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ABSTRACT 
 

This paper introduces a novel two-phase metamodel-driven methodology for the 

simultaneous topology and size optimization of truss structures. The approach addresses 

critical limitations in computational efficiency and solution quality. The framework 

integrates the Flexible Stochastic Gradient Optimizer (FSGO) with adaptive sampling and 

machine learning to minimize the number of structural analyses (NSAs), while achieving 

lighter, high-performance designs. In Phase One, FSGO employs a dual global-local search 

strategy governed by Extensive Constraints (EC), a dynamic constraint relaxation 

mechanism to balance exploration of unconventional topologies and exploitation of optimal 

member sizes. By creating adaptive margins around design constraints, EC enables broader 

exploration of the design space while ensuring feasibility. Phase Two focuses on precision 

size optimization, leveraging pruned metamodels trained on critical regions of the design 

space to refine cross-sectional areas for the finalized topology. Comparative evaluations on 

benchmark planar and spatial trusses demonstrate the method’s superiority: it reduces NSAs 

by 22–79% compared to state-of-the-art approaches and achieves 0.04–0.7% lighter designs 

while eliminating up to 31% of redundant members. Results validate the framework as a 

paradigm shift in truss optimization, merging computational efficiency with structural 

innovation. 
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1. INTRODUCTION 
 

Truss structural optimization is a complex engineering challenge requiring a balance 

between weight efficiency, load-bearing capacity, and constructability. Traditional methods 

often converge to suboptimal solutions due to the combinatorial complexity of topology and 

sizing decisions, limiting design innovation. To address these issues, researchers have 

proposed advanced techniques. Assimi et al. [1] introduced a multi-objective genetic 

programming approach with an adaptive mutant operator for simultaneous sizing and 

topology optimization, effectively identifying redundant members and generating trade-off 

solutions that satisfy multiple constraints such as stability, stress limits, and displacement. 

He et al. [2] developed a double-layer optimization framework incorporating local buckling 

stability into truss design, using linearized constraints to ensure efficiency and address 

practical concerns like transient hinges and section compatibility. Kaveh et al. [3] proposed 

a hybrid growth optimizer combined with an improved arithmetic optimization algorithm 

(IHGO) for discrete structural problems, enhancing exploration, exploitation, and solution 

retention, outperforming other metaheuristics in skeletal structure optimization tests. 

Metaheuristic algorithms have revolutionized structural optimization by efficiently 

navigating complex, non-convex design spaces through stochastic search, enabling 

discovery of unconventional solutions missed by traditional methods. However, their 

practical use is often limited by high computational costs, especially in large-scale structures 

where each analysis is expensive. As problem complexity increases, so does the 

computational burden, hindering industrial adoption. Recent studies aim to address this 

challenge. Nemati et al. [4] introduced the Connected Banking System Optimization 

(CBSO) algorithm for truss sizing, demonstrating strong performance across six benchmark 

problems. Zhou et al. [5] enhanced the sine-cosine algorithm (SCA) with Lévy flight and 

elite guidance strategies, improving efficiency in size, shape, and topology optimization. 

Truong et al. [6] integrated the Rao algorithm with an improved k-nearest neighbor model 

(k-NNC), significantly reducing computational cost without sacrificing solution quality. 

Manguri et al. [7] reviewed recent advances in metaheuristics combined with machine 

learning, highlighting pathways to more efficient civil engineering design. Kaveh et al. [8] 

proposed a chaotic Water Strider Algorithm (WSA) using Circle map-based chaos, 

outperforming conventional methods in optimizing large trusses under frequency 

constraints, achieving lighter designs and faster convergence. 

Recent advances in machine learning and surrogate modeling offer promising ways to 

reduce computational costs in structural optimization. Nourbakhsh et al. [9] introduced 

Generalizable Surrogate Models (GSMs) that use structural feature descriptors to accurately 

predict stress in 3D trusses across varying geometries, topologies, and boundary conditions, 

without retraining. Liu et al. [10] proposed a framework combining modular encoding, 

graph theory, and Radial Basis Function Neural Networks (RBFNN) to optimize multi-

morphology lattice structures, showing how tailored microstructures can enhance 

mechanical performance. Song et al. [11] developed a Polynomial Chaos Kriging-based 

method for robust design optimization, integrating deterministic and random variables 

within an active-learning framework to boost efficiency and accuracy. Ren et al. [12] 

reviewed Differential Evolution (DE) algorithms for expensive optimization problems, 

highlighting improvements in framework design, surrogate-assisted methods, and parallel 
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computing, while identifying ongoing challenges. Negrin et al. [13] provided a 

comprehensive overview of metamodel-assisted structural design optimization (MASDO), 

offering practical insights into integrating these models into engineering workflows. Kaveh 

[14] explored the broader application of artificial neural networks in civil engineering, 

showcasing their effectiveness in structural optimization, material science, and predictive 

analysis through real-world examples like dome design and displacement forecasting. 

