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ABSTRACT 
 

The lateral-torsional buckling (LTB) strength of cellular steel girders that were subjected to web 

distortion was rarely examined. Since no formulation has been presented for predicting the 

capacity of such beams, in the current paper an extensive numerical investigation containing 660 

specimens was modeled using finite element analysis (FEA) to consider the ultimate lateral-

distortional buckling (LDB) strength of such members. Then, a reliable algorithm based on the 

artificial neural networks (ANNs) was developed and the most accurate model was chosen to 

derive an efficient formula to evaluate the LDB capacity of steel cellular beams. The input and 

target data required in the ANN models were provided using the ANN analyzes. An attempt was 

made to include the proposed formula in all the variables affecting the LDB of cellular steel 

beams. In the next step, the validity of the proposed formula was proved by several statistical 

criteria, and also the most influential input variable was discussed. eventually, a comparison 

study was executed between the results provided by the ANN-based equation and the AS4100, 

EC3, and AISC codes. It was revealed that the presented equation is accurate enough and can be 

used by practical engineers. 
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1. INTRODUCTION 
 

A cellular steel beam is produced by welding two complementary parts of I-section beams. 

This type of beam is manufactured by cutting the cross of the beam semicircularly then the 

cut pieces are welded together with a certain shift (Fig. 1). According to this, the depth of 

the cellular beam increases by 40 to 60% compared to the depth of its former section, which 

makes it perform better under bending. These types of beams are liable to several types of 

failure modes due to the opening in their web these openings complicate flexural-shear 

instabilities. These modes comprise flexural, Vierendeel, shear, LTB, LDB, web buckling, 

or a combination of a number of these modes. 

 

 
Figure 1. The fabrication process of cellular steel beams 

 

The buckling behavior of thin-walled steel sections is extremely important in their 

analysis due to the sudden buckling that occurs. The slender beams with web openings have 

many applications, and since their depth is greater than conventional I-shaped sections 

without web openings, they are more likely to collapse in the LTB failure mode [1-3]. 

Although in some previous research, the LTB failure of cellular steel beams has been 

studied [4-7] but less attention is paid to the LDB failure mode and its characteristics are 

poorly examined. Previously, the common failure modes of cellular steel beams have been 

studied. The main design formulae for these modes can be seen in Ref. [8–12]. Moreover, 

some researchers examined the effects of the geometric properties of cellular steel beams on 

the LTB mode [13–15]. The LTB mode is more common in long-span beams, while local 

buckling is more common in short-span beams, but for beams with intermediate span length, 

the interaction of the abovementioned modes yields a new failure mode, named the LDB. 

This mode is characterized by simultaneous twists, lateral displacement, and web distortion 

[16-24]. Distortion buckling occurs in two different manners; “LDB” and “restrained 

distortional buckling (RDB)” (Fig. 2). RDB mode may take place when the tension flange is 

prohibited from torsion and lateral displacement, for example in the negative moment part in 

a composite beam or a half-through bridge girder.  

Bradford [21], and Zirakian [22] tested a series of steel I-beam specimens experimentally 

and the LDB failure of such beams was investigated. Moreover, Zirakian and Showkati [23] 

examined the LDB failure mode of the castellated steel beams; but, so far, very few 

experimental tests have been carried out on the LDB behavior of cellular beams.  
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Figure 2. Distortion buckling failure modes: (a) LDB, (b) RDB 

 

The ANN is introduced as a system that solves complicated problems that do not solve 

using existing continuous algorithms. In the last decades, engineers carried out special 

studies addressing different problems utilizing ANN with various degrees of success. They 

utilized ANN to solve the problems in the field of material performance, structural 

identifications, geotechnical, transportation, construction management, heat and fluid 

problems, electronics and control, and infrastructure issues [25-34].  

The purpose of the present paper is divided into two parts: simulation of models based on 

the FEA for cellular steel beams subject to buckling, and development of accurate ANN 

models in order to derive a precise formula for evaluating the LDB capacity of such beams. 

