

Refs [3, 22]. 

Table 1 compares the optimization results of DE-MEDT with Regional Genetic 

Algorithm (RGA) [23], Rank-Based Ant System (RBAS) [24], Adaptive Elitist Differential 

Evolution (aeDE) [3], Electromagnetism-like Firefly Algorithm (EFA) [25], Self-Adaptive 

Multi-Population-based Jaya (SAMP-Jaya) [22], and Improved Shuffled based Jaya (IS-

Jaya) [22].  It can be seen that the lightest weight is acquired by aeDE and IS-Jaya 

(1,336.634 kg), which is a little less than the structural weight found by DE-MEDT 

(1,336.704 kg). The proposed DE-MEDT algorithm obtained a lower weight than RGA 

(1,337.442 kg), RBAS (1,348.905 kg), and SAMP-Jaya (1,337.043 kg). DE-MEDT requires 

16,830 structural analyses (𝑁𝑆𝐴𝑠 = 16,830) to find the best weight equal to 1,336.704 kg. 

However, RBAS, aeDE, EFA, and SAMP-Jaya require 90,000, 23,925, 16,870, and 17,780 

structural analyses, respectively. Comparing the average, worst, and standard deviation of 

the proposed DE-MEDT with other optimization methods in Table 1 reveals that the DE-

MEDT algorithm is one of the most robust and reliable optimizers. The convergence 

histories of the best, worst, and average of runs recorded for the DE-MEDT algorithm are 

shown in Fig. 4. This figure shows that 600 iterations with a maximum number of function 

evaluations equal to 18000 are enough to find the optimum weight of the structure, and the 

algorithm converges to a specified value after almost 500 iterations. Fig. 5 illustrates that the 
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design constraints of the problem have not been violated at the best-optimized design found 

by the DE-MEDT.  
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Figure 3. The 160-bar transmission tower 
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Table 1: Comparison of the results found by DE-MEDT and other considered metaheuristics for 

the 160-bar transmission tower 

Element group 

Optimal cross-sectional areas (cm2) 

Groenwold 

et al. [23] 

Capriles et 

al. [24] 

Ho-Huu et 

al. [3] 

Le et al. 

[25] 
Kaveh et al. [22] 

