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ABSTRACT 
 

The real-world applications addressing the nonlinear functions of multiple variables could 

be implicitly assessed through structural reliability analysis. This study establishes an 

efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, 

first a numerical nonlinear optimization algorithm with a new simple filter is defined to 

locate and estimate the most probable point in the standard normal space and the subsequent 

reliability index with a fast convergence rate. The problem is solved by using a modified 

trust-region sequential quadratic programming approach that evaluates step direction and 

tunes step size through a linearized procedure. Then, the probability expectation method is 

implemented to eliminate the linearization error. The new applications of the proposed 

method could overcome high nonlinearity of the limit state function and improve the 

accuracy of the final result, in good agreement with the Monte Carlo sampling results. The 

proposed algorithm robustness is comparatively shown in various numerical benchmark 

examples via well-established classes of the first-order reliability methods. The results 

demonstrate the successive performance of the proposed method in capturing an accurate 

reliability index with higher convergence rate and competitive effectiveness compared with 

the other first-order methods.  
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1. INTRODUCTION 
 

Multifold integrations with high computational costs are required for accurately determining 
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the probability of failure in reliability analysis [1–3]. Alternative integration methods 

include sampling methods, specifically Monte Carlo Sampling (MCS), where thousands of 

simulations are needed to determine the probability of failure [4–6]. The First-Order 

Reliability Method (FORM) has been developed to overcome the computational cost in 

recent decades. FORM is a fundamental reliability analysis method recommended by the 

international Joint Committee of Structural Safety (JCSS) for calculating reliability based 

design optimization [7–9]. FORM investigates standard normal space to find the Most 

Probable Point (MPP) or design point. MPP is a point on the limit state surface with a 

minimum distance from the origin [10,11], which is also called reliability index. Rackwitz 

and Fiessler further modified Hasofer and Lind’s method [12] by considering non-normal 

random variables [13]. The method is known as HLRF, one of the first versions of  FORM. 

If the limit state surface is flat, HLRF immediately converges. However, if it is highly 

nonlinear in the standard normal space, HLRF may encounter unexpected errors such as 

truncation, bifurcation, periodic oscillation, and chaotic behavior. Zhang and Kiureghian 

considered the appropriate choice of the step size with merit function monitoring [14]. In 

other words, using the Armijo rule, the researchers optimized the step size to develop their 

improved HLRF as iHLRF. The Stability Transformation Method (STM) is an algorithm 

driven by the chaos control theory introduced by Yang to handle the non-convergence issue 

of HLRF [15]. Roudak et al. proposed the adaptive chaos control to reduce the number of 

iterations in STM [16]. Meng et al. further proposed the directional stability transformation 

method (DSTM) to improve the stability of HLRF [17]. Additionally, Gong and Yi 

employed a Finite Step Length (FSL) parameter, another approach to compute failure 

probability in the direction of gradient vector of limit state function to estimate the reliability 

index [18]. Keshtegar introduced two advanced versions of FSL that involve the conjugate 

search direction and adaptive finite-step length as CFSL and AFSL [19,20]. There are some 

methods based on metaheuristic algorithms which implement different procedure close to 

sampling method [21,22].  

Numerical nonlinear optimization algorithm is another approach to finding design points 

in the structural reliability problem. Well-known instances in this regard include Gradient 

Projection (GP), Augmented Lagrangian Method (ALM), and Sequential Quadratic 

Programming (SQP) [23–26]. SQP, a popular robust optimization method, is a gradient-

based method to solve inequality and equality constraint problems. Indeed, the initial idea of 

employing the first-order reliability method was triggered by the SQP algorithm. 

In optimization problems with many variables, SQP is coupled with the trust-region 

method to facilitate the convergence required for coming up with the final solution. This 

successful combination of the trust-region and sequential quadratic programming is known 

as the trust-region sequential quadratic programming (trust-region SQP) which uses the 

second and first derivatives of the objective function and constraint, respectively [27–29]. 