The reliable database needed for the ANN training was obtained from the FEA using 

ABAQUS software [35]. The ABAQUS software considers inelastic material properties as 

well as initial geometry imperfections. A series of 660 FEA models under LDB failure mode 

was analyzed using a high-speed computer. Validation of numerical results was confirmed 

by experimental tests. The ANN method was then used to develop an empirical formula for 

predicting the LDB moment of cellular steel beams. First, all parameters that might affect 

the ultimate LDB strength of cellular beams were predicted, and then by performing a 

sensitivity analysis, the effective parameters were selected. Then, the relationship between 

these effective parameters and the ultimate resistance of cellular beams was recognized 

through proper training of ANN and a new equation was proposed. Finally, the predicted 

outcomes attained from the ANN-based formula were compared to the design capacities 

obtained from AISC [36], AS4100 [37], and Eurocode3 [38]. So far, no study has been 

found that deals with the LDB failure mode in cellular steel beams, which is attempted in the 

current study. 

 

 

2. FE MODELING 
 

Numerical studies present a reliable and safe understanding of the behavior of structural 

elements and to date, it has been widely used by researchers. As mentioned early, one of the 

main objectives of this research is considering the LDB performance of the cellular steel 

girders utilizing the FE approach. Here, using ABAQUS software, 3D models were 

employed to simulate the real behavior of the cellular steel beams especially material and 
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geometry nonlinearities. The Eigenvalue analysis was first performed to evaluate buckling 

modes. Then, the output results obtained from the Eigenvalue analysis adopted for the 

second step of the analysis named RIKS analysis in the ABAQUS library, which is a 

nonlinear load-displacement analysis. A full Newton-Raphson procedure, as well as an Arc 

Length Control Iterative, was used for solving the nonlinear equations. The Doubly curved 

shell elements including 3-node (S3R) and 4-node (S4R) were utilized to model. The 

quantities of Poisson’s ratio and modulus of elasticity were adjusted as 0.3 and 2e5 MPa, 

respectively. the fabrication procedures of cellular steel beams made us exert an initial 

geometric imperfection. Based on the AS4100 code recommendation [37], a tolerance of 

Lb/1000 for flexural elements was recommended, where Lb refers to the length between 

lateral bracing. 

 

2.1 Validation of numerical models 

In order to confirm the results of FEA-based models, the results of experimental research 

conducted by two separate studies with different boundary conditions were used. The simply 

supported beams with an I-shaped section and subjected to concentrated load were tested by 

Zirakian and Showkati [39], they considered different geometries and examined the LDB 

resistance and failure modes. Moreover, I-shaped beams that prevented the displacement of 

their compression zones were studied by Bradford and Wee [40], and their buckling 

behavior was experimentally examined. From each of the two mentioned studies, a beam 

was numerically modeled and the obtained results were compared to the experimental 

results. As can be seen from Table 1, despite the different boundary conditions in the 

modeled beams, the error percentage of the results is less than 2% and the developed FE 

models are well able to predict the ultimate LDB resistance. Further, Fig.3 illustrated the 

deformed shape of the numerical and experimental tests, which is a good match between 

them. 

 

 
Figure 3. Deformed shape of A) FEA model, B) Experimental test [39] 

 

 

A 
B 
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Table 1: Comparison between test and FE results 

Model Lb (mm) tf (mm) tw (mm) bf (mm) d (mm) 
PEXP 

(kN) 
PFEA(kN) Err (%) 

s-180-4400 [39] 3600 6.3 4.85 64 180 22.35 21.96 1.77 

B-1 [40] 2700 10 6 90 175 50.1 49.63 0.95 

 

2.2 Parametric study 

According to the numerical model validated in the previous section, an extensive parametric 

study was performed, including 660 samples with the boundary conditions illustrated in Fig. 

5. The range and statistics related to the geometric properties and ultimate distortional 

buckling (MDB) of the numerical models are reported in Table 2 to determine the extent of 

the parametric study. The beam geometry parameters listed in the table are displayed in Fig. 

4. Furthermore, it should be noted that the different ratios specified in Table 2 correspond to 

the input and output variables of the ANN models, which are discussed in the following 

sections. 

