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ABSTRACT 
 

Genetic algorithm is a robust meta-heuristic algorithm inspired by the theory of natural 

selection to solve various optimization problems. This study presents a method with the 

purpose of promoting the exploration and exploitation of genetic algorithm. Improvement in 

exploration ability is made by adjusting the initial population and adding a group of fixed 

stations. This modification increases the diversity among the solution population, which 

enables the algorithm to escape from local optimum and to converge to the global optimum 

even in fewer generations. On the other hand, to enhance the exploitation ability, increasing 

the number of selected parents is suggested and a corresponding crossover technique has 

been presented. In the proposed technique, the number of parents to generate offspring is 

variable during the process and it could be potentially more than two. The effectiveness of 

the modifications in the proposed method has been verified by examining several benchmark 

functions and engineering design problems. 
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1. INTRODUCTION 
 

Gradient-based methods have been commonplace among researchers for solving 
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optimization problems [1-3]. These methods enable a search of the solution space near a 

specific point, where gradient information of the objective function is available [4, 5]. These 

algorithms are probable to provide an optimal solution if the method is well-implemented 

[6]. However, the majority of these mathematical optimization techniques require the 

calculation of the gradients of objective function and constraints. This might be applicable in 

simple small-scale problems. Having said that, certain problems involve discontinuous 

constraint functions, and therefore their gradients do not exist. Additionally, in some cases 

the constraint functions could be complicated which can make the computation of their 

gradients difficult [7, 8]. By and large, obtaining gradient information for the objective 

function may incur significant costs, or in some instances it might be even unattainable [6]. 

Hence, due to the above-mentioned computational downside of the mathematical 

algorithms, the meta-heuristic approach was introduced. The emergence of this approach has 

enabled efficient exploration of the entire search space to discover optimal solutions [7]. 

Meta-heuristics are unconventional optimization approaches that are applicable without the 

need for gradient information. Furthermore, they operate without the need for an explicit 

relationship between the objective function and constraints. Fundamentally, meta-heuristic 

algorithms are strategies inspired by natural, social, biological, or physical principles that 

have found many applications in various domains like engineering, economics, mathematics, 

and other areas of science [8]. Most meta-heuristic algorithms imitate the intelligence 

exhibited by natural phenomena in order to direct the search process. The underlying 

premise of all meta-heuristic strategies is to approach the optimal answer as closely as 

feasible, rather than achieving the exact ultimate solution. Nevertheless, the procedure does 

not ensure that the solution produced at the end is the optimal solution [9]. In recent years, 

this feature has spurred numerous scholars to devise novel algorithms or enhance existing 

methods [10-14]. 

Evolutionary algorithms represent a new category of meta-heuristic techniques. One of 

the most successful methods among these evolutionary algorithms is Genetic Algorithm 

(GA), originally developed by Holland [15] and later revised by De Jong [16] and Goldberg 

[17]. Due to its characteristics, this approach has been proven more effective than previous 

algorithms in solving various optimization problems [18]. GA operates simultaneously with 

a population of design points. Therefore, it leads to a more diverse and easier exploration of 

design space. Moreover, mutation, selection, and crossover parts are employed by GA to 

explore the solution space. These are randomized operators, used instead of deterministic 

operators. It is important to note that with a few adjustments, GA can deal with more various 

optimization problems [19-22]. As it appears, the significant attraction toward genetic 

algorithms or other meta-heuristic algorithms, originates from their efficacy in the complex 

problems that are challenging for conventional methods. In this regard, Gandomi and Alavi 

[23] employed a multi-gene genetic programming (MGGP) approach to address various 

engineering problems in material, structural, geotechnical, and earthquake engineering. In 

another study, Gandomi, Alavi [24] utilized gene expression programming (GEP) to predict 

the shear strength of slender reinforced concrete (RC) beams. Yazdani, Khatibinia [25] 

suggested a modified discrete gravitational search algorithm for probabilistic performance-

based optimization design of complex structures subjected to earthquake. Degertekin, Tutar 

[26] applied school-based optimization for performance-based optimum seismic design of 

steel frames. Rao and Pawar [27] utilized the Rao algorithms for the optimum design of 
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mechanical system components. Hassan, Kamel [28] made modifications to the second Rao 

algorithm for solving the optimal power flow problem. Kaveh and Zaerreza [29] enhanced 

meta-heuristic algorithms for optimization of the structures with deterministic and 

probabilistic constraints. Recently, Kaveh has reviewed 25 meta- heuristic algorithms [30]. 