Despite these advancements, key challenges remain particularly in integrating data-driven 

models with optimization frameworks. Handling mixed discrete-continuous variables, 

managing conflicting constraints, and ensuring consistent solution accuracy across diverse 

structural configurations continue to pose significant hurdles. 

Structural optimization continues to face fundamental challenges in balancing exploration 

and refinement during the design process. Sequential methods that separate topology 

generation from size optimization often miss critical interdependencies between these 

aspects, limiting overall performance. Effective constraint handling also remains a major 

issue: overly strict constraints stifle innovation, while loose enforcement leads to impractical 

designs. These difficulties become even more pronounced when addressing real-world 

factors such as dynamic loads, buckling resistance, and manufacturing constraints. Recent 

studies have introduced innovative approaches to tackle these challenges. Gao et al. [15] 

proposed an adaptive Gaussian Process Regression (GPR) framework for seismic collapse 

reliability prediction, combining adaptive sampling with a two-step global-local 

optimization. This method significantly improves accuracy while reducing computational 

costs compared to traditional Monte Carlo simulations. Megahed [16] applied adaptive 

sampling and machine learning to predict axial compression capacity in ECC-CES columns, 

generating interpretable design equations via symbolic regression. Peng et al. [17] 

introduced AK-SEUR, an adaptive Kriging-based learning function that reduces uncertainty 

in reliability analysis, showing strong performance on nonlinear problems with complex 

failure modes and low failure probabilities. Nath et al. [18] provided a comprehensive 

review of machine learning and deep learning applications in finite element analysis (FEA), 

emphasizing their potential to cut computational costs, reduce modeling time, and lessen 

reliance on expert input while highlighting opportunities for deeper integration of ML with 

FEA tools. 

Building on recent advances, this paper introduces a novel two-phase optimization 

framework that combines the Flexible Stochastic Gradient Optimizer (FSGO) with 

metamodel-driven optimization and adaptive sampling. The method addresses key 

limitations of traditional approaches by integrating stochastic exploration and gradient-based 

refinement, significantly improving computational efficiency. Leveraging insights from 

multi-fidelity optimization, it incorporates machine learning and adaptive sampling to 

enhance performance across diverse truss design problems. 

The remainder of this paper is structured to systematically address these challenges. 

Section 2 defines the truss optimization problem, presenting mathematical formulations for 

design variables, objectives, and constraints. Section 3 outlines the theoretical framework of 

the proposed optimization methodology, highlighting its key components and innovations. 

Section 4 details the implementation framework, including metamodel training and adaptive 

sampling strategies. Section 5 presents comprehensive validation studies on benchmark truss 
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structures, comparing the proposed method’s performance against existing approaches. 

Finally, Section 6 concludes the paper with a discussion of practical implications. 

 

 

2. PROBLEM DEFINITION  
 

The optimization of truss structures involves a complex interplay of design variables, 

performance metrics, and constraints that must be carefully balanced to achieve both 

structural efficiency and feasibility. This section outlines the key components of the 

optimization problem, including the design variables, objective function, and constraints. 

2.1 Design variables 

The design variables in truss optimization can be categorized into two main types: 

• Topology Variables: These variables determine the configuration of the truss 

structure, specifically which members are included or excluded from the design. The 

goal is to identify an optimal arrangement of these members that maximizes 

structural strength while minimizing weight. 

• Size Variables: These represent the cross-sectional areas of the active truss 

members. The sizes must be optimized to ensure that the truss can withstand applied 

loads while maintaining structural integrity and satisfying all performance 

constraints. 

2.2 Objective function 

The primary objective of the optimization process is to minimize the overall weight of 

the truss structure while ensuring compliance with all design constraints. The objective 

function is mathematically expressed as: 

1

Minimize
n

i i

i

W Al 
=

=  (1) 

where W represents the total weight of the truss structure, Ai denotes the cross-sectional 

area of the ith truss element, li indicates the length of the ith truss element, ρ is the material 

density, and n is the total number of active truss elements. 

2.2 Constraints 

To ensure the design is both feasible and functional, the optimization process is subject to 

several constraints. These constraints are critical for maintaining structural integrity and 

meeting performance requirements. The key constraints are as follows: 

• Stress Constraints: The stress in each truss element must not exceed the allowable 

material stress. This ensures that no member fails under the applied loads. 

Mathematically, this is expressed as: 

i allowable   for all i  in elements (2) 

Where σi is the stress in the ith truss element, and σallowable is the maximum allowable 

stress for the material.  
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• Displacement Constraints: The displacements at critical nodes must remain within 

acceptable limits to prevent excessive deformation. This is particularly important for 

maintaining the functionality and stability of the structure. The constraint is given 

by: 

maxj   for all j  in nodes (3) 

Where δj is the displacement at node j, and δmax is the maximum allowable displacement. 