Trust-region SQP has already been applied to a number of pure optimization problems; 

however, its application to reliability-based engineering optimization is limited. The 

aerodynamic wing geometry optimization presented by Joongki et al. is one of the successful 

implementations of the trust-region SQP is in the reliability analysis [30]. The inequality 

type of trust-region SQP is the algorithm the researchers used to control the feasible domains 

of problem constraints as they function properly for addressing large-scale problems.     [
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This study intends to propose the equality constraint type of trust-region SQP with a 

simple filter for reliability analysis that is proper for non-large-scale problems with highly 

nonlinearity limit state function and the problems with single minimum point, not multiple 

design points. In other words, structural reliability problem consists of a simple objective 

function and nonlinear constraint. Accordingly, the constraint of the reliability problem is 

the major part of the optimization problem. On the other hand, the merit function which is 

used in the main version of the trust-region SQP, equipped with second-order correction of 

the final result, does not significantly improve the accuracy and robustness of structural 

reliability problems. Therefore, replacing the old filter with a new simple one eliminates 

some berries to the fast convergence of the algorithm. However, simple and efficient 

techniques are also elaborated to improve the accuracy of the proposed algorithm. 

Consequently, the proposed combination with applied changes leads to the desired results. 

The rest of the article is structured as follow: Section 2 reveals the theoretical details of the 

target method for ensuring reliability analysis. A brief review of the probability expectation 

method is provided in Section 3. The proposed method is then evaluated in comparison with 

other studies concentrating on a set of benchmark examples with different properties in 

Section 4. It is followed by discussion in Section 5 and conclusion in Section 6.  

 

 

2. TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING 

 

A reliability problem can be considered a nonlinear equality constrained optimization 

problem which is shown in the Eq. (1) [31]. 
 

(1) 
 

 

2

min 0.5

subject to 0

f x x

G x

 


  
 

where f is the objective function; G is the equality constraint or limit state function; and x 

represents the decision variables in optimization field or vector of all random variables (xi) 

in the standard normal space in the reliability of structure field. The objective function f and 

the equality constraint G are supposed to represent continuous second-order nonlinear 

differentiable functions. Eq. (2) presents the Lagrangian function corresponding to the 

optimization problem of Eq. (1). 

 

(2)      , TL x f x G x  
 

 

where  is the Lagrangian coefficient. Trust-region SQP is one of the most robustness 

methods for solving these equality-constrained optimization problems. In this regard, it is 

necessary to define the trust-region SQP type of the optimization problem by modifying Eq. 

(1) as Eq. (3) included the quadratic objective function, linear constraint function, trust-
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region constraint. 

 

(3)  

   

1
min

2

0

T T

k k k k

T

k k k k k

f x d d B d

subject to G x G x d and d


 


      

 

where f (x
k
) is the gradient vector of objective function respect to x

k
; d

k
 is the step direction 

vector; ∆k is the current trust-region radius; and the matrix Bk represents Hessian for the 

Lagrangian equation of Eq. (2), which can be calculated by approximation methods such as 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [32]. The optimization problem in Eq. 

(3) can be decomposed to two sub-problems. The first one is a normal sub-problem as 

expressed by Eq. (4).  

 

(4)    min
T

k k N

N k

G x G x d

subject to d 

 


   
 

where  is a constant between 0 and 1 with a recommended value of 0.8  [31]. Denote the 

solution to Eq. (4) by d. When the solution of Eq. (4) is achieved, the residual vector, rk, is 

obtained, rk=G(xk)+ ∇G(xk)
TdN. The vector d in Eq. (4) is the normal part of the step 

direction vector obtained by solving the normal sub-problem. The dogleg method is an 

approximate solution to the optimization problem Eq. (4) [33]. 

The second stage is to solve the tangential sub-problem that is shown in Eq. (5).  

 

(5) 
  

 
22

1
min

2

0 and

T
T

k k N T T k T

T

k T T k N

f x B d d d B d

subject to G x d d d


  


       

 

The projected conjugate gradient (PCG), suitable for solving the equality constrained 

problems (EQP) [34], is one choice to solve the optimization sub-problem of Eq. (5). Denote 

the solution to Eq. (5) by d, which is the horizontal part of the step direction vector. 

Accordingly, solving the normal and tangential sub-problems enables step direction, dk, to 

be updated by Eq. (6). 

 

(6) 
k N T

d d d   
 

All details of the computational requirements to estimate the step direction can be found 

in Scipy package of python programing [35] in the equality constraint optimization section. 