 

 
Figure 4. Beam and cellular geometry 

 

 
Figure 5. Boundary conditions in finite element models 
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Table 2: The statistical parameters of the input random variables. 
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𝐹𝑦
 

𝑀𝐷𝐵

𝑀𝑃
 

Median 2.595 1.657 57.385 6.445 148.807 1.313 1.461 579.710 0.747 

Mode 2.510 1.600 49.85 5.920 111.750 1.210 1.460 444.440 0.380 

Std. Deviation 0.431 0.057 7.735 0.710 19.742 0.085 0.081 146.643 0.132 

Variance 0.186 0.003 59.824 0.504 389.732 0.007 0.007 21504.16 0.017 

Skewness 0.474 0.691 -0.105 0.917 -0.001 0.465 0.130 0.284 -0.605 

Kurtosis -0.233 -0.495 -0.687 -0.599 -1.042 -0.542 0.104 -1.502 -0.789 

Range 1.860 0.180 31.460 2.170 75.630 0.360 0.450 355.56 0.530 

Minimum 1.820 1.600 40.770 5.920 111.750 1.180 1.240 444.440 0.380 

Maximum 3.680 1.780 72.230 8.090 187.370 1.540 1.680 800.000 0.910 

 

 

3. LDB EQUATIONS 
 

Not only there is no suitable formulation for evaluating the LDB capacity of intact steel 

beams but also the LDB capacity of cellular steel beams is more complicated. The only 

design assessment was suggested by the AISC [36], AS4100 [37], and EC3 [38] that 

employed for LTB of doubly symmetric I-sections. Fig. 6, shows the compassion between 

the results of LDB capacity using FEA and the results of the LTB solution of the mentioned 

codes. Based on the results provided in Fig. 6, it can be found that the code provisions are 

not able to assess the LDB capacity of cellular steel beams exactly and the Mu/MFEA ratio 

has a large dispersion for all three codes. Therefore, further studies are required to improve 

the LDB scenario and a formula-based approach to cellular steel I-section beams. 

 

 
Figure 6. The ratio of the buckling load obtained by FE and code solutions 
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4. ARTIFICIAL NEURAL NETWORK 
 

As mentioned before, the most important purpose of the current study is to use neural 

networks to propose a new practical formula for calculating the LDB strength of cellular I-

beams. ،Therefore, an ANN model was developed and relationships between the parameters 

affecting the LDB strength of cellular I-beams were acquired through the developed model. 

In the following, the first, the general function and structure of a multilayer perceptron ANN 

model are discussed, and next the final developed ANN model for estimating the ultimate 

strength of cellular beams, as well as its corresponding formula, is presented. 

 
4.1 Structure of a multilayer perceptron ANN model 

The artificial neural network is known as a powerful mathematical technique that simulates 

the biological form and behavior of neurons, and the multilayer perceptron (MLP) is known 

as one of the most popular neural networks. The MLP is suitable for examining any 

continuous function with desirable accuracy. This class of neural networks employs a feed-

forward procedure; the feed-forward procedure predicts one or more variables as network 

outputs using predictor input variables. This procedure is based on layers that are connected 

to each other by synapses. Each synapse has a weight that indicates the influence of the 

neuron. The procedure is called feed-forward since it has no feedback loops and the network 

connections move from the input layer to the output layer [41]. Moreover, a supervised 

back-propagation (BP) learning algorithm, is employed for multi-layered networks. This 

learning process is one of the most typical settings in neural networks. According to this 

algorithm, a comparison is made between the target output and the expected output, and the 

weights are adjusted based on that. The beck-propagation algorithm is employed to optimize 

the networks by minimizing the simulation error to an expected value [42]. 

