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ABSTRACT 
 

Sound Energy Optimizer (SEO) is a recent metaheuristic algorithm inspired by the 

propagation and reception of sound waves in physical environments. While conventional 

metaheuristics that rely on random number generators with certain distributions, SEO can 

utilize various real-world or simulated sound signals as the source of stochasticity to guide its 

search process. Concerning structural design by SEO, the effect of natural sound signals is 

compared with the artificial signals generated from uniform or normal distributions. In this 

regard, a 244-bar power transmission tower and a 1016-bar double-layer grid are 

simultaneously optimized with continuous geometry as well as discrete sizing variables to 

evaluate the impact of input signals on convergence behavior, solution quality and robustness 

of the algorithm. A sensitivity analysis is conducted to calibrate key control parameters of 

SEO. The results declare that the nature of the input sound signal can significantly affect the 

algorithm’s exploration-exploitation balance. In this study, the "Knocking sound" signal 

yields the best performance, while the synthetic random signals revealed less stable 

optimization trajectories.  
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1. INTRODUCTION 
 

Structural engineering optimization problems with discrete variables pose significant challenges 

compared with their continuous counterparts, primarily due to the discontinuous nature of the 
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search space as well as its narrow feasible region. The inability to use gradient-based methods, the 

non-smoothness of the objective function, and the combinatorial complexity arising from the large 

number of possible combinations in selecting standard cross-sections are among the key factors 

that make solving such problems difficult. Moreover, practical design constraints and the necessity 

to comply with construction standards when restrict the design variables to a discrete set of 

allowable values, results in a rugged search space riddled with numerous local optima. 

Over the recent decays, numerous metaheuristic algorithms have been developed to tackle 

engineering design problems. Flower Pollination Algorithm [1], Vibrating Particles System [2], 

Jaya Algorithm [3], Dolphine Echolocation Algorithm [4], Opposition-Switching Search [5,6], 

Water Evaporation Optimization [7], Coyote Optimization Algorithm [8], Plasma Generation 

Optimization  [9], Marine Predator Algorithm [10], Escaping Bird Search  [11],  Fire Hawk 

Optimizer [12], Hippopotamus optimization algorithm [13] and Osprey Optimization 

Algorithm [14] can be mentioned among many others.  
Sound Energy Optimizer (SEO) [15] is one a most recent algorithm in the category of physics-

based metaheuristics, already employed to global and structural optimization. It is primarily 

inspired by the propagation and reception of sound waves in physical media, modeling the 

optimization process through simulating the behavior of sound energy diffusion in a virtual space. 

The sound signals can be sampled over time using digital microphones, converting them into 

discrete-time signals and storing them as numeric data. The result is used as input data within the 

computational framework of SEO, enabling an intelligent search process throughout the solution 

space based on a specific mathematical model. This approach facilitates the integration of real-

world environmental information into the optimization process and, by leveraging the inherent 

characteristics of wave propagation, assists in discovering optimal solutions for engineering 

problems. 
Some existing algorithms in the research literature are indirectly associated with acoustic 

behaviors and have occasionally been informally referred to as "sound-based algorithms" or 

"inspired by vocalization". For instance, the Harmony Search (HS) algorithm [16] is inspired by 

the musical improvisation process, where each candidate solution is treated as a musical note 

within a harmonic piece, and a "harmony memory" is employed to store and improve high-quality 

solutions. On the other hand, the Bat Algorithm (BA) [17,18] is based on the echolocation 

(biological sonar) behavior of bats in detecting the prey, utilizing acoustic parameters such as 

frequency, loudness, and pulse emission rate.  However none of them directly leverages acoustic 

sound signals in their search, except the recently introduced Sound Energy Optimizer. SEO 

establishes a novel foundation for direct incorporation of physical signals and sound related 

phenomena to metaheuristic approaches.  

Metaheuristic algorithms, generally utilize random numbers in some specific statistical 

distributions rather than using natural signals [15] or chaotic patterns [19–21]. In this study, the 

normal distribution is adjusted with zero mean and unit variance such that the generated values 

fall within the interval [−1, +1], while the uniform distribution is defined in the standard interval 

[0, 1] and can be linearly transformed into the interval [−1, +1] through a simple linear mapping. 

These random numbers serve as primary components for generating synthetic audio signals. By 

producing a large volume of random samples from such distributions, it becomes possible to 

simulate input signals with diverse statistical characteristics. This approach enables a systematic 

investigation on the impact of different random distributions in comparison to patterns of audio 

signals on the performance of SEO.  