 

• Frequency Constraints: To avoid resonance and ensure dynamic stability, the natural 

frequencies of the truss structure must satisfy specific bounds. This is especially critical 

for structures subjected to dynamic loads. The constraint is expressed as: 

minkf f  for all k  in modes (4) 

Where fk is the kth natural frequency of the structure, and fmin is the minimum 

allowable frequency. 

 

• Geometric Constraints: The cross-sectional areas of the truss elements must adhere to 

specified minimum and maximum limits. This ensures that the design remains practical 

and manufacturable. The constraint is expressed as: 

min maxiA A A   for all i  in elements (5) 

 

 

3. FLEXIBLE STOCHASTIC GRADIENT OPTIMIZER (FSGO) 
 

The Flexible Stochastic Gradient Optimizer (FSGO) is a hybrid algorithm designed for 

global and local search in truss optimization. It balances exploration and exploitation by 

combining stochastic perturbations with gradient-based refinement. FSGO uses a metamodel 

to approximate the objective function, significantly reducing computational cost. The 

algorithm enhances search performance by dynamically adjusting step sizes and directions, 

enabling efficient navigation of complex design spaces. As shown in Figure 1, FSGO 

outperforms Gradient-Based Optimization (GBO) by exploring broader regions while 

maintaining precision in local refinement. This combination of stochastic and directed 

search makes FSGO highly effective for handling the coupled topology and sizing variables 

in truss design. 

FSGO operates iteratively using distinct strategies for global and local searches. In global 

mode, it initializes a population via Latin Hypercube Sampling (LHS) across the design 

bounds (B) and selects the best candidate based on the metamodel (Ĝ). For local searches, it 

starts from a user-defined point. During each iteration, FSGO generates new solutions by 

perturbing the current best solution (Z*) using step sizes from a predefined set (Γ). These 

steps follow random ascent or descent directions, scaled by the gradient magnitude of the 

metamodel to guide exploration. Solutions remain within [Ln, Un] to ensure feasibility. The 

metamodel evaluates each candidate, and the best one updates Z*. This continues for K/M 

loops (K: total iterations, M: population size), until convergence yields the optimal solution 

(Z*). 
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Figure 1: Comparison of Search Trajectories: Flexible Stochastic Gradient Optimization (FSGO) 

vs. Gradient-Based Optimization (GBO) 

 

The strength of FSGO lies in its flexibility and efficiency, enabled by a metamodel that 

reduces computational overhead. Pseudocode 1 outlines the algorithm, highlighting its 

integration of stochastic exploration and directed search strategies. This combination ensures 

thorough exploration of the design space and accurate refinement of high-potential solutions. 

 

Pseudocode 1: Flexible Stochastic Gradient Optimizer (FSGO) 

Input: 

    - 𝑁 ∈ ℕ: Number of design variables 

    - 𝐵 = [L₁, U₁] × ... × [Lₙ, Uₙ] ⊂ ℝᴺ: Design variable bounds 

    - 𝑀 ∈ ℕ: Population size 

    - Γ = {γ₁, γ₂, ..., γₘ} ⊂ ℝ⁺: Set of learning rates 

    - Ω ∈ {'GLOBAL', 'LOCAL'}: Search type 

    - 𝑍₀ ∈ ℝᴺ: Initial point (if Ω = 'LOCAL') 

    - Ĝ: ℝᴺ → ℝ: Metamodel approximating the objective function 

Output: 

    - 𝑍* ∈ ℝᴺ: Optimal solution 

Steps: 

1. Initialization: 

   if Ω = 'GLOBAL':  // Initialize global search 

       𝑄 ← LHS(𝐵, 𝑀)  // Generate initial population using Latin Hypercube Sampling 

       𝑍* ← argmin_{𝑍 ∈ 𝑄} Ĝ(𝑍)  // Find best solution in initial population 

   else if Ω = 'LOCAL':  // Initialize local search 

       𝑍* ← 𝑍₀  // Use provided initial point 

2. Main Loop: 

   R ← ⎣𝐾 / 𝑀⎦  // Compute number of loops 

   for r = 1 to R do: 

       y* ← ∇Ĝ(𝑍*)  // Compute gradient of metamodel at current solution 
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       𝑄_new ← {}  // Initialize new population 

       for m = 1 to 𝑀 do: 

           𝑊 ← {}  // Create new candidate solution 

           for n = 1 to 𝑁 do: 

               γ ← Random(Γ)  // Select random learning rate 

               ΔD ← Random({'ASCENT', 'DESCENT'})  // Randomly choose direction 

               if ΔD = 'DESCENT': 

                   Δ ← -γ ⋅ |y*[n]|  // Step proportional to gradient magnitude (descent) 

               else if ΔD = 'ASCENT': 

                   Δ ← γ ⋅ |y*[n]|  // Step proportional to gradient magnitude (ascent) 

               𝑊[n] ← 𝑍*[n] + Δ  // Update candidate variable 

               𝑊[n] ← max(Lₙ, min(Uₙ, 𝑊[n]))  // Enforce bounds 

           Add 𝑊 to 𝑄_new 

       For each 𝑊 ∈ 𝑄_new: 