However, since most engineering problems involve optimization within complicated 

constraints, simple genetic algorithms in many cases are not able to produce successful 

applications. Nevertheless, their performance can be potentially enhanced. This is possible 

by using tailored approaches, which is a topic of current debate. In this regard recently, 

Zheng, Zhong [31] and Sun, Shen [32] employed reinforced hybrid GA. Chowdhury and 

Hovda [33] and Ishaque, Johar [34] applied fuzzy logic in combination with GA. 

This research aims to introduce a new method based on GA, to avoid being stuck in local 

optima by increasing exploration ability, and to increase the efficiency by introducing a new 

version of crossover. The former is provided by adding a group of fixed points or stations to 

the population of design variables. Moreover, to exploit the population more efficiently, 

multi-parent selection is employed. An effective crossover approach is implemented to form 

a multi-parent combination. 

 

 

2. GENETIC ALGORITHM 
 

Genetic algorithm is a meta-heuristic algorithm that operates based on the theory of natural 

selection. Genetic algorithm consists of five main stages: initialization, fitness evaluation, 

parent selection which is performed based on a defined fitness function, crossover which 

combines parents’ genes to produce offspring, and mutation which is designed to make 

random changes in some individuals. In the following, the steps of GA, as well as how they 

are applied in the proposed algorithm are explained briefly. 

 

2.1 Initialization 

In the first step, a set of individuals are needed to start the algorithm. These individuals are 

randomly generated to form the first generation, which is named the initial population. Each 

member of the population is considered a possible solution.  

 

2.2 Fitness evaluation 

The fitness of an individual is evaluated by a fitness function. The function determines how 

close an individual is to the solution. The individuals with high fitness are selected as 

parents to form the next generations. Therefore, applying an appropriate fitness function is 

important in proper parent selection.  

In this study, the fitness function assigns a larger value to individuals with the lower 

objective function, as it is for minimization problems. As the objective function value 

increases, the assigned fitness decreases uniformly until the individual with the highest 

objective function value receives the lowest fitness. This uniform fitness function makes the 

selection of parents not dependent on the value of the objective function, i.e. just the orders 

matter not the values. This causes the probability of selection to decrease or increase within 

equal intervals. 
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2.3 Selection 

In this stage, a number of individuals are selected as parents. Selection is performed based 

on the fitness function. Different types of parent selections are available be used in genetic 

algorithm. Roulette Wheel Selection, Tournament Selection, Rank Selection, etc. are some 

of the common selection techniques. 

Roulette Wheel Selection is the employed method for parent selection in this study. In 

this method, the entire population is examined and individuals with higher fitness are 

selected as parents with greater opportunity. 

 

2.4 Crossover 

Crossover is a technique that decides how parents are combined to produce offspring. In 

fact, crossover determines the percentage of each parent’s contribution to generate new 

children. Based on the application, different types of crossover techniques could be 

implemented. In this study, a new crossover technique has proposed based on Whole 

Arithmetic crossover.  

Whole Arithmetic crossover is a method in which every child is made of a linear 

combination of the parents’ genes. In fact, offspring inherit a specific percentage of genes 

from each parent, as follows: 

 

𝐂𝐇1 =  𝛂.× 𝐏1 + (𝟏 − 𝛂).× 𝐏2 

𝐂𝐇2 = (𝟏 − 𝛂).× 𝐏1 + 𝛂.× 𝐏2 
(1) 

 

where P1 and P2 are parents, 1 denotes a d-dimensional vector with unit elements, and α 

contains d components of random numbers(d represents the dimension of the problem).. 

These components could be constant or change randomly to induce more diversity. The 

operator “×” denotes the element-by-element multiplication. 

 

2.5 Mutation 

After the production of each generation, a small number of offspring are mutated to maintain 

the diversity of solutions. In this study, the number and position of the mutant offspring are 

randomly selected. Then, the selected individuals are added a specific normally distributed 

random value.  