Mostly, the technique of trial and error is employed in order to reach the configuration of 

an ANN model. Fig. 7 illustrates the typical configuration of a simple shallow ANN model 

with one hidden layer. The number of nodes in the input and output layers is the same as the 

number of input and output parameters of the network, but the neurons’ number in the 

hidden layers is chosen according to the type of problem. During the ANN model training 

process, each input is multiplied by the value of the weight and then added together; next, a 

bias, that is connected only to the hidden layer and output layer (usually considered a non-

zero constant), is added to the neuron. The activity of the neuron as the output is determined 

as follows: 

 

1

n

j ij i j

i

net w x b


   (1) 

 

where netj indicates the collection of data about neurons; xi is the value of the input, and bj 

and wij are the bias and the corresponding weight values, respectively.  

In the end, the final outputs are determined using transfer or activation functions, which 

apply nonlinearity to the ANN model and make it very strong. The transfer functions 
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typically used in the ANN models, consist of Sigmoid, Gaussian, and Hyperbolic tangent as 

the nonlinear functions or Step and Rampage as the linear functions. The outputs can be 

obtained using the following equation:  

 

 j jout f net  (2) 

 

where outj represents the output of jth node and f represents the transfer function. 

 

Figure 7. Structure of a shallow neural network 

 

Since ANN is a nonlinear method, optimization algorithms are needed to minimize the 

cost function. Various algorithms can be used for this purpose, such as scaled conjugate 

gradient, one-step secant, variable learning rate, Fletcher-Reeves conjugate gradient, 

Levenberg-Marquardt, and so on. In the current study, the Levenberg-Marquardt (LM) 

algorithm was employed to train ANN models. This algorithm is based on the Newton 

method and is very suitable for training the models up to several hundredweights [43, 44]. In 

previous studies [26-28], its effectiveness in solving various problems has been proven. The 

LM algorithm is very efficient compared to other methods and in many cases when other 

back-propagation algorithms diverge, this algorithm converges.  
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4.2 Developed ANN model for predicting LDB capacity of cellular beams 

A two-layer ANN model with one hidden layer was considered for the prediction of the 

LDB capacity of cellular beams. Based on the studies that have been done so far, this type of 

network has a good predictive ability to solve common engineering problems [31-34]. Since 

it is difficult to identify all the variables affecting the ultimate resistance of cellular beams 

and also some of the effective parameters are strongly related to each other, in this study, 

eight effective parameters were considered as the model inputs based on the performed 

parametric study. The initial output and input vectors of the model include one and eight 

dimensionless variables, respectively: 

, , , , , , ,
2

f fw w b w

f w w f y y

DB

p

t bh h L h S E
Input

b t t t r D D F

M
Output

M

  
  
  

  
  
  

 

where MDB represents the ultimate LDB capacity of cellular steel beams and Mp represents 

the major axis full plastic moment: 

 

.P y xM F Z  (3) 

 

where Zx and Fy represent the plastic section modulus and the yield strength, respectively.  

According to these vectors, the input and output layers have eight and one nodes, 

respectively. Moreover, the neurons’ number in the hidden layer has a great effect on the 

behavior of back-propagation networks. As mentioned before, estimation of the appropriate 

number of neurons in the hidden layer is usually performed by trial and error technique. Fig. 

8 shows the accuracy of the models with 1-10 neurons in their hidden layer. In the figure, R 

is the correlation coefficient and MSE is the mean squared error, which is expressed based 

on the Eqs. (4) and (5): 

 

1

2 2

1 1
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N
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R

y y t t


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 


 



 
 (4) 

2

1

1
( )

N

i i

i

MSE t y
N 

   (5) 

 

where ti and it  indicate the target output and the average of target outputs, respectively; and 

yi and iy  indicate the predicted output and the average of predicted outputs, respectively. 