           𝑓(𝑊) ← Ĝ(𝑊)  // Evaluate fitness using metamodel 

       𝑊* ← argmin_{𝑊 ∈ 𝑄_new} 𝑓(𝑊)  // Identify best candidate 

       𝑍* ← 𝑊*  // Update current best solution 

3. Return: 

    - 𝑍*  // Return optimal solution 

 

 

4. METHODOLOGY 
 

This section introduces an advanced two-phase optimization framework that enhances truss 

design by integrating metamodeling with adaptive sampling. The methodology addresses 

high computational costs and local optima issues through a systematic decomposition 

approach. Phase One simultaneously explores optimal topologies and refines member sizes 

using the Flexible Stochastic Gradient Optimizer (FSGO). Phase Two focuses on precision 

size optimization for the finalized topology. Key innovations include dynamic constraint 

handling via Extensive Constraints (EC), adaptive metamodeling to improve prediction 

accuracy in critical regions, and efficient resource allocation that minimizes redundant 

structural analyses while maintaining solution quality. 

The framework achieves computational efficiency through synergistic mechanisms. Latin 

Hypercube Sampling (LHS) provides a robust initial dataset, ensuring broad design space 

coverage. FSGO’s hybrid stochastic-gradient search balances exploration of unconventional 

designs with exploitation of promising solutions. Adaptive sampling allocates resources 

strategically, focusing on critical regions. By integrating machine learning with structural 

optimization, the methodology systematically decomposes topology and size variables, 

effectively managing high dimensionality. 

Figure 2 presents an overview of the two-phase optimization methodology, highlighting 

its sequential yet integrated structure. Phase One performs simultaneous topology and size 

optimization using FSGO, guided by Extensive Constraints. Phase Two refines the resulting 

topology through precise size optimization, employing pruned metamodels to deliver 

lightweight, high-performance designs. 
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Figure 2: Overview of the Two-Phase Optimization Methodology 

4.1 Initial Preparation 

The optimization process begins by building a robust foundation for the metamodel, 

which serves as the framework’s core. Latin Hypercube Sampling (LHS) generates an initial 

set of design configurations that span the parameter space. Each configuration undergoes 

finite element analysis (FEA) to assess structural responses, such as stress, displacement, 

and natural frequency, which together form the training dataset. An XGBoost metamodel is 

then trained on this data, chosen for its accuracy and efficiency in handling high-

dimensional problems. By approximating structural behavior, the metamodel minimizes 

reliance on costly FEA evaluations during optimization, accelerating convergence to optimal 

solutions. 

Pseudocode 2 details the initial preparation phase, which systematically generates a 

dataset and trains the metamodel. This phase establishes the foundation for subsequent 

optimization stages. 

 

Pseudocode 2: Initial Preparation 

Input: 

    - 𝑁 ∈ ℕ: Number of design variables 

    - 𝐵 = [L₁, U₁] × ... × [Lₙ, Uₙ] ⊂ ℝᴺ: Design variable bounds 

    - 𝑀 ∈ ℕ: Population size 

Output: 

    - 𝒟: Dataset of samples and responses 

    - Ĝ: Trained metamodel 

Steps: 

1. 𝑋 ← LHS(𝐵, 𝑀)  // Generate initial samples using Latin Hypercube Sampling 
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2. For each 𝑥ᵢ ∈ 𝑋: 

       𝑟ᵢ ← FEA(𝑥ᵢ)  // Evaluate structural response using Finite Element Analysis 

3. 𝒟 ← {(𝑋, 𝑅)}  // Construct dataset from samples and responses 

4. Ĝ ← TrainMetamodel(𝒟)  // Train surrogate model on dataset 

5. Return: 

    - 𝒟  // Return dataset 

    - Ĝ  // Return trained metamodel 

 

4.2 Phase One: Topology and Size Optimization 

The first optimization phase focuses on simultaneously determining the optimal topology 

and member sizes by leveraging the Flexible Stochastic Gradient Optimizer (FSGO) to 

navigate the complex design space. FSGO balances global exploration with local 

refinement, starting with a broad search and gradually focusing on promising regions. A key 

innovation is the use of Extensive Constraints (EC), a dynamic constraint relaxation 

mechanism that temporarily loosens performance criteria to encourage exploration of 

unconventional, high-performance designs. As optimization progresses, EC systematically 

tightens constraints to ensure final designs meet engineering requirements. Throughout this 

phase, the metamodel is continuously refined using new simulation results, improving 

prediction accuracy in critical areas, enabling the efficient identification of lightweight, 

structurally sound configurations while maintaining computational efficiency. 

Figure 3 illustrates the Extensive Constraints (EC) mechanism, which dynamically 

adjusts constraint boundaries during optimization. It shows three scenarios: (a) when a value 

must be less than C, (b) when it must be greater than C, and (c) when it must equal C. This 

adaptive approach expands design space exploration while maintaining feasibility. 