 

 

3. PROPOSED METHO 
 

In this paper, an effective method is presented to modify the genetic algorithm by increasing 

the exploration ability. The method is based on adding some fixed individuals in specific 

regions in the search space. On the other hand, a multi-parent selection approach is adopted 

to exploit individuals effectively. The number of selected parents ranges randomly between 

1 and 5 in each step. Eiben et al. [34] demonstrated that selecting more than two parents, 

depending on the employed crossover method, can reduce the number of required 
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generations.  

In Section 3.1, a variable multi-parent compatible crossover is defined, and Section 3.2 

presents a technique to enhance exploration ability by adding fixed station groups. 

 

3.1 Variable multi-parent crossover 

The proposed method introduces a multi-parent compatible crossover technique based on 

Whole Arithmetic crossover. As previously mentioned, the number of parents is randomly 

selected between 1 and 5. At each step, the number of produced children matches the 

number of selected parents. A random vector αi, including d random numbers, determines 

the inheritance percentage of each parent to make every child. Then, the set of all random 

vectors α = [α1, α2, …, αn] is circularly shifted to create the subsequent offspring differently. 

Fig. 1 illustrates the variation in α after the creation of each child. 

 

𝐂𝐇1 = (𝛂1.× 𝐏1 + 𝛂2.× 𝐏2 + L + 𝛂n−1.× 𝐏n−1 + 𝛂n.× 𝐏n)./𝛌 
𝐂𝐇2 = (𝛂n.× 𝐏1 + 𝛂1.× 𝐏2 + L + 𝛂n−2.× 𝐏n−1 + 𝛂n−1𝐏n)./𝛌 
 ⋮ 
𝐂𝐇𝑛 = (𝛂2.× 𝐏1 + 𝛂3.× 𝐏2 + L + 𝛂n.× 𝐏n−1 +  𝛂1.× 𝐏n)./𝛌 

(2) 

 

In the above equation, n is the number of parents in every selection step, and the operator 

“./” denotes the element-by-element division. The vector λ is introduced to control the 

summation of genes’ percentage and is obtained by: 

 

𝛌 = ∑ 𝛂𝐤

𝑛

𝑘=1

 (3) 

 

As it could be observed from Eq. (2), the number of parents n does not have to be 

necessarily 2 and could possess any arbitrary value. 

 

 
Figure 1. The variation of α and its circular shift  

 

3.2 Fixed station groups 

One of the challenges in Genetic Algorithm or other optimization methods is that it might 

converge to local optima instead of the global optimum solution. To address this problem, 
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the proposed method presents an effective approach by increasing exploration ability. In this 

method, some fixed individuals are added to the population. The location of fixed stations is 

determined such that it could cover all the search space constantly. This ensures that the 

algorithm does not focus on a specific region. 

In the proposed approach, first, the center of each variable range is obtained. The 

associated point, located at the center of search space, is denoted by XC. This is the first 

fixed station. Then, other fixed stations are selected at a specific distance from XC. Thus, the 

set of all fixed stations is obtained as follows: 

 

𝐗𝐂 =
1

2
(𝐗𝐦𝐚𝐱 + 𝐗𝐦𝐢𝐧) 

𝐗𝐣
𝐤 = [𝑥1𝐶 , 𝑥2𝐶 , K , 𝑥(𝑖−1)𝐶 , 𝑥𝑖𝐶 − 𝑆(𝑘)𝑟𝑖, 𝑥(𝑖+1)𝐶 , K , 𝑥𝑑𝐶]

𝑇
𝑘 = 1: 𝐹𝑆𝐺; 𝑖 = 1: 𝑑; 𝑗 = 𝑖 

𝐗𝐣
𝐤 = [𝑥1𝐶 , 𝑥2𝐶 , K , 𝑥(𝑖−1)𝐶 , 𝑥𝑖𝐶 + 𝑆(𝑘)𝑟𝑖, 𝑥(𝑖+1)𝐶 , K , 𝑥𝑑𝐶]

𝑇
 𝑘 = 1: 𝐹𝑆𝐺; 𝑖 = 1: 𝑑; 𝑗 = 𝑑 + 𝑖 

(4) 