The main version of trust-region SQP method used a non- differentiable merit function to 

qualify the step direction and update the trust region in each step that required doing 
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complicated calculations.  

This study considers the merit function expressed as Eq. (7) known as the L1 merit 

function in the literature. In other word, the Armijo rule is replaced by modified calculation 

in each step. 

 

(7)      ,  k k kx c f x c G x  
 

The gradient of the merit function in Eq. (8) is used to control the reduction of the merit 

function in iterations.  

 

(8)      ,    k k kx c f x c G x  
 

The merit function is controlled by inequality in Eq. (9) to determine the appropriate step 

size and update the trust region. 

 

(9)       1, , . . ,
T

k k m k kx c x c a s x c d       
 

wh ere ɑ is a positive value equal to 0.5, and the parameter c is calculated by Eq. (10). 

 
(10)   /k kc x G x     

 

where γ=2 and η=10 are positive values, and the parameter sm is calculated by Eq. (11). 

 
(11) k

ms b  
 

where b is a constant in the range of [0, 1], which is usually considered 0.5, and the 

parameter k shows the current iteration for determining the coefficient sm. In the first step, 

this coefficient is considered equal to unity.  

If Eq. (9) is stablished, sm is accepted and the new trust radius can be increased to 7×||dk||. 

This value is the enlargement radius used in the main version of the trust-region SQP that is 

properly approximated. Otherwise, this coefficient is reduced in each iteration by adding a 

unit to k up to the maximum number of predetermined iterations. Then, this coefficient is 

multiplied to trust radius and the calculations required for determining the step direction are 

repeated to obtain the convergence. In contrast to the traditional methods that perform the 

correction on the step size, this method applied the correction to the trust radius. Table 1 

illustrates the full version of the algorithm as discussed in this section. 
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Table 1: Member groups and corresponding allowable stresses for 25-bar truss 

Choose a value for the parameters  ∈ (0, 1) and  ∈ (0, 1) and select stopping tolerance tol and 

choose an initial value for x0 and 0 and set k=0. 

While k < kmax: 

Step 1: Compute Lagrange multiplier using BFGS method 

Step 2: Compute the normal step dN by the dogleg procedure 

Step 3: Compute the normal step dT by the PCG procedure 

Step 4: Compute the total step d = dN + dT 

Step 5: Check the merit function 

             If reduction is obtained: set xk+1 = xk + dk   

             Else: update k by Armijo rule and go to step 1 

Step 6: If ||∇f(x
k
)+∇G(x

k
) ||<tol: break the loop  

            Else: set k = k + 1 

 

Compared to the original version, these changes aim to reduce the effect of the trust 

radius and the step direction obtained by SQP sub-problems. The second order correction, 

complicated trust radius updating, and reduction ratio of merit function are the instances 

excluded from the proposed method. Since the searched-based reliability analysis methods 

estimate the design point by the linearization of the limit state function, these changes have 

no undesirable effect on the final results and conversely lead to fast convergence. 
 

 

3. PROBABILITY EXPECTATION  

 

Recently, Rashki [36] presented a methodology based on methodic doubt to improve the 

accuracy of reliability analysis method that expresses a mathematically exact failure 

probability as Eq. (12). In another word, this method is a combination of the searched-based 

method and MCS with limited required samples. 

 

(12) 
f f

P P    
 

where Pf is the exact probability failure, P̅f is the result of reliability analysis method as 

inaccurate failure probability, and x is the estimation error. The error term can be accurately 

estimated (x =0), overestimated (x <0), or underestimated (x >0) in different conditions. Eq. 

(12) could be expressed as Eq, (13) using expectation rules.  

 

(13)        f f f g
E P E P E E P      

 

where mg is the mean values of the error term. If the error estimator is unbiased, the term 

E(P̅f) provides an accurate failure probability. Briefly, if the mean value of the error term is 

zero, the expectation of the failure probability obtained by the searched-based methods can  [
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be estimated by the Eq. (14). 

 

(14)       1 2f
E P E      

 

where b1 and b2 are the limit state function distances of each MCS sample from the mean. 