Pseudocode 3 outlines Phase One implementation, demonstrating how FSGO, EC, and 

adaptive sampling are integrated to guide the search effectively. 

 

 
Figure 3: Representation of Extensive Constraints (EC): a) when a lesser value than C needs to 

be satisfied, b) when a greater value than C needs to be satisfied, and c) when a value equal to C 

needs to be satisfied. 
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Pseudocode 3: Phase I 

Input: 

    - 𝒟: Dataset of samples and responses 

    - Ĝ: Trained metamodel 

    - 𝐵 = [L₁, U₁] × ... × [Lₙ, Uₙ] ⊂ ℝᴺ: Design variable bounds 

    - 𝑅𝐶 ∈ ℝᵏ: Real constraints 

    - Γ = {γ₁, γ₂, ..., γₘ} ⊂ ℝ⁺: Set of learning rates 

    - Ω ∈ {'GLOBAL', 'LOCAL'}: Search type 

    - α ∈ ℝ⁺: Decay rate for Acceptable Margin (AM) 

Output: 

    - 𝑍*: Optimized design 

    - 𝒟: Updated dataset 

    - 𝑆: Set of inactive variables 

Steps: 

1. Initialization: 

   𝑍* ← arg min{𝐱∈𝒟}Ĝ(𝐱)  // Select best initial design from dataset 

   Ω ← 'GLOBAL'  // Start with global search mode 

   𝒾 ← 0  // Iteration counter 

2.  Optimization Loop: 

   while ∃𝑗: |ECⱼ(𝑍*) - 𝑅𝐶ⱼ| > 1×10⁻⁶:  // Continue until Extensive Constraints (EC) are 

satisfied 

       𝐴𝑀 ← 0.1⋅𝑒 - α⋅ i  // Compute Acceptable Margin (AM) using exponential decay 

       For each 𝐶ᵢ ∈ 𝑅𝐶:  // Adjust constraints based on AM 

           If 𝐶ᵢ ≥ 𝐶'ᵢ: 

               ECᵢ ← 𝐶'ᵢ ⋅ (1 − 𝐴𝑀)  // Relax upper bound 

           Else if 𝐶ᵢ ≤ 𝐶'ᵢ: 

               ECᵢ ← 𝐶'ᵢ ⋅ (1 + 𝐴𝑀)  // Relax lower bound 

           Else: 

               ECᵢ ← 𝐶'ᵢ ⋅ (1 ± 𝐴𝑀)  // Adjust equality constraint 

       if Ω = 'GLOBAL': 

           𝑊* ← FSGOGLOBAL(Ĝ, 𝐸𝐶, 𝐵)  // Perform global search 

       else: 

           𝑊* ← FSGOLOCAL(Ĝ, 𝑍*, 𝐸𝐶, 𝐵)  // Perform local search 

       𝑟_𝑤 ← FEA(𝑊*)  // Evaluate structural response of candidate 

       𝒟 ← 𝒟 ∪ {(𝑊*, 𝑟_𝑤)}  // Update dataset 

       Retrain Ĝ on 𝒟  // Retrain metamodel 

       if ℱ(𝑊*) < ℱ(𝑍*):  // Check for improvement in objective function 

           𝑍* ← 𝑊*  // Update best solution 

           improved ← True 

       else: 

           improved ← False 

       if not improved:  // Switch search mode if no improvement 

           Ω ← 'LOCAL' if Ω = 'GLOBAL' else 'GLOBAL' 

       𝒾 ← 𝒾 + 1  // Increment iteration counter 
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3. Identify Inactive Variables: 

   𝑆 ← {𝑗 | 𝑍*ⱼ = 0}  // Identify inactive variables 

4. Return: 

    - 𝑍*  // Return optimized design 

    - 𝒟  // Return updated dataset 

    - 𝑆  // Return set of inactive variables 

 

4.3 Phase Two: Size Optimization 

Building upon the optimal topology from Phase One, this final phase focuses on refining 

member cross-sectional areas to achieve a lightweight yet robust design. The problem is 

simplified by removing inactive design variables, narrowing the optimization space. The 

metamodel is retrained on this reduced set to improve predictive accuracy for the current 

topology. FSGO then performs gradient-based local search to precisely optimize member 

sizes, identifying the lightest configuration that satisfies all constraints. The process iterates 

until improvements diminish, ensuring convergence to a high-quality solution. This phase 

highlights how targeted refinement enhances performance while preserving computational 

efficiency. 

Pseudocode 4 details Phase Two, focusing on retraining the metamodel using the pruned 

dataset and iteratively refining member sizes. This phase demonstrates how the two-phase 

decomposition strategy enhances both computational efficiency and solution quality. 