 

where Xj
k denotes jth point in the kth group of fixed stations and FSG is the number of fixed 

station groups. Accordingly, there is a total of 2(FSG)d+1 fixed stations. Xmax and Xmin are 

the vectors including upper and lower bounds of all variables, respectively. The scalar ri is 

the ith component of the vector r 

 

𝐫 =  
1

2
(𝐗𝐦𝐚𝐱 − 𝐗𝐦𝐢𝐧) (5) 

 

and the value S(k)ϵ[0,1] is proportional to the distance of the kth group of fixed stations from 

the center point XC. S(k) is defined as 

 

𝑆(𝑘) = 𝑆0

𝑘

𝐹𝑆𝐺
          𝑘 = 1: 𝐹𝑆𝐺 (6) 

 

The constant S0 is associated with the distance of the furthest group of fixed stations from 

the center point XC. For instance, for a two-dimensional case (d=2), if the number of fixed 

station groups is 3 (FSG=3), and S0 is set to 0.75, then 13 stations are obtained from Eq. (4). 

These stations are illustrated in Fig. 2. As observed in the figure, the third (furthest) group of 

stations are specified by S0. Then its distance from XC is equally divided to locate other 

groups of fixed stations. These 13 stations relatively cover the search space. Inaddition, 

since they are among the potential parents forever (of course with their weights), they 

decrease the probability of ignoring a region. This results in much smaller probability for 

local traps. 
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Figure 2. Distribution of fixed stations in search space for d=2, FSG=3, and S0=0.75   

 

 
Figure 3. The population after three generations (a) at presence of fixed station groups (b) 

without fixed station groups 

 

The presence of fixed stations causes the search space to be divided into several 

subspaces. The algorithm considers all these sections to generate the individuals. As a result, 

the population could often be concentrated more quickly in a subspace in which the 

optimum point is located. Just to clarify, an illustrative example of such a performance is 

displayed in Fig. 3. The figure indicates the population after three generations for a two-

dimensional function in the presence of fixed stations and without them. As shown in the 

figure, fixed individuals have caused the population to concentrate around the optimum 
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within just three generations. While without them, the algorithm has stuck in the local 

minimum. 

 

 

4. RESULTS 
 

To evaluate the effectiveness of the proposed method, several diverse numerical examples 

sourced from the literature have been analyzed. These examples include a set of 13 

benchmark functions. Additionally, the efficiency of the proposed method has been 

validated through the examination of 3 distinct engineering constrained optimization 

problems, taken from previous studies. 

 

4.1 Benchmark problems 

In this section, the optimization process is conducted for 13 benchmark functions extracted 

from Ref. [36]. The specifications of these functions, including their mathematical formula, 

variable ranges, and respective global minimum values are presented in Table 1. 

Additionally, visual representations of bivariate functions and their corresponding contour 

lines are illustrated in Figs. 4-12. 

The results of each function are detailed in Tables 2-14. These tables present a 

comparison between the proposed modified GA (mGA) and GA. The tables compare the 

number of generations needed to converge to the solution. 

Additionally, the impact of the population size of each generation and the number of 

fixed station groups has been examined. In each function, the results for population sizes of 

10, 20, 50, and 100 are compared in the rows of tables. The columns demonstrate the results 

for different values of fixed station groups. FSG = 0 is considered to assess the effect of the 

variable multi-parent selection and multi-crossover technique. In other columns, the number 

of generations required for FSG =1, 5, and 10 are listed. All data in the tables are the mean 

values of 10 independent runs. 

Analysis of the results demonstrates a substantial enhancement in the algorithm by 

employing multiple parents alongside the presented crossover method. Especially when the 

population size per generation is small, this technique leads to faster convergence to the 

solution compared to GA. In fact, employing the variable multi-parent crossover technique 

involving more than two parents, enables reaching the global minimum even with a notably 

reduced population size. This is shown in illustrative figures and tables. 