Present 

work 

RGA RBAS aeDE EFA SAMP-Jaya IS-Jaya DE-MEDT 

A1 19.03 19.03 19.03 19.03 19.03 19.03 19.03 

A2 5.27 5.27 5.27 5.27 5.27 5.27 5.27 

A3 19.03 19.03 19.03 19.03 19.03 19.03 19.03 

A4 5.27 5.27 5.27 5.27 5.27 5.27 5.27 

A5 19.03 19.03 19.03 19.03 19.03 19.03 19.03 

A6 5.75 5.75 5.75 5.75 5.75 5.75 5.75 

A7 15.39 15.39 15.39 15.39 15.39 15.39 15.39 

A8 5.75 5.75 5.75 5.75 5.75 5.75 5.75 

A9 13.79 13.79 13.79 13.79 13.79 13.79 13.79 

A10 5.75 5.75 5.75 5.75 5.75 5.75 5.75 

A11 5.75 5.75 5.75 5.75 5.75 5.75 5.75 

A12 13.79 12.21 12.21 12.21 12.21 12.21 12.21 

A13 6.25 6.25 6.25 6.25 6.25 6.25 6.25 

A14 5.75 5.75 5.75 5.75 5.75 5.75 5.75 

A15 2.66 3.47 3.88 3.88 3.47 3.88 3.88 

A16 7.44 7.44 7.44 7.44 7.44 7.44 7.44 

A17 1.84 1.84 1.84 1.84 1.84 1.84 1.84 

A18 8.66 9.4 8.66 8.66 8.66 8.66 8.66 

A19 2.66 2.66 2.66 2.66 2.66 2.66 2.66 

A20 3.07 3.47 3.07 3.07 3.07 3.07 3.07 

A21 2.66 3.07 2.66 2.66 3.47 2.66 2.66 

A22 8.06 8.06 8.06 8.06 8.06 8.06 8.06 

A23 5.27 5.27 5.75 5.75 5.75 5.75 5.75 

A24 6.25 6.25 6.25 6.25 6.25 6.25 6.25 

A25 5.75 5.75 5.75 6.25 5.75 5.75 6.25 

A26 1.84 2.26 2.26 1.84 2.26 2.26 1.84 

A27 4.79 4.79 4.79 4.79 4.79 4.79 4.79 

A28 2.66 3.07 2.66 2.66 2.66 2.66 2.66 

A29 3.47 3.47 3.47 3.47 3.47 3.47 3.47 

A30 1.84 1.84 1.84 1.84 1.84 1.84 1.84 

A31 2.26 3.88 2.26 2.26 2.26 2.26 2.26 

A32 3.88 3.88 3.88 3.88 3.88 3.88 3.88 

A33 1.84 1.84 1.84 1.84 1.84 1.84 1.84 

A34 1.84 2.26 1.84 1.84 1.84 1.84 1.84 

A35 3.88 3.88 3.88 3.88 3.88 3.88 3.88 

A36 1.84 2.26 1.84 1.84 1.84 1.84 1.84 

A37 1.84 3.47 1.84 1.84 1.84 1.84 1.84 

A38 3.88 3.88 3.88 3.88 3.88 3.88 3.88 

Best weight (kg) 1,337.442 1,348.905 1,336.634 1,336.704 1,337.043 1,336.634 1,336.704 

Average weight (kg) N/A 1,367.5275 1,355.875 1,372.551 1,355.328 1,342.807 1,340.585 

Worst weight (kg) N/A 1,401.6323 1,410.611 1,429.253 1,420.340 1,366.933 1,345.188 

Standard deviation (kg) N/A N/A 18.805 34.706 20.691 8.649 2.265 

NSAs N/A 90,000 23,925 16,870 17,780 11,740 16,830 
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Fig. 4 Convergence curve of DE-MEDT for the 160-bar transmission tower 

 

 
Fig. 5 Stress ratio values evaluated at the best-optimized design found by the DE-MEDT for the 

160-bar transmission tower 

 

3.2 A 693‑bar double‑layer barrel vault 

The second design example examined in this research item is the weight minimization of a 

693-bar double layer barrel vault, shown in Fig. 6. Due to the structural symmetry, all 693 

members of the structure are grouped into 23 element groups. Design variables are the cross-

sectional areas of the structure elements selected from 37 steel pipe sections from AISC-

LRFD [26]. For further details, one can refer to Refs [27, 28]. 

Table 2 presents the optimization results obtained by DE-MEDT, Bat-Inspired (BI) [29], 

Modified Big Bang–Big Crunch (BB-BC) [30], Magnetic Charged System Search (MCSS) 

and its improved variant (IMCSS) [31], Enhanced Colliding Bodies Optimization (ECBO) 
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[32], and Multi Design Variable Configurations-Upper bound Vibrating Particles System 

(MDVC-UVPS) [32]. In this table, ST, EST, and DEST abbreviations stand for standard 

weight, extra strong, and double-extra strong, respectively. From the table, it can be 

observed that MDVC-UVPS achieved a lower weight than other optimization methods. The 

design optimized by DE-MEDT gives the weight of 9,107.4 lb, which is only 0.18 % heavier 

than the obtained weight by MDVC-UVPS. Comparing the average weight and standard 

deviation found by the DE-MEDT with BI, ECBO, and MDVC-UVPS algorithms indicate 

that the DE-MEDT algorithm is the most reliable optimization technique. Fig. 7 depicts the 

convergence histories of the best, worst, and average of runs recorded by the DE-MEDT 

algorithm. This figure shows that performing more than 600 iterations does not improve 

structural weight significantly, and after almost 300 iterations, the algorithm starts to 

converge to a specified value. Fig. 8 shows that all design constraints of the problem have 

been satisfied at the best-optimized design obtained by the DE-MEDT.       