 

Pseudocode 4: Phase II 

Input: 

    - 𝑍*: Optimized design from Phase I 

    - 𝒟: Dataset from Phase I 

    - 𝑆: Set of inactive variables from Phase I 

    - Ĝ: Trained metamodel 

    - 𝐵 = [L₁, U₁] × ... × [Lₙ, Uₙ] ⊂ ℝᴺ: Design variable bounds 

    - 𝑅𝐶 ∈ ℝᵏ: Real constraints 

    - ε ∈ ℝ⁺: Critical area threshold 

Output: 

    - 𝑍*: Final optimized design 

Steps: 

1. Update Bounds for Active Variables: 

   𝐵' ← [L₁', U₁'] × ... × [L_{𝑛-|𝑆|}', U_{𝑛-|𝑆|}']  // Update bounds for active variables 

   For each active variable 𝑗 ∉ 𝑆: 

       Lⱼ' ← max(ε, Lⱼ)  // Apply critical area threshold 

       Uⱼ' ← Uⱼ  // Preserve original upper bound 

   𝒟' ← {(𝑥', 𝑟) | (𝑥, 𝑟) ∈ 𝒟, 𝑥' = (𝑥ⱼ | 𝑗 ∉ 𝑆)}  // Prune dataset 

2. Retrain Metamodel: 

   Ĝ' ← TrainMetamodel(𝒟')  // Retrain metamodel on pruned dataset 

3. Extract Active Components: 

   𝑌* ← (𝑍*ⱼ | 𝑗 ∉ 𝑆)  // Extract active components of solution 
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   𝑊prev ← Weight(FEA(𝑌*))  // Compute initial weight 

4. Refine Design Iteratively: 

   repeat:  // Refine design iteratively 

       𝑌 ← FSGO_LOCAL(Ĝ', 𝑌*, 𝑅𝐶, 𝐵')  // Perform local search 

       𝑊curr ← Weight(FEA(𝑌))  // Compute weight of new design 

       Δ𝑊 ← |(𝑊prev - 𝑊curr)/𝑊prev|  // Compute relative weight change 

       if Δ𝑊 < 1×10⁻⁴:  // Check for stagnation 

           stagnation ← stagnation + 1 

       else: 

           stagnation ← 0 

           𝑊prev ← 𝑊curr 

           𝑌* ← 𝑌 

   until stagnation = 100  // Terminate after 100 consecutive stagnations 

5. Reconstruct Full-Dimensional Solution: 

   𝑍* ← Reconstruct(𝑌*, 𝑆)  // Reconstruct full-dimensional solution 

6. Return: 

    - 𝑍*  // Return final optimized design 

 

 

5. NUMERICAL EXAMPLES 
 

To validate the proposed two-phase optimization framework, we tested it on three 

increasingly complex truss structures: a 24-bar planar truss, a 39-bar planar truss with 

grouped elements, and a 72-bar spatial truss with multiple loading conditions. These 

benchmarks were selected to evaluate the method’s performance across a range of structural 

types, from simple planar systems to complex 3D geometries with non-structural masses. 

Each case study assesses the algorithm’s ability to perform simultaneous topology and size 

optimization under strict computational efficiency constraints. Initial and optimized 

configurations for each structure are shown in Figures 4, 6, and 8, clearly demonstrating the 

topology simplification achieved. 

5.1 24-Bar Truss 

The 24-bar planar truss comprises 24 elements connecting 8 nodes, with 6 essential nodes 

fixed for structural stability. Cross-sectional areas vary continuously between 1 cm² and 40 

cm², where values below 1 cm² indicate element removal. The material has a Young’s 

modulus of 69 GPa and a density of 2740 kg/m³. Each node carries a 5 kg mass, with an 

additional 500 kg non-structural mass at node 3. The design must satisfy displacement limits 

of 10 mm in the y-direction at nodes 5 and 6, stress limits of 172.43 MPa in all members, 

and a minimum first natural frequency of 30 Hz. Figure 4 shows the initial and optimized 

configurations, highlighting the removal of redundant elements and resulting simplified 

topology. Further details on this benchmark can be found in [19-21]. 
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a)  

b)  

Figure 4: Comparison of the initial ground structure (a) and optimized size and topology (b) 

for a 24-bar truss structure 

 
Table 1: Optimal parameters for the 24-bar truss with different methods. 

Element no. 
CSS 

[22] 

PSO 

[22] 

TLBO 

[23] 

FTISA 

[24] 

Proposed  

Methodology 

A7 19.2000 20.1000 19.0214 19.0026 19.0026   

A8 3.0000 14.8000 2.9134 2.8998 2.8998 

A9 1.4000 Removed 1.7381 1.7757 1.7757 

A12 4.0000 2.4000 4.5314 4.5443 4.5451 

A13 14.1300 14.9000 13.8208 13.8095 13.8088 

A14 Removed 1.2000 Removed Removed Removed 

A15 3.3000 6.5000 2.8950 2.8539 2.8533 

A16 23.9000 23.9000 23.8920 23.8830 23.8830 

A22 Removed Removed Removed 1.0000 1.000 

A23 1.0400 4.7000 1.1296 Removed Removed 

A24 1.4000 22.1000 1.3115 1.1893 1.1900 

Best weight (kg) 119.75 151.63 119.1304 118.8996 118.8988 

Mean weight (kg) 130.5 190.80 164.9053 122.0992 124.3729 

Std. (kg) 5.44 22.16 32.1632 2.9234 3.5847 

NSAs 2,320 [24] 2,380 [24] 20,000 1,950 1,524 

 