As shown in the tables, adding fixed stations, which improves the exploration ability, 

could even facilitate reaching the global minimum in fewer generations. In fact, the 

inclusion of fixed stations prevents being stuck in local minima and enhances the efficiency 

of reaching solution. The optimal number of fixed station groups is observed typically 

between 1 and 5, as indicated by the analysis results. 
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Table1. Benchmark problems  

Function name Range Function Global 

minimum 

Aluffi-Pentiny X∈[ − 10, 10]
2
 fcost(X)=

1

4
 x1 

4 −
1

2
 x1

2 +
1

10
 x1 +

1

2
 x2

2 −0.352386 

Bohachevsky 1 X∈[ − 100, 100]
2
 fcost(X)=x1

2 + 2x2
2 −

3

10
cos(3πx1)-

4

10
cos(4πx2) +

7

10
 0.0 

Bohachevsky 2 X∈[ − 50, 50]
2
 fcost(X)=x1

2  +2x2
2 -

3

10
cos(3πx1) cos(4πx2) +

3

10
 0.0 

Camel X∈[ − 5, 5]
2
 fcost(X)=4x1

2 −  2.1x1
4 + 

1

3
x1

6 + x1x2 − 4x2
2 + 4x2

4 −1.0316 

Cb3 X∈[ − 5, 5]
2
 fcost(X)=2x1

2 − 1.05x1
5 + 

1

6
x1

6 + x1x2 + x2
2 0.0 

Cosine mixture n = 4, X∈[ − 1, 1]
n
 fcost(X)= ∑ xi

2

n

i=1

−
1

10
∑ cos(5πxi)

n

i=1

 −0.4 

DeJoung X∈[ − 5.12, 5.12]
2
 fcost(X)=x1

2 + x2
2 + x3

2 0 

Exponential n = 2,4,8, X∈[ − 1, 1]
n
 fcost(X)= − exp (−0.5 ∑ xi

2

n

i=1

) −1 

Goldstein and price X∈[ − 2, 2]
2
 

fcost(X)=[1 + (x1 + x2 + 1)2(19 − 14x1 + 3x1
2  

−14x2 + 6x1x2 + 3x2
2)] ×[30 + (2x1 −  3x2)2× 

(18 − 32x1 + 12x1
2 + 48x2 − 36x1x2 + 27x2

2)] 

3.0 

Griewank X∈[ − 100, 100]
2
 fcost(X)=1 +

1

200
∑ xi

2

2

i=1

− ∏ cos (
xi

√i
)

2

i=1

 0.0 

Rastrigin X∈[ − 1, 1]
n
 fcost(X)= ∑( xi

2 − cos(18xi))

2

i=1

 −2.0 

Rosenbrock n = 2, X∈[ − 30, 30]
n
 fcost(X)= ∑ 100(𝑥𝑖+1 − 𝑥𝑖

2)2 + (𝑥𝑖 − 1)2

n−1

i=1

 0.0 

Bukin 
−15 ≤ 𝑥1 ≤ −5 

−3 ≤ 𝑥2 ≤ 3 
fcost(X)=100√|𝑥2 − 0.01𝑥1

2| + 0.01|𝑥1 + 10| 0.0 
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Figure 4. The visual of "Aluffi-Pentiny" 

and its contour lines 

Figure 5. The visual of "Bohachevsky 1" 

and its contour lines 

  

 
 

Figure 6. The visual of "Bohachevsky 2" 

and its contour lines 

Figure 7. The visual of "Cosine mixture" 

and its contour lines 

  

  
Figure 8. The visual of " Exponential " and 

its contour lines 

Figure 9. The visual of "Goldstein and 

price" and its contour lines 
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Figure 10. The visual of "Griewank" and 

its contour lines 

Figure 11. The visual of " Rastrigin " and its 

contour lines 

  

 
Figure 12. The visual of "Camel" and its contour lines 

 

 
Table 2. The number of generations in Aluffi-Pentiny 

Pop. 

size 
GA 

Proposed method 

FSG=0 FSG=1 FSG=5 FSG=10 

10 233 80.4 71 44.4 61.8 

20 117 51 44 40 94 

50 20 36.8 31 28 30.9 

100 16 15.8 13.5 14.6 21 
 

Table 3. The number of generations in Bohachevsky 1 

Pop. 

size 
GA 

Proposed method 

FSG=0 FSG=1 FSG=5 FSG=10 

10 >50000 34.4 10.2 12.3 17.3 

20 125 27.3 11.4 13.1 24.5 

50 19 18.3 11.1 10.7 12.9 

100 16 12.7 6.4 10.1 11.5 
 

  

 [
 D

O
I:

 1
0.