 

 
Figure 6. The 693-bar double-layer barrel vault 
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Table 2: Comparison of the results found by DE-MEDT and other considered metaheuristics for 

the 693-bar double-layer barrel vault 

Element 

group 

Hasançebi 

et al. [29] 

Hasançebi and 

Kazemzadeh 

Azad [30] 

Kaveh et al. [31] 
Kaveh and Ilchi Ghazaan 

[32] 

Present 

work 

BI MBB-BC MCSS IMCSS ECBO 
MDVC-

UVPS 
DE-MEDT 

1 EST 3 1/2 EST 3 1/2 EST 3 EST 3 1/2 ST 4 ST 4 ST 4 

2 ST 1 ST 1 ST 1 ST 1 ST 1 ST 1 ST 1 

3 ST 3/4 ST 3/4 EST 3/4 EST 1 ST 3/4 ST 3/4 ST 3/4 

4 ST 1 ST 1 EST 1/2 ST 3/4 ST 1 ST 1 ST 1 

5 ST 3/4 ST 3/4 EST 1/2 ST 1 ST 3/4 ST 3/4 ST 3/4 

6 EST 3 1/2 EST 3 1/2 EST 3 DEST 2 ST 3 ST 3 1/2 ST 3 1/2 

7 ST 1 ST 1 EST 1 1/4 ST 1 ST 1 ST 1 ST 1 

8 ST 1 ST 1 ST 1 ST 1 1/4 ST 1 ST 1 EST 3/4 

9 ST 1 ST 1 ST 3/4 EST 1/2 ST 1 ST 1 ST 1 

10 ST 3/4 ST 3/4 EST 1/2 ST 1/2 ST 3/4 ST 3/4 ST 3/4 

11 DEST 2 ST 3 EST 2 1/2 ST 3 EST 2 EST 2 1/2 ST 3 

12 ST 1 1/2 ST 1 1/2 EST 1 1/2 EST 1 1/4 ST 1 1/4 ST 1 ST 1 

13 ST 2 EST 1 1/2 ST 2 1/2 EST 2 EST 2 ST 1 1/2 ST 1 1/4 

14 ST 1 ST 1 ST 3/4 ST 1/2 ST 1 ST 1 ST 1 

15 ST 3/4 ST 3/4 ST 3/4 ST 3/4 ST 3/4 ST 3/4 ST 3/4 

16 EST 1 1/2 EST 1 1/4 ST 1 1/4 EST 1 1/4 ST 1 EST 1 1/4 ST 1 1/2 

17 EST 1 ST 1 1/4 ST 1 1/2 ST 1 1/2 ST 1 ST 1 ST 1 1/4 

18 ST 2 1/2 ST 3 ST 3 ST 3 ST 3 EST 2 EST 2 

19 ST 1 ST 1 EST 3/4 ST 3/4 ST 1 ST 1 ST 1 

20 ST 3/4 ST 3/4 ST 1/2 ST 3/4 ST 3/4 ST 3/4 ST 3/4 

21 ST 1 ST 1 ST 1 1/4 ST 1 ST 3/4 ST 1 ST 1 

22 ST 3/4 ST 3/4 EST 3/4 EST 1 ST 3/4 ST 1 ST 3/4 

23 ST 3/4 ST 3/4 ST 3/4 EST 3/4 ST 3/4 ST 3/4 ST 3/4 

Best 

weight (lb) 
10,564.84 10,595.33 10,812.39 10,550,86 9,240.5 9,091.1 9,107.4 

Average 

weight (lb) 
10,595.66 N/A N/A N/A 9,577 9,475 9,288.7 

Worst 

weight (lb) 
N/A N/A N/A N/A N/A N/A 9,421.5 

Standard 

deviation 

(lb) 
11.12 N/A N/A N/A 505 765 96.4 

NSAs 36,300 50,000 14,300 9,200 16,720 4,120 17,880 
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Figure 7. Convergence curve of DE-MEDT for the 693-bar double-layer barrel vault 

 

 
Figure 8. Constraint boundaries of the 693-bar double‑layer barrel vault evaluated at the best-

optimized design by the DE-MEDT: (a) Displacement, (b) Stress ratio 
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3.3. A 942-bar truss tower 

In the third design example, the 942-bar truss tower structure displayed in Fig. 9 is 

considered to evaluate the performance of the present algorithm when a large number of 

design variables participate in the optimization process. This tower structure consists of 924 

structural members and 244 nodes. According to the schematic of the structure given in Fig. 