To find the solution of the Eq. (14), two problems need to be solved. The first is a simple 

optimization problem shown in Eq. (15). 

 

(15) 
 

1
min

subject to 0

k

k

x c

G x

 


  
 

where c1 is the answer and a is the importance vector obtained by a searched-based method. 

It is the distance between the current position of a sample xk and a point on the limit state 

surface (G=0). This distance is parallel to the line linked the origin to the design point 

obtained by the searched-based method in the standard normal space.   

The second problem is a root-finding problem that intends to find the distance from 

modified position of the sample on the limit state surface to the line that intersects the origin 

and is parallel to the linearization of the limit state function at the design point obtained by 

searched-based method. This procedure is done for all MCS samples to find the new 

reliability indexes. Then, the mean is estimated as modified reliability index which is more 

accurate than the one estimated by the searched-based method. The root-finding problem is 

Eq. (16) which needs to be solved for c2 parameter. 

 

(16)  1 2
0

k
x c c     

 

The above-mentioned procedure is a simple one that can modify the accuracy of the final 

results. If this method fails to improve the accuracy, the alternative choice could be the 

Importance sampling that used the design point of the searched-based to generate new 

samples. The computational effort required for the Importance sampling is more compared 

to the probability expectation method, but sometimes it is necessary to implement it to 

overcome the time-consuming restrictions imposed by the Crude Monte Carlo simulation. 

 

 

4. NUMERICAL SIMULATION  

 

In this section, the numerical examples are investigated in the literature to evaluate the 

efficiency and performance of the proposed method. These examples include some 

challenging issues such as different nonlinearity types of limit state functions and complex 

numerical combinations of random variables. In order to simplify the process, the proposed 

method or trust-region SQP is denoted by TRSQP herein.  

For each example, the origin coordinate of the standard normal space is selected as the 
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initial point for different analysis algorithms. The result of the proposed method is compared 

to two states of art algorithms developed to overcome the high nonlinearity of the limit state 

function including DSTM and CFSL.  

The setup of the DSTM and CFSL methods are the same as demonstrated in the literature 

[37,38], where the control factors are specified as 0.1 for DSTM, and the step length and 

adjusting coefficient of the CFSL method set 50 and 1.5, respectively. The same 

convergence criteria, i.e., ||∇f(x
k
)+∇G(x

k
) || are applied to all methods. The reliability index 

of the Monte Carlo simulation (MCS) computed by 1×106 samples is employed to qualify 

the accuracy of the methods. 

In addition, the examples presented in this article can be solved in BI software which is a 

computer program for reliability analysis that is developed by the authors and can be 

downloaded from the (www.betaindexsoftware.com) and different examples can be modeled 

accordingly. 

 

4.1 Example 1 

The first example has a highly nonlinear quartic polynomial limit state function with two 

standard normal random variables as Eq. (17), which is extracted from the previous studies 

[37,39]. 

 

(17)    
2

1 2 1 21.7 1.5 1.7 5G X X X X X      
 

The convergence histories of DSTM, CFSL, and TRSQP are shown in Fig. 1. Two 

methods (see Fig. 1) represent unstable reliability index though the behaviors differ. DSTM 

swings between two incorrect points which can be seen in the magnifier part of Fig. 1. CFSL 

shows the wrong convergence history and results in increasing the value of reliability index 

after some iterations. TRSQP represents the appropriate performance and can find the design 

point. The coordinate of the design point (-2.4408, 1.5264) that leads to reliability index is 

2.8787. This value is the best result that can be expected from the linearization of the limit 

state function, where the minimum distance of the origin to the linear approximation of the 

limit state function is 2.8787. This problem could be solved by other methods such as iHLRF 

with 2852 function evaluation [37] and STM method with 302 function evaluations [37]. 

The next step is to improve the accuracy of the results. Fig. 2 shows the probability 

expectation procedure implemented to reduce the error of linearization. This problem 

consists of two directions. It can be employed in the random samples in probability 

expectation model. However, this study applied the Gaussian-Hermite method [40] with 9 

points in each direction of standard normal space to generate initial samples, which is shown 

by the red circle in the Fig. 2. Then, the samples must be moved to the limit state function 

along the importance vector direction achieved by the TRSQP method. This movement is 

shown by the blue circle in the Fig. 2. The next step is to compute the error of each sample 

with respect to reliability index obtained by the TRSQP. The yellow line in Fig. 2 is the 

expanded line estimated by linearization of the limit state function at the design point. The 

light blue lines that link the samples on the limit state function to the linearized limit state 

function depicted the error of each sample. Finally, the improved result that applies the 
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probability expectation (3.34) is in good agreement with MCS that resulted in the reliability 

index of 3.339. 