Also, N indicates the number of samples. It is worth mentioning that although increasing the 

number of neurons in the hidden layer makes the network more accurate, it also leads to a 

lengthy and tedious relationship. Therefore, in this study, considering the predictive power 

and applicability of the ANN-based equation, two neurons in the hidden layer were chosen 

to estimate the ultimate LDB capacity of cellular I-beams. 
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Figure 8. R and MSE values correspond to networks with different numbers of neurons in their 

hidden layer 

 

Moreover, another problem that can occur during the training process of a neural network 

is over-fitting. This arises when the network error is small, but as the network is given more 

information, the error increases. In the current study, to solve the over-fitting problem, the 

early stop (ES) technique is used. In this technique, a validation dataset is used in such a way 

that by dividing the database into three datasets of training, after the network starts to over-fit 

the training data, the validation data error increases for certain steps of iteration, and the 

network training stops, as well as the biases and weights related to the minimum validation 

error, are automatically restored. This method increases the predictive power of the network 

for new samples that have not been used in the training data. Therefore, the database in this 

paper was divided into three sets: 70% for network training, 15% for validation, and 15% for 

independent testing. From 660 data vectors, 462 and 99 data vectors were employed for 

training and validation of the ANN model and the remaining 99 data vectors were employed 

for model testing. It should be mentioned that the number of data vectors adopted for network 

training is strongly related to network reliability. Frank and Todeschini [45] proposed that the 

minimum ratio of the number of all data vectors to the number of input parameters be 

considered three to make the model acceptable; however, the authors recommended a ratio of 

five for a more accurate model. In this paper, this ratio, considering 660 data vectors and eight 

input variables, was equal to 660/8=82.5. Besides, to speed up network learning and to 

accomplish more accurate results, the input and output variables were standardized according 

to Eq. (6) and then used in the training process of the ANN model 

 

i
si

X Mean
X

SD


  (6) 

 

where Xi indicates the variable value and Mean and SD indicates the mean and standard 

deviation of variables, respectively.  

Consequently, considering eight input variables and one output variable, a two-layer 

ANN model, based on the learning algorithm of LM/BP was constructed and trained. The 

Log-Sigmoid function and the linear transfer function were employed for the hidden and 
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output layers, respectively. Also, two neurons were used in the hidden layer of the 

developed model. The toolbox provided in the MATLAB program was used to develop 

ANNs. The distribution patterns of database variables using frequency histograms are 

tabulated in Fig. 9. 
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Figure 9. Histograms of the input parameters 

 

4.3 ANN-based formulation 

The output of each three-layer network can be stated as follow: 

 

   2 2 1 1 1 2output f W f W X b b      (7) 

 

where W1 and W2 represent the weight matrixes of the second and third layers, respectively. 

As well as b1 and b2 represent the bias vectors of the second and third layers, respectively. 

Also, fi represents the transfer functions used in these layers. Finally, according to the above 

relation, the following formula is offered to predict the LDB capacity of cellular beams: 
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This should be noted that the scope of application of the formula is determined based on 

the boundary conditions considered in this study and also according to the range of input 

variables, which is reported in Table 2. In order to expand the application of Eq. (8), more 

research should be accomplished with different support and load conditions, moreover, more 

numerical or experimental studies are required for generalizing the approach.  

 

 

5. PERFORMANCE ANALYSIS AND COMPARATIVE STUDY 
 

In order to estimate the efficiency and accuracy of the proposed formula, four parameters 

comprising correlation coefficient (R), mean squared error (MSE), mean absolute error 

(MAE), and absolute percentage error (Err) was adopted. The equations for R and MSE were 

previously stated in Eqs. 4 and 5, MAE and Err are also calculated according to the 

following equations: 

 

1

1 N

i i

i

MAE y t
N 

   (9) 

100i i

i

i

y t
Err

t


   (10) 

 

where ti , yi , it , iy  and N are the same parameters used in Eqs. 4 and 5.  

Table 3 presents the performance ability of the obtained equation-based ANN, and those 

proposed by AISC, AS4100, and EC3. Here, the R, MSE, and MAE were introduced as the 

target-measured parameters to illustrate the capability of the presented equation. Based on 

them, the ANN formula involves a proper precision for assessing the LDB strength of 

cellular steel beams in comparison with the AISC, AS4100, and EC3 code provisions. In the 

testing data set that did not participate in the model development, the R-based-ANN was 

justified as 0.9912, compared to 0.9012, 0.9445, and 0.8915 for the AISC, AS4100, and EC3 

codes, respectively. 
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Table 3: The introduced statistics parameters for MDB/MP calculation 