9, all 942 elements are grouped into 59 element groups. Optimization variables are the cross-

sectional area of the elements selected from a discrete set. Further details on this 

optimization problem can be found in Ref [22]. 

Table 3 summarizes the comparison results obtained by the present DE-MEDT and other 

optimization methods, which are Chaotic Firefly Algorithm based on Gaussian map (CGFA) 

[33], SAMP-Jaya [22], and IS-Jaya [22]. From this table, it can be concluded that DE-

MEDT gives the best optimum weight (138,437 lb). A careful examination of this table also 

reveals that the statistical results of the present DE-MEDT metaheuristic are better than 

other considered optimizers. Convergence histories of the best, worst, and average of runs 

recorded by the DE-MEDT algorithm are shown in Fig. 10. This figure shows that 

performing 2000 iterations is enough for completing the optimization process, and the 

present algorithm converges to the specified value after almost 1200 iterations. 

Displacement and stress values evaluated at the best-optimized design are given in Fig. 11. 

From this figure, it can be concluded that the design constraints of the problem at the best-

optimized design have not been violated. 

 

 
Figure 9. The 942-bar truss tower 
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Table 3: Comparison of the results found by DE-MEDT and other considered metaheuristics for 

the 942-bar truss tower 

Element group 

Optimal cross-sectional areas (in.2) 

Kaveh et al. [33] Kaveh et al. [22] Present work 

CGFA SAMP-Jaya IS-Jaya DE-MEDT 

A1 1 1 1 1 

A2 1 1 1 1 

A3 1 3 4 4 

A4 1 1 2 2 

A5 1 1 1 1 

A6 14 15 15 16 

A7 4 3 3 3 

A8 5 4 6 7 

A9 5 7 6 5 

A10 22 17 28 20 

A11 1 3 5 3 

A12 4 7 7 6 

A13 19 15 16 16 

A14 2 2 2 2 

A15 4 5 5 4 

A16 1 2 1 1 

A17 21 22 22 23 

A18 3 3 3 3 

A19 14 9 9 8 

A20 1 1 1 1 

A21 35 29 29 27 

A22 3 4 5 3 

A23 18 16 18 18 

A24 24 23 26 25 

A25 36 39 40 42 

A26 1 12 3 1 

A27 11 5 13 13 

A28 14 11 15 17 

A29 14 14 16 15 

A30 23 16 17 14 

A31 38 37 38 41 

A32 3 3 3 3 

A33 2 3 4 3 

A34 3 3 3 3 

A35 1 1 1 1 

A36 1 1 1 1 

A37 70 59 62 60 

A38 3 4 3 4 

A39 2 2 2 2 

A40 3 3 3 3 

A41 1 1 1 1 

A42 1 1 8 1 

A43 91 83 69 74 

A44 3 4 5 3 

A45 2 2 1 2 
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A46 2 3 5 3 

A47 1 1 1 1 

A48 1 1 1 1 

A49 102 96 76 96 

A50 4 3 3 4 

A51 1 2 7 1 

A52 3 4 5 4 

A53 10 9 18 8 

A54 11 5 16 9 

A55 46 44 57 44 

A56 1 1 1 1 

A57 65 62 51 66 

A58 3 3 7 4 

A59 1 3 4 1 

Best weight (lb) 141,860 139,744 138,689 138,437 

Average weight (lb) 144,231 170,279 142,903 140,746 

Worst weight (lb) 147,325 236,898 150,722 143,177 

Standard deviation (lb) 3,342 28,367 3,171 1,484 

NSAs 32,500 56,920 53,420 59,820 

 

 

 
Figure 10. Convergence curve of DE-MEDT for the 942-bar truss tower 
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Figure 11. Constraint boundaries of the 942-bar truss tower evaluated at best-optimized design 

by the DE-MEDT: (a) Displacement, (b) Stress. 