 

 
Figure 1. Iteration history for Example 1 

 

 
Figure 2. Sampling procedure to improve the accuracy of TRSQP (Example 1) 
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Table 2: Results of various methods (Example 1) 
Method  Pf Iterations G-Evaluations 

DSTM ---- ---- ---- ---- 

CFSL ---- ---- ---- ---- 

TRSQP 2.878 0.002001 10 10 

TRSQP-PE 3.340 0.000418 10+18 10+18 

MCS 3.339 0.000420 ---- 106 

 

Table 2 summarizes the final results of the method. TRSQP relates to the proposed 

method without probability expectation, but TRSQP-PE is the combination of the 

aforementioned proposed method and probability expectation method. The robust 

performance of the proposed method that could handle the nonlinearity of the limit state 

function and improve the accuracy of the final result along with low computational cost is 

depicted. 

 

4.2 Example 2 

A combination of exponential and logarithmic random variables is shown in Eq. (18) 

[18,38,41]. 

 

(18)    1 2 1 21 5 5
ln

X X X X
G X e e

   
   

 

Both random variables are standard normal random variables. Fig. 3 shows the iteration 

history of three methods with magnified view of the initial steps. The high nonlinearity of 

the limit state functions leads to fail convergence for DSTM and CFSL. DSTM oscillates 

between two wrong points and cannot resolve the problem by reliance on a stable solution. 

Although CFSL achieves the stable reliability index, this result is wrong and inaccurate even 

in the linearization phase. Without probability expectation, TRSQP acts as a fast convergent 

method.  
Some methods such as the ones proposed by Roudak et al. [42], Gong and Yi [18], and 

Gong et al. [43] could potentially solve this problem. These methods handle the nonlinearity 

of the limit state function, but the computational efforts for applying these methods are not 

minimum. For better investigation, check the abovementioned references. Accordingly, it 

could be concluded that TRSQP is more robust than other methods which are deployed 

based on the first-order estimation. 
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Figure 3. Iteration history for Example 2 

 

The next step is to investigate the accuracy of the results. Similar to the Example 1, this 

example is a two-dimension case and the probability expectation could be implemented to 

modify the final results of the TRSQP. This time, fifteen points of Gaussian-Hermite method 

are implemented to find the error of linearization. Fig. 4 shows the position of the initial 

samples in each direction by the red circles. Then, the projections of these samples on the 

limit state function, along the importance vector of TRSQP method, are obtained as 

illustrated by the blue circles. Finally, the error of linearization is computed by the process 

mentioned in Section 3. The reliability index with error analysis (2.7) that is very close to 

the MCS output. 

 

 
Figure 4. Sampling procedure to improve the accuracy of TRSQP (Example 2) 
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Tables 3 shows the results of the reliability index and the probability of failure in the last 

iteration. The results of TRSQP show that this method can overcome the high nonlinearity 

of the limit state function.  

 
Table 3: Results of various methods (Example 2) 

Method  Pf Iterations G-Evaluations 

DSTM ---- ---- ---- ---- 

CFSL 1.796 0.036247 100 100 

TRSQP 2.299 0.010738 7 7 

TRSQP-PE 2.700 0.003466 7+30 7+30 

MCS 2.745 0.003025 ---- 106 

 

This achievement is associated with an optimum computational cost that could be proven 

by comparing other methods in the literature. However, the accuracy of the final result needs 

further research, which is addressed in TRSQP-PE that has yielded significant result with 

only 30 samples. 

 

4.3 Example 3 

The limit state function with noise term is investigated in this Example [44]. Both random 

variables are the normal random variables with means of 1.5 and 2.5, respectively, and 

standard deviation of 1.0. The limit state function is shown in Eq. (19). 