22
06

8/
ijo

ce
.2

02
4.

14
.2

.5
82

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

oc
e.

iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
19

 ]
 

                            11 / 22

http://dx.doi.org/10.22068/ijoce.2024.14.2.582
https://ijoce.iust.ac.ir/article-1-582-en.html


M. A. Roudak, M. A Shayanfar, M. Farahani, S. Badiezadeh, and R. Ardalan 

 

200 

Table 4. The number of generations in Bohachevsky 2 

Pop. 

size 
GA 

Proposed method 

FSG=0 FSG=1 FSG=5 FSG=10 

10 >50000 27.4 3 19.8 23 

20 55 25.7 9.3 13.2 15.1 

50 17 19.2 8.4 14.4 14 

100 15 11.9 5.3 9.3 9.2 
 

Table 5. The number of generations in Camel 

Pop. 

size 
GA 

Proposed method 

FSG=0 FSG=1 FSG=5 FSG=10 

10 106 120.5 163.8 162.1 505.1 

20 32 62.3 44.6 87.1 112.8 

50 13 39.7 12.1 20.7 32.2 

100 12 11.3 9.8 10.5 15 
 

 

 

 

 

Table 6. The number of generations in Cb3 

Pop. 

size 
GA 

Proposed method 

FSG=0 FSG=1 FSG=5 FSG=10 

10 438 19.3 8.1 15.7 19 

20 17 13 6.8 17.6 13.1 

50 12 9.4 6.3 7.6 7.6 

100 10 7.5 6.4 7 6.3 
 

Table 7. The number of generations in Cosine mixture 

Pop. 

size 
GA 

Proposed method 

FSG=0 FSG=1 FSG=5 FSG=10 

10 430 17.7 9.6 21.9 28.5 

20 297 18.8 11.4 12.2 26 

50 43 15.5 7.3 9 10.9 

100 38 12.3 7.7 7.2 7.7 
 

 

 

 

 

Table 8. The number of generations in DeJoung 

Pop. 

size 
GA 

Proposed method 

FSG=0 FSG=1 FSG=5 FSG=10 

10 307 15.9 8.3 12.6 19.1 

20 207 14.3 5.3 10.1 18.3 

50 17 12 5.7 8.4 6.8 

100 14 8.9 7.1 7.2 7.7 
 

Table 9. The number of generations in Exponential 

Pop. 

size 
GA 

Proposed method 

FSG=0 FSG=1 FSG=5 FSG=10 

10 140 12.5 8.7 16.3 18.7 

20 12 10.8 7 10.5 11.6 

50 9 8.6 5.7 5.2 7.9 

100 7 6.9 6.5 5.1 5.5 
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Table10. The number of generations in Goldstein  

Pop. 

size 
GA 

Proposed method 

FSG=0 FSG=1 FSG=5 FSG=10 

10 2047 94 108 70 1 

20 995 254 89 33 1 

50 17 20 71 20 1 

100 12 10 20 14 1 
 

Table11. The number of generations in Griewank 

Pop. 

size 
GA 

Proposed method 

FSG=0 FSG=1 FSG=5 FSG=10 

10 203 30 7 11 26 

20 90 22 4.9 11.1 14.9 

50 29 16 5 11 11.5 

100 13 12.7 7.1 7.4 10.2 
 

  

Table12. The number of generations in Rastrigin 

Pop. 

size 
GA 

Proposed method 

FSG=0 FSG=1 FSG=5 FSG=10 

10 1723 18 5.3 19.6 20.7 

20 313 13.9 4.3 11.9 17.9 

50 17 10.2 6.6 8.1 10.9 

100 16 9.5 6.1 7.9 8.8 
 

Table13. The number of generations in Rosenbrock 

Pop. 