 

3.4 A 1016-bar double‑layer grid  

A 1016-bar double layer grid is taken as the fourth test example to evaluate the performance 

of the proposed DE-MEDT optimizer. The structure consists of 1016 bar elements and 320 

nodes. Fig. 12 displays a schematic view of the structure, where the bottom, top, and web 

members are grouped into 11, 9, and 5 element groups, respectively, due to structural 

symmetry. The distance between the top and bottom layers is equal to 3 m, and the structure 
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has a span length of 40×40 m. The top layer nodes of the grid are subjected to a concentrated 

vertical load of 30 KN. The cross-section areas of the members are selected from the list of 

37 steel pipe sections from AIS-LRFD [26]. Design constraints of the strength and 

slenderness of the members are based on the requirements of AISC-LRFD [26], and the 

limitation for displacement must not be larger than (span length)/600 for all nodes in the 

vertical direction. Further details on this optimization problem can be found in ref [34].  

Table 4 presents the comparisons between the results of DE-MEDT and those of other 

optimization methods, including ECBO [32], MDVC-UVPS [32], PRSSOA [35], and 

ESSOA [34]. Based on the results given in this table, it can be observed that DE-MEDT is 

capable of finding the best weight (65,125 kg) in comparison to other considered 

metaheuristics. Moreover, the statistical results gained by the DE-MEDT optimizer reveal 

that the present algorithm is the most reliable method compared to other optimization 

methods. The convergence histories of the best, worst, and average of runs are plotted in Fig 

13. A close examination of this figure shows that performing 600 iterations is completely 

enough, and the algorithm starts to converge a specific amount after approximately 300 

iterations. Constraint boundaries of the structure are assessed at the best optimum design and 

shown in Fig. 14. From this figure, it can be observed that all design constraints of the 

problem have been satisfied. 

 

 
Figure 12. The 1016-bar double-layer grid 
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Table 4: Comparison of the results found by DE-MEDT and other considered metaheuristics for 

the 1016-bar double-layer grid. 

 Kaveh and Ilchi Ghazaan [32] Kaveh et al. [35] Kaveh et al. [34] Present work 

Element group ECBO MDVC-UVPS PRSSOA ESSOA DE-MEDT 

1 EST 5 DEST 4 EST 5 ST 6 ST 2 1/2 

2 EST 5 DEST 3 EST 4 ST 5 DEST 2 

3 ST 3 ST 3 1/2 EST 3 EST 3 DEST 2 1/2 

4 ST 3 1/2 ST 2 1/2 ST 2 1/2 EST 2 1/2 DEST 3 

5 ST 2 1/2 ST 3 ST 3 ST 3 ST 6 

6 ST 2 EST 1 1/2 EST 1 1/2 EST 1 1/2 DEST 5 

7 DEST 2 EST 1 1/2 EST 1 EST 1 1/2 ST 8 

8 DEST 2 EST 2 1/2 ST 2 1/2 ST 2 1/2 ST 6 

9 EST 2 ST 3 1/2 EST 2 EST 3 EST 4 

10 ST 6 DEST 2 ST 3 1/2 EST 2 1/2 DEST 2 1/2 

11 ST 2 DEST 2 1/2 ST 4 EST 4 ST 5 

12 EST 8 EST 8 ST 10 ST 10 ST 1 

13 EST 3 1/2 EST 4 ST 6 ST 4 ST 4 

14 ST 5 ST 4 ST 5 ST 5 ST 2 1/2 

15 ST 4 ST 5 ST 5 EST 4 EST 2 1/2 

16 EST 5 ST 4 ST 5 ST 6 ST 2 1/2 

17 ST 5 ST 6 ST 6 EST 4 ST 2 1/2 

18 EST 5 ST 6 EST 5 ST 5 DEST 2 

19 EST 5 EST 6 EST 5 EST 6 EST 1 1/4 

20 ST 8 EST 6 DEST 4 EST 6 ST 2 

21 ST 5 ST 5 ST 6 ST 6 ST 2 1/2 

22 ST 3 ST 3 1/2 ST 3 1/2 ST 3 1/2 DEST 2 

23 EST 2 1/2 EST 2 1/2 ST 3 1/2 ST 3 1/2 DEST 2 1/2 

24 ST 5 ST 2 1/2 ST 2 1/2 EST 2 1/2 DEST 3 

25 ST 4 ST 2 1/2 EST 1 1/2 EST 1 1/2 ST 6 

Best weight (kg) 67,839 65,826 67,407 67,079 65,125 

Average weight (kg) 73,042 70,488 70,054 70,408 68,403 

Worst weight (kg) N/A N/A N/A 80,828 71,565 

Standard deviation 

(kg) 
9,158 5,018 1,864 2,703 1,663 

NSAs 15,760 4,234 12,020 11,680 16,290 

 