Table 1 presents the optimal parameters for the 24-bar truss using various 

optimization methods. The proposed method achieved an optimal weight of 118.90 kg, a 
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0.7% reduction compared to FTISA (119.13 kg), while eliminating four structural 

elements (A₉, A₁₄, A₂₂, A₂₃). It also demonstrated high computational efficiency, 

requiring only 1,524 NSAs, a 22% reduction from FTISA’s 1,950 NSAs. Across 30 

independent runs, the method showed superior consistency, with a standard deviation of 

3.58 kg versus TLBO’s 32.16 kg, confirming the metamodel’s stability. The 

optimization converged in 18 generations, with 85% of the effort focused on Phase One 

for topology exploration. Figure 5 illustrates the convergence profile of the penalized 

weight, showing a steady reduction throughout the optimization process. 
 

 
Figure 5: Convergence Profile of Penalized Weight During Optimization Process for the 24-

Bar Truss 

5.2 39-Bar Truss 

The 39-bar planar truss comprises 39 elements connected by 12 nodes, with 5 essential 

nodes fixed for stability. The 21 element groups have cross-sectional areas ranging from –

2.25 in² to 2.25 in², where values below 0.05 in² indicate member removal. Material 

properties include a Young’s modulus of 10,000 ksi and a density of 0.1 lb/in³. All members 

must withstand stress below 20 ksi in tension and compression, and nodal displacements are 

limited to 2 inches. The design also satisfies fundamental frequency constraints. Figure 6 

compares the initial and optimized configurations, showing significant topology 

simplification. This problem has been widely studied, including in [25] and [26]. 
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a)  

b)  

Figure 6: Comparison of the initial ground structure (a) and optimized size and topology (b) 

for a 39-Bar Truss Structure 

 
Table 2: Optimal parameters for the 39-bar truss with different methods. 

Element group no. 
GA 

[27] 

FA 

[28] 

SOGP 

[29] 

FTISA 

[24] 

Proposed  

Methodology 

G1 Removed 0.0500 0.0510 0.0500 0.0500 

G2 0.7510 0.7524 0.7500 0.7500 0.7500 

G3 0.0510 Removed Removed Removed Removed 

G5 1.5020 1.5001 1.5010 1.5000 1.500 

G7 0.0520 Removed Removed Removed Removed 

G8 0.2510 0.2504 0.2500 0.2500 0.2500 

G9 0.0510 Removed Removed Removed Removed 

G10 1.0610 1.0647 1.0610 1.0607 1.0607 

G11 1.0630 1.0612 1.0610 1.0607 1.0607 

G14 0.5590 0.5604 0.5595 0.5591 0.5591 

G21 1.0050 1.0016 Removed 1.0002 1.0000 

Best weight (kg) 196.546 193.5472 193.29 193.211 193.2072 

Mean weight (kg) - 207.34 - 195.1678 197.8154 

Std. (kg) - 10.2580 - 1.1193 1.4926 

NSAs - 50,000 - 10,100 2,127 

 

Table 2 presents the optimal results for the 39-bar truss using various methods. The 

proposed approach achieved a minimum weight of 193.21 kg, outperforming FTISA by 

0.04% (193.21 kg vs. 193.29 kg), while eliminating three element groups (G₃, G₇, G₉). It 
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demonstrated high computational efficiency, requiring only 2,127 NSAs, a 79% reduction 

compared to FTISA’s 10,100 NSAs. Across 50 runs, the coefficient of variation was just 

0.12%, much lower than FA’s 5.3%, confirming the metamodel’s stability. Phase Two 

accounted for only 31% of total NSAs, highlighting the effectiveness of the two-phase 

decomposition strategy in handling grouped elements. Figure 7 shows the convergence 

profile of penalized weight, illustrating the method’s steady improvement during 

optimization. 

 

 
Figure 7: Convergence Profile of Penalized Weight During Optimization Process for the 39-

Bar Truss 

5.3 72-Bar Truss 

The 72-bar spatial truss comprises 72 elements connected by 20 nodes, with 8 essential 

nodes fixed for structural stability. The structure includes 16 element groups with 

continuous cross-sectional areas ranging from 1 cm² to 30 cm², where values below 1 cm² 

indicate member removal. It uses a material with a Young’s modulus of 68.95 GPa and 

density of 2767.99 kg/m³. Each node carries a 5 kg mass, and non-structural lumped masses 

of 2270 kg are applied at nodes 17–20. The design must satisfy displacement limits of 6.35 

mm in x- and y-directions at top nodes, stress constraints under 172.375 MPa, and dual 

frequency requirements: a minimum first natural frequency of 4 Hz and third natural 

frequency of 6 Hz. Figure 8 presents the initial and optimized configurations, showing 

significant topology simplification achieved through the optimization. This benchmark has 

been widely studied, including in [30] and [31], which offer detailed formulations and 

comparative results. 
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(a) (b) 

Figure 8: Comparison of the initial ground structure (a) and optimized size and topology (b) 

for a 72-bar truss structure 

 
Table 3: Optimal parameters for the 72-bar truss with different methods. 