 

(19)  
  2

1 2 1
4 1 5

sin 2
20 2

X X X
G X

   
   

   
 

Iteration history and the zoomed in view of initial iterations are shown in Fig. 5. Similar 

to the previous example, DSTM fails to converge and swing back and forth between three 

points. On the other hand, CFSL deviates from the convergence path and encounters the 

numerical stability issues. TRSQP searches the domain and reports the reliability index of 

1.185 that is assumed to be the best solution in the linearization producer. However, there is 

a significant different between MCS reliability index 1.861 and TRSQP. 

It is not a weakness of the TRSQP because it searches linearized space to find the 

shortest distance between origin and limit state surface and successfully locates the design 

point (0.44097, 1.10007) which can be seen in Fig. 6. The error relates to high nonlinearity 

of the limit state function which includes noise term. If simple probability expectation is 

implemented, no progress is made in error improvement because the limit state function 

experiences sever changes around the design point and linearized procedure of probability 

expectation cannot help. Then, this time, Importance sampling is applied to estimate the 

accuracy reliability index. Fig. 6 shows the Importance sampling procedures, where the 

design point is chosen as the central sample and the other one hundred samples are 

generated with a standard deviation of 0.2.  
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Figure 5. Iteration history for Example 3 

 

 
Figure 6. Sampling procedure to improve the accuracy of TRSQP (Example 3) 
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TRSQP performs the best with 5 steps and the corresponding reliability index is the best 

answer that can be expected from a first-order method. The combination of TRSQP and 

Importance sampling, TRSQP-IS, leads to a proper output which is in good agreement with 

MCS. Table 4 shows the results of the methods including iteration number, number of 

function evaluation, reliability index, and failure probability.  

 
Table 4: Results of various methods for Example 3 

Method  Pf Iterations G-Evaluations 

DSTM ---- ---- ---- ---- 

CFSL ---- ---- ---- ---- 

TRSQP 1.185 0.11797 5 5 

TRSQP-IS 1.840 0.03179 5+100 5+100 

MCS 1.861 0.03133 ---- 106 

 

4.4 Example 4 

Two-degree-of-freedom primary and secondary dynamic system with eight random 

variables are investigated as shown in Fig. 7.  

 

Mp Ms

2

p p pK M 2

s s sK M

2p p p pC M  2s s s sC M 

 
Figure 7. Primary secondary system (Example 4) 

 
Table 5. Probability Distribution of Random Variable (Example 4) 

Description Variable Distribution Mean Standard deviation 

The primary mass mp Lognormal 1 0.1 

The secondary mass ms Lognormal 0.01 0.001 

The primary spring stiffness kp Lognormal 1 0.2 

The secondary spring stiffness ks Lognormal 0.01 0.002 

The primary damping ratio p Lognormal 0.05 0.02 

The secondary damping ratio s Lognormal 0.02 0.01 

The force capacity of the 2nd spring FS Lognormal 15 1.5 

The intensity of the white noise S0 Lognormal 100 10 

 

Table 5 shows the statistical properties. The variables are the masses mp and ms, spring  [
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stiffnesses kp and ks, damping ratios p and s, the force capacity of secondary spring FS, and 

the intensity of a white-noise base excitation of the system S0. The subscripts p and s are the 

signs of primary and secondary oscillators, respectively. The limit state function of this 

example is defined by Eq. (20). 

 

(20)     
1

2
S s sG X F k P E X   

 

where P is the peak factor equal to 3. Parameter E can be expressed as Eq. (21). 

 

(21)  
 

 3 3

0

3 32 2 24 44

p p s s pa s
s

s s a ap s a a

S
E X

      

       

 
  

     
 

where = ms/mp is the mass ratio, p = (kp/mp)
0.5 and s = (ks/ms)

0.5 define natural frequencies 

and damping ratios, respectively. a = (ps)/2 represents the average frequency. a = 

(ps)/2 specifies damping ratio and  = (ps)/a is the tuning parameter. The 

convergence histories of DSTM, CFSL, and TRSQP are shown in Fig. 8 with magnifier 

view of the initial steps. These three methods (see Fig. 8) represent stable reliability index 

though the behaviors are different. DSTM encounters some problems in convergence near 

the design point and CFSL illustrates the poor choice of step direction leading to non-

uniform oscillation before convergence. TRSQP overcomes the weakness of the two 

mentioned method. In other words, proper step direction and fast convergence around the 

design point are the advantage of the TRSQP.  