size 
GA 

Proposed method 

FSG=0 FSG=1 FSG=5 FSG=10 

10 >50000 >50000 25408 8706 6203 

20 >50000 >50000 13528 10458 3272 

50 9139 12307 9951 2275 3509 

100 2475 8152 7952 1884 846s 
 

  

Table14. The number of generations in Bukin 

Pop. 

size 
GA 

Proposed method 

FSG=0 FSG=1 FSG=5 FSG=10 

10 82 75 45 165 745 

20 78 71 57 73 211 

50 62 203 55 149 371 

100 59 102 33 82 221 
 

 

 

4.2 Engineering design problems 

Three engineering design problems in the category of constrained optimization are examined 

to demonstrate the performance of the proposed algorithm. To manage constraints, a penalty 

method is adopted in these examples. 
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4.2.1 A tension/compression spring design problem 

The objective is to minimize the weight of a tension/compression spring shown in Fig.13 

(described in [37] and [38]) with constraints on shear stress, surge frequency, and deflection. 

The design variables include the mean coil diameter (D=x1), the wire diameter (d=x2), and 

the number of active coils (x3). The problem can be defined by the following cost function  

 

 

fcost(X)=(x3 + 2) x2 x1
2 (7) 

 

 
Figue 13. The tension/compression spring problem 

 

The constraints are expressed as 

 

g
1
(X) = 1 −

x2
3 x3

 71785 x1
4

 ≤ 0 

g
2
(X) = 

4 x2
2  −  x1x2

12566 (x2 x1
3 − x1

4)
 + 

1

5108 x1
2

− 1 ≤ 0 

g
3
(X) = 1 −

140.45 x1

x2
2 x3

 ≤ 0 

g
4
(X) = 

x1 + x2

1.5
 − 1 ≤ 00 

 

(8) 

 

and the boundaries of design variables are: 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, and 2 ≤ x3 ≤ 15. 
Table 15 compares the results obtained from the proposed method with GA. These results 

clearly show that by selecting multiple parents and applying multi-crossover, the proposed 

method converges to the solution within fewer iterations. As shown, by adding fixed 

stations, the number of required generations is significantly reduced compared to GA. It can 

be mentioned that the optimal number of fixed station groups in this problem is equal to 1. 
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Fig 14 compares the number of iterations required to converge to the global minimum, 

between the proposed method and GA. This graph is plotted for FSG = 1, which is the 

optimal value. This figure shows that the presence of fixed stations, which increases the 

exploration ability, causes the first generation to be closer to the global minimum, and 

consequently the number of required generations for the rest is reduced. 

 

Table15. The number of generations in the spring design problem 

Pop. 

size 
GA 

Proposed method 

FSG=0 FSG=1 FSG=5 FSG=10 

10 5750 10649 4838 7536 6973 

20 4624 2348.2 2153 1933 2594 

50 3618 2044.2 1550 2536 2874 

100 2485 1587 1383 2096 2154.4 

  

 

Figure 14. The comparison of required number of generations in spring design problem (FSG 

= 1) 
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4.2.2 A pressure vessel design problem 

The cylindrical vessel shown in Fig. 15 is capped at both ends by hemispherical heads [39]. 

The objective in this problem is to minimize the total cost of the welding, material, and 

forming. This function is formulated by: 

 

fcost(X) = 0.6224 x1x3x4 + 1.7781 x2x3
2 + 3.1661 x1

2x4 + 19.84 x1
2x3 (9) 

 

where x1 represents the shell thickness (Ts), x2 signifies the head thickness (Th), x3 denotes 

the inner radius (R), and x4 indicates the length of the cylindrical section excluding the head 

(L). Ts and Th are integer multiples of 0.0625 inches. These are the available thickness of 

rolled steel plates. R and L, on the other hand, are continuous variables. Constraints of the 

problem are: 
 

g
1
(X) = − x1 + 0.0193 x3 ≤ 0 

g
2
(X) = - x2 + 0.00954 x3 ≤ 0 

g
3
(X) = − π x3

2x4 −
4

3
πx3

3 + 1296000 ≤ 0 

g
4
(X) = x4 − 240 ≤ 00 

 

(10) 

 

and variable bounds are 0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200, and 10 ≤ x4 ≤ 200. 