 
Figure 13. Convergence curve of DE-MEDT for the 1016-bar double-layer grid 
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Figure 14. Constraint boundaries of the 1016-bar double-layer grid evaluated at the best-

optimized design by the DE-MEDT: (a) Displacement, (b) Stress ratio 

 

3.5 A 1410-bar dome-shaped structure  

The 140-bar dome-shaped structure optimized as the last design example is shown in Fig. 

15. The dome-shaped structure is composed of 1410 bar elements and 390 nodes. A 

substructure of the dome with further detail for nodal numbering is also displayed in Fig. 15. 

Due to the concept of symmetry existing in the configuration processing of the structure, 

1410 dome elements are grouped into 47 element groups. Thus, the problem has 47 sizing 

variables. These variables are the cross-sectional areas of the dome elements selected from a 

continuous range.  The range's minimum and maximum permissible values are equal to 1 × 

10−4 m2 and 100 × 10−4 m2, respectively. For further details, one can refer to Ref [34]. 

Table 5 compares the optimized design obtained by DE-MEDT with those achieved by 
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other optimization methods presented by Kaveh and Ilchi Ghazaan [32] (including ECBO 

and MDVC-UVPS) and Kaveh et al. [34], which is ESSOA. A close examination of this 

table shows that the present algorithm obtained the lightest design, which is 7,268.2 kg. 

Furthermore, comparing the statistical results of the DE-MEDT algorithm with those gained 

by other optimization methods shows that the present algorithm is more robust and reliable 

than other optimization techniques. Convergence curves of the best, worst, and average of 

runs reported for the DE-MEDT algorithm are shown in Fig. 16. From this figure, it can be 

seen that 1000 iterations are almost enough to complete the optimization process. Fig. 17 

displays constraint boundaries of the dome-shaped structure evaluated at the best optimum 

design. It can be observed that the problem's constraints have not been violated.   

 

 
Figure 15. The 1410-bar dome-shaped structure 

 
Table 5: Comparison of the results found by DE-MEDT and other considered metaheuristics for 

the 1410-bar dome-shaped structure 

Element number 

(nodes) 

Kaveh and Ilchi Ghazaan [32] Kaveh et al. [34] Present work 

ECBO MDVC-UVPS ESSOA DE-MEDT 

1 (1–2) 5.217 4.8489 4.8298 4.7884 

2 (1–8) 2.213 1.5104 2.0165 1.7750 

3 (1–14) 4.0413 4.3939 7.5790 1.0327 

4 (2–3) 5.3523 4.8489 4.8331 4.7663 

5 (2–8) 2.8635 2.3413 3.8613 1.5713 

6 (2–9) 1.8832 1.6246 1.8555 2.0758 

7 (2–15) 1.0007 4.3939 1.5531 2.8807 

8 (3–4) 6.4681 4.8489 5.3270 5.6240 
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9 (3–9) 1.2068 2.1707 2.8348 3.0420 