 

 
Figure 8. Iteration history for Example 4 
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Reliability analysis results for DSTM, CFSL, TRSQP, TRSQP-IS; and MCS with 106 

samples are shown in Table 6. Similar to the previous problems, TRSQP successfully 

obtained the reliability index within a few iterations. DSTM and CFSL are ranked as the 

next ones with 27 and 54 iterations. The corresponding b= 2.12 is the best answer that can 

be expected from a first-order method. It is worth mentioning that if the Importance 

sampling method is applied to other methods, the same result could be obtained because this 

part of analysis does not need any prior information except for design point coordinates.  

 
Table 6: Results of various methods (Example 4) 

Method  Pf Iterations G-Evaluations 

DSTM 2.1231 0.01687 27 27 

CFSL 2.1231 0.01687 54 54 

TRSQP 2.1230 0.01687 15 15 

TRSQP-IS 2.7300 0.01687 15+2000 15+2000 

MCS 2.7360 0.00310 ---- 106 

 

 

5. DISCUSSION  
 

In the previous section, the performance of the proposed method, which is an algorithm 

based on the trust-region sequential quadratic programming with new merit function (filter), 

namely TRSQP, was investigated by concentrating on four examples. These examples 

involved explicit limit state functions with different nonlinearity. The results of other 

reliability methods, including DSTM and CFSL which are state-of-art methods in the first-

order category were shown for comparison. Furthermore, the response of the sampling 

method was estimated. First-order reliability methods are generally based on the steepest 

descent direction, where the priority is to reach the limit state surface. TRSQP uses a 

combination of dogleg and PCG to obtain a more appropriate step direction vector to 

continue iterations that address not only approaching the limit state surface, but also 

minimizing the optimization objective function.  

In these examples, accuracy, robustness, and efficiency of the algorithms can be 

compared. Achieving the final stable result in first step, which is the linearized of limit state 

function, indicated the robustness of methods. The number of iterations and function 

evaluations are considered as the criteria of efficiency. The accuracy of each method can be 

investigated by checking the final result. The robustness and efficiency of the TRSQP is 

depicted in the examples, but the accuracy is a more challenging issue. Then, the 

combination of the TRSQP and a simple probability expectation or Importance sampling 

were applied to overcome the accuracy issue of the analysis. According to these definitions, 

the proposed method is superior to other first-order methods in all three items.  

As shown in the tables, the reliability indexes obtained from the proposed method are 

close to the literature that demonstrates the robustness of the TRSQP. The minimum 

required steps and function evaluations of TRSQP to achieve the design point indicates the 

fast convergence that is the sign of efficiency. It is the most significantly competitive feature 

of the proposed method observed in Examples 1 to 4. The readers can test the proposed 
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algorithm and other state-of-the-art methods in BI software understand the fast convergence 

of the proposed method compared to other in case of resolving challenging problems.  

 

 

6. CONCLUSION 
 

The first-order iterative algorithms are extensively employed to estimate the failure 

probability and design point in the reliability analysis in the linearized space. Due to the 

nonlinearity of the limit state surface, FORM-based algorithms fail to converge. 
This paper proposes a reliability analysis method on the basis of the nonlinear 

optimization method with simple filter. The proposed method employs the appropriate tools 

to deal with the high nonlinearity challenges in case of resolving a reliability problem. 

TRSQP replaces the initial reliability problem with two optimization sub-problems that are 

easier to solve. Then, the dogleg and projected conjugate gradient methods are used to 

compute a step direction vector, which is different from the step direction of FORM-based 

methods. Subsequently, the step size is computed using a simplified merit function control 

and the first duty of the searched-based method to ensure the design point is done. 

 Through the application and test of several numerical and practical engineering 

examples in the literature, it could be concluded that TRSQP is a robust and efficient 

algorithm that could be used to resolve reliability problems. However, certain simple 

methods such as probability expectation method can be implemented to improve the 

accuracy of the algorithm such as MCS. 
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