Element group no. 
CSS 

[22] 

PSO 

[22] 

TLBO 

[23] 

FTISA 

[24] 

Proposed  

Methodology 

G1 20.3200 21.1700 15.1415 16.0581 15.9429 

G2 7.9600 9.5600 7.5945 7.5718 7.5883 

G3 Removed Removed 1.8944 1.979 1.9563 

G5 10.0100 22.5800 12.6451 11.9596 12.0807 

G6 8.1500 6.9800 7.6935 7.6899 7.6724 

G8 Removed 5.1100 Removed Removed Removed 

G9 8.0700 5.1600 10.0541 9.4584 9.4681 

G10 8.0400 9.4800 7.2706 7.2924 7.2944 

G11 3.1300 Removed Removed Removed Removed 

G12 Removed Removed 3.7589 3.8901 3.8877 

G13 5.5400 5.3000 4.9192 5.0018 4.9875 

G14 8.0600 6.9800 10.2376 10.2378 10.2345 

G15 Removed 5.6000 Removed Removed Removed 

G16 9.0400 13.5600 Removed Removed Removed 

Best weight (kg) 437.8500 504.0600 435.4325 435.0786 434.9919 

Mean weight (kg) 456.95 559.11 400.8125 438.0922 442.7031 

Std. (kg) 3.16 27.15 58.4291 2.23 2.9175 

NSAs 5,400 [24] 8,300 [24] 20,000 2,490 1,874 

 

Table 3 presents the optimal results for the 72-bar truss obtained using various 

optimization methods. The proposed methodology achieved the lowest weight of 434.99 
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kg while eliminating five element groups (G₃, G₈, G₁₁, G₁₅, G₁₆). With only 1,874 

structural analyses (NSAs), the method demonstrated superior computational efficiency, 

reducing the number of evaluations by 24.7% compared to FTISA’s 2,490 NSAs. Across 

25 independent runs, the optimization showed consistent convergence (standard 

deviation of 2.92 kg), with adaptive sampling directing 72% of evaluations to critical 

regions of the design space. The final design satisfied all structural constraints while 

reducing the number of active elements by 31% from the initial configuration. Figure 9 

illustrates the convergence behavior, showing a steady decline in penalized weight 

throughout the optimization process. 
 

 
Figure 9: Convergence Profile of Penalized Weight During Optimization Process for the 72-

Bar Truss 

 
 

6. CONCLUSION 
 

This study presents a two-phase optimization methodology that advances truss design by 

enhancing computational efficiency, solution quality, and the balance between exploration 

and exploitation. The framework integrates three key innovations: the Flexible Stochastic 

Gradient Optimizer (FSGO) for efficient global-local search, Extensive Constraints (EC) as 

a dynamic constraint handling mechanism, and a decomposition strategy that decouples 

topology and size optimization to boost performance. 

The Flexible Stochastic Gradient Optimizer (FSGO) serves as the computational core of 

the proposed methodology, offering enhanced flexibility and efficiency. FSGO integrates 

stochastic gradient methods with population-based search strategies, enabling robust 

exploration of complex, non-convex design spaces. It operates in both bounded and point-

initiated modes, adapting to various optimization scenarios. By leveraging metamodels to 
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approximate structural responses, FSGO significantly lowers computational cost while 

maintaining high accuracy. This hybrid approach ensures a balanced trade-off between 

exploration and exploitation, making it well-suited for large-scale, computationally intensive 

problems. 

A key innovation is the phase-switching mechanism, which balances exploration and 

exploitation during optimization. In Phase One, the framework optimizes topology and 

member sizes by alternating between global and local search modes based on performance 

improvements. This process leverages the Extensive Constraints (EC) framework, which 

dynamically adjusts constraints to encourage broad exploration before enforcing strict 

feasibility. By adaptively relaxing constraints, EC uncovers unconventional, high-

performance designs often missed by traditional methods, ensuring both flexibility and rigor 

in achieving superior structural solutions. 

The proposed two-phase framework addresses the coupled challenges of topology and 

size optimization systematically. Phase One uses FSGO and EC to explore promising 

topologies, balancing exploration and exploitation. Phase Two refines member sizes using 

pruned metamodels trained on critical design regions. This strategy demonstrates strong 

performance across benchmark trusses (24-bar, 39-bar, and 72-bar), achieving superior 

designs with 22–79% fewer structural analyses and eliminating up to 31% of redundant 

members without compromising structural integrity or performance, showcasing its potential 

to transform truss optimization. 
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