 

 
Figue 15. The pressure vessel design problem 

 

Table 16 indicates the number of iterations required for convergence to the global 

minimum in the proposed method and GA. As it can be seen in the table, by using multiple 
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parents, fewer generations are needed to reach the solution. Furthermore, adding fixed 

stations to the population increases the efficiency of the algorithm significantly. The best 

convergence occurs at FSG=1. In Fig 16, the graph of the number of iterations required to 

converge to the solution is presented for FSG=1. As displayed in the figure, in this specific 

case GA is trapped in a local minimum. While in the proposed method, in the first 

generations, there are closer generated points to the global minimum due to the existence of 

fixed stations. This results in convergence with fewer iterations and escaping local traps. 

 

Table16. The number of generations in the spring design problem 

Pop. 

size 
GA 

Proposed method 

FSG=0 FSG=1 FSG=5 FSG=10 

10 10440 6839 3051 >20000 >20000 

20 5380 5037 782 1943 5827 

50 2036 1741.5 566 739 1294 

100 1038 865 543 609 616 

  

 

Figure 16. The comparison of required number of generations in spring design problem (FSG 

= 1) 
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4.2.3 A cantilever beam 

This problem aims to minimize the weight of a cantilever beam composed of five hollow 

square blocks. The first block has rigid support, and a vertical load is applied on the fifth 

block, as indicated in Fig. 17. The design variables x1, x2, x3, x4, x5 determine the dimensions 

of the cross-section of the cubes, respectively. The cost function of this problem is defined 

as  

 

f
cost

(X) = 0.0624( 𝑥1  +   𝑥2  +   𝑥3  +  𝑥4  + 𝑥5) (11) 

 

The constraint is: 

 

g
1
(X) =

61

𝑥1
3 +

27

𝑥2
3 +

19

𝑥3
3 +

7

𝑥4
3 +

1

𝑥5
3 − 1 ≤ 0 (12) 

 

and ranges of design variables are 0.01 ≤ x1,2,3,4,5 ≤ 100. 

 

 
Figue 17. The cantilever beam problem 

 

Table 17 compares the number of iterations required to reach the global optimum 

between GA and the proposed method. According to the table, the proposed method 

achieves convergence with fewer iterations, especially at FSG=1 which results in the 

best convergence. This observation is further illustrated in Fig. 18, which shows the 

number of required iterations for convergence at FSG=1. The efficiency of the proposed 

method is clearly indicated in this figure. 
 

 [
 D

O
I:

 1
0.

22
06

8/
ijo

ce
.2

02
4.

14
.2

.5
82

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

oc
e.

iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
19

 ]
 

                            18 / 22

http://dx.doi.org/10.22068/ijoce.2024.14.2.582
https://ijoce.iust.ac.ir/article-1-582-en.html


AN ENHANCED GENETIC ALGORITHM BASED ON THE INTRODUCTION … 

 

207 

 

Table17. The number of generations in the cantilever beam problem 

Pop. 

size 
GA 

Proposed method 

FSG=0 FSG=1 FSG=5 FSG=10 

10 36937 29873 25241 26946 33308 

20 18804 14507 10373 17420 21304 

50 5396 4562 3677 4458 5927 

100 3452 1995 1110 1916 2108 

 

 
Figure 18. The comparison of required number of generations in the cantilever beam problem 

(FSG = 1) 

 

 

5. CONCLUSIONS 
 

In this paper, a method is presented to improve the genetic algorithm by increasing the 

exploration ability. Adding fixed stations to the population ensures more coverage of the 

entire search space. This technique helps to escape from local minima, especially in multi-

modal functions. Furthermore, due to thoroughly exploring the entire search space, it 
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efficiently decreases the required iterations to reach the global minimum. This occurs by 

producing the first generations closer to the solution. In addition, the proposed method 

improves exploitation ability by increasing the number of selected parents and generating 

offspring based on a variable multi-parent compatible crossover. This approach decreases 

the number of required generations to reach the global minimum. The effectiveness of the 

proposed method has been validated by using several benchmark functions and engineering 

constrained optimization problems. Therefore, the presented method leads to solving 

optimization problems more efficiently by improving genetic algorithm. 
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