Method 
Training Validation Testing 

R MSE MAE R MSE MAE R MSE MAE 

Proposed 

equation 
0.9913 0.0003 0.0120 0.9943 0.0002 0.0104 0.9912 0.0003 0.0143 

AS4100 0.8887 0.0134 0.1073 0.8879 0.0136 0.1068 0.9012 0.0128 0.1045 

AISC 0.9298 0.0081 0.0683 0.9221 0.0092 0.0745 0.9445 0.0083 0.0725 

EC3 0.8765 0.0174 0.1197 0.8742 0.0185 0.1241 0.8915 0.0169 0.1187 

 

Furthermore, the errors arising from AISC, AS4100, EC3 codes, and by the developed 

formula are tabulated in Figs. 10, 11, and 12. It is clear that the new formula-based-ANN 

approach provides more precise predictions for the LDB moment of cellular steel beams 

among others. Besides, another comparison between the predictions of the new formula-

based-ANN approach and the existing code provisions was established in Fig. 13. Based on 

Fig. 13 presentation, a model containing suitable accuracy includes the actual to predicted 

values ratio close to one. This figure shows that the distribution of the predicted values for 

the ANN-based formula gives more accuracy than others. 

 

 
Figure 10. Predictions based on the AS4100 code vs proposed formula: (a) training data, (b) 

validation data, (c) testing data 
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Figure 11. Predictions based on the AISC code vs proposed equation: (a) training data, (b) 

validation data, (c) testing data 
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Figure 12. Predictions based on the EC3 code vs proposed equation: (a) training data, (b) 

validation data, (c) testing data 

 

 
Figure 13. A comparison between the ANN-based formula and design codes: 

(a) Proposed formula (b) AS4100 (c) AISC (d) EC3 
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6. SENSITIVITY ANALYSIS 
 

In this section, sensitivity analysis is developed to determine the importance of each of the 

input parameters in the ANN model. To do this, Garson’s algorithm was used for 

determining the significance of the input parameters according to Ref. [46]. As clarified in 

Fig. 14, For a model comprising eight nodes in the input layer (1-8), two nodes in the hidden 

layer (A and B), and one node in the output layer (O), the steps of the algorithm, can be 

expressed as follows: 

 Calculate the contribution of inputs through input-hidden-output connections (e.g. 

CA1=WA1×WoA). 

 Calculate the relative contributions of inputs (e.g. rA1=|CA1|/|CA1+CA2+…+ CA8|). 

 Calculate the sum of relative contributions (e.g. S1=rA1+rB1). 

 Calculate the relative importance of inputs (e.g. I1=S1/(S1+S2+…+ S8)). 

Fig. 15 presents the used input variable's significance of in the ANN model. From Fig. 

15, the E/Fy and Lb/ry parameters show the most effective variables for the assessment of the 

LDB strength t of cellular steel beams, respectively. 

 

 
Figure 14. Garson’s algorithm procedure using ANN 
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Figure 15. Independent variable importance in the ANN model 

 

 

7. CONCLUSIONS 
 

A series of FEA models were performed to evaluate the ultimate LDB resistance of the 

cellular steel I-shaped beams. The numerical study included 660 samples of cellular steel 

beams that were different in parameters such as cross-sectional dimensions, opening 

dimensions, yield strength of steel, and beam length. At the first, for each sample, the 

ultimate capacity and the failure mode were calculated utilizing the reliable and verified 

FEA model generation. Then, the ultimate capacity values predicted by AISC, AS4100, and 

EC3 code provisions were compared with the FEA results. Based on the outcomes, the 

mentioned codes offered unsafe and un-conservative estimations for the majority of 

specimens. Consequently, in the next step, it was tried to develop an accurate ANN model to 

provide a new precise equation to assess the maximum moment capacity of cellular steel 

beams subjected to LDB mode failure. The ANN-based empirical formula shows excellent 

accuracy, and practical engineers can use this formulation for calculating the LDB moment 

capacity of cellular steel beams. In the end, a sensitivity analysis was also performed to 

introduce the more effective variables on the LDB capacity of cellular beams. 
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