10 (3–10) 1.738 1.6765 2.3982 2.5317 

11 (3–16) 12.5144 4.3939 2.8265 4.6835 

12 (4–5) 6.3101 7.6688 6.1447 5.6677 

13 (4–10) 1.7218 2.4287 1.4803 2.8792 

14 (4–11) 2.4362 1.8282 2.3323 2.1620 

15 (4–17) 3.5615 5.5832 4.0043 3.1916 

16 (5–6) 6.1832 7.6688 6.5057 6.6086 

17 (5–11) 2.7977 2.5749 3.0395 2.5833 

18 (5–12) 4.1412 3.6629 4.0052 3.8903 

19 (5–18) 4.1542 5.5832 4.2089 4.7851 

20 (6–7) 7.9148 7.6688 7.8692 7.9037 

21 (6–12) 5.894 3.7234 3.0147 3.2501 

22 (6–13) 3.3083 3.1638 3.5449 3.2243 

23 (6–19) 6.6223 5.5832 5.7876 5.7041 

24 (7–13) 3.6804 3.64 4.1487 4.8753 

25 (8–9) 4.8207 6.1741 5.0264 4.7990 

26 (8–14) 1.5864 1.5104 2.7103 1.9261 

27 (8–15) 2.5913 2.3413 3.5774 1.8953 

28 (8–21) 1.0843 4.0242 1.1653 1.0601 

29 (9–10) 5.9325 6.1741 5.1417 4.8014 

30 (9–15) 3.0351 1.6246 1.8443 1.8212 

31 (9–16) 1.2356 2.1707 2.4992 2.6295 

32 (9–22) 1.708 4.0242 2.3271 6.2965 

33 (10–11) 4.8743 6.3156 5.2449 4.7525 

34 (10–16) 3.429 1.6765 2.2090 2.8573 

35 (10–17) 1.9623 2.4287 1.7165 2.5041 

36 (10–23) 2.7079 4.8511 3.9555 3.8466 

37 (11–12) 5.0557 6.3156 5.3902 5.4336 

38 (11–17) 4.1289 1.8282 2.4328 1.9125 

39 (11–18) 3.4292 2.5749 3.0903 3.0692 

40 (11–24) 4.9348 4.8511 3.8433 4.2145 

41 (12–13) 7.3564 6.3156 6.4713 6.5255 

42 (12–18) 4.4329 3.6629 3.8202 3.7177 

43 (12–19) 3.3212 3.7234 3.3478 3.1441 

44 (12–25) 4.9391 4.8511 5.2009 4.9215 

45 (13–19) 3.7342 3.1638 3.4564 3.2049 

46 (13–20) 4.1154 3.64 3.9634 3.8039 

47 (13–26) 5.0799 4.8511 3.8686 3.6826 

Best weight (kg) 7,860.01 7,661.64 7,331.6 7,268.2 

Average weight 

(kg) 
8,250.20 8,106.52 7,602.3 7,835.7 

Worst weight (kg) N/A N/A 8,049.4 8,488.1 

Standard deviation 

(kg) 
409.09 244.08 185.5 363.5 

NSAs 19,840 16,308 19,400 29,910 
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Figure 16. Convergence curve of DE-MEDT for the 1410-bar dome-shaped structure 

 

 
Fig. 17 Constraint boundaries of the 1410‑bar dome-shaped structure evaluated at the best-

optimized design by the DE-MEDT: (a) Displacement, (b) Stress ratio 
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4. CONCLUDING REMARKS  
 

In this paper, a new physically inspired metaheuristic called DE-MEDT has been 

successfully applied to solve large-scale truss optimization problems with discrete and 

continuous design variables. The Doppler Effect-Mean Euclidian Distance Threshold (DE-

MEDT) algorithm is a recently proposed metaheuristic developed based on the Doppler 

Effect (DE) phenomenon and Mean Euclidian Distance Threshold (MEDT) mechanism. 

Equipping the DE-MEDT algorithm with the MEDT mechanism improves the quality of the 

candidate solutions and decreases the possibility of trapping into local optima. Five large-

scale truss structures have been investigated to verify the efficiency and effectiveness of the 

DE-MEDT algorithm. The structures include a 160-bar transmission tower, a 693-bar 

double-layer barrel vault, a 942-bar truss tower, a 1016-bar double-layer grid, and a 1410-

bar dome. The first four investigated structures have discrete design variables, and the cross-

sectional areas of truss members are selected from a discrete set. However, the design 

variables of the last structure can take a value from a continuous range, and the cross-

sectional areas of its elements are selected from a continuous interval. Design optimization 

aims to minimize the weight of these structures while satisfying design requirements. The 

optimization results found by the DE-MEDT have been compared with those of other 

metaheuristic algorithms existing in the literature. Comparison of the results found by the 

DE-MEDT algorithm with other existing metaheuristics proposed in the literature indicated 

that the DE-MEDT metaheuristic is comparable to or better than many other optimization 

techniques. 
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