The present study is structured within five sections: In Section 2, the conceptual framework 
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and theoretical foundations of the sound energy optimizer (SEO) are briefed, detailing its 

implementation steps. Section 3 analyzes the differences between sound signals generated using 

normal and uniform distributions, discussing their parameters in comparison with natural sound 

signals. In Section 4, after conducting a sensitivity analysis to tune the effective parameters of a 

virtual sound controller device, performance of SEO is studied comparing input signals based on 

different distributions. It is further evaluated by solution of two large-scale structural design 

problems; including both geometry and sizing optimization. Finally, Section 5 is dedicated to 

summarizing the key findings, interpreting the results, and providing recommendations for future 

developments. 

 

 

2. ALGORITHMIC IMPLEMENTATION OF THE SOUND ENERGY 

OPTIMIZATION 
 

As outlined in the preceding section, SEO initiates with an input sound signal, that is first 

digitized and subsequently normalized to ensure compatibility with the computational 

framework. The normalized signal serves as the foundational excitation source within the 

virtual simulation environment. The algorithm of SEO is then executed through the following 

systematic steps: 

 

2.1 Step 1: Initialization of Algorithmic Parameters 

Set the control parameters of the algorithm, including the number of particles N , the 

maximum number of iterations ( 𝑀𝐼 ) or function evaluations ( 𝑁𝐹𝐸𝑚𝑎𝑥 ) , and the key 

parameters of the Virtual Sound Controller (VSC). VSC is a core component of the SEO 

framework, designated to emulate the behavior of a physical sound amplifier in the time-

domain. It modulates the energy and waveform characteristics of the input signal through a 

set of tunable virtual parameters, analogous to control knobs on an audio device. VSC governs 

two principal operators: sound energy decay (SED) and probabilistic steps, which collectively 

simulate the attenuation of sound energy over time and introduce stochastic exploration into 

the search process, respectively. Operation and Exposition of the VSC architecture are 

detailed in [15]. 

For the optimization process, N particles are initialized by randomly distributing them 

across the feasible search space within the lower and upper bounds of the design variables. 

Each particle represents a candidate solution (design vector) on the objective function 

landscape. The current iteration counter CI is initialized to 1. 

 

2.2 Step 2: Signal Injection into the Virtual Environment 

The preprocessed (digitized and normalized) sound signal is introduced into the virtual 

environment. During this phase, the energy packets that correspond to zero amplitude signal 

samples are instantaneously dissipated, while non-zero energy components persist and 

contribute to dynamic evolution of the system. 
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2.3 Step 3: Evaluation and Identification of the Sensitive Particle 

The objective (cost) function value (interpreted as potential energy) is computed for each 

particle in the population. The particle exhibiting the minimum objective value is 

distinguished as the Sensitive Particle (SP), representing the current best solution. 

 

2.4 Step 4: Iterative Search Process 

The main optimization loop is executed until one of the predefined termination criteria is 

satisfied. The loop proceeds as follows: 

 

• Increment the iteration counter CI from 2 to MI , and update the Sound Life Time 

Factor (SLTF) according to Eq. (1): 
 

( )SLTF SEI Env CI=                                               (1) 

 

where CI and MI denote the current iteration and maximum iteration, respectively. SEI, 

or Sound Energy Intensity, acts as a scaling multiplicative factor for the normal 

envelope function, denoted by Env in Eq. (2). The parameters of Env (i.e., a, b, and c), 

are set to generate the desired pattern of sound energy decay.  
 

( ) 1

a
b

CI c MI
Env CI

MI c MI

 −  
= −  

−    

                                             (2) 

 

 • For each iteration, perform NPS (number of probabilistic steps) sub-iterations: 

 
◦ Create a duplicate of the current SP position. 
◦ Select a sound energy packet (SEP) to influence the SP. 
◦ Update the selected SEP using the SLTF and the stray noise (SN) as per Eq. (3): 

 

   SEP SLTF SN=                                                 (3) 

 
◦ Generate a probabilistic transfer step (PTS) using Eq. (4): 

 

( ) ( ) PTS j SEP SP j=                                               (4) 

 

◦ Compute the position of the new candidate sensitive particle (NCSP) via Eq. (5): 

 

( ) ( ) ( )   NCSP j SP j PTS j= +                                               (5) 

 

◦ Evaluate the potential energy for the NCSP. 
◦ If the potential energy of the NCSP is lower than that of the current SP, update the SP 

position to that of the NCSP. 
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• Termination Check: If 𝐶𝐼 < 𝑀𝐼 or the total number of function evaluations (NFE) has 

not exceeded the maximum allowable limit 𝑁𝐹𝐸 <  𝑁𝐹𝐸𝑚𝑎𝑥, increase CI and repeat 

the loop. Otherwise, proceed to Step 5. 

 

2.5 Step 5: Output of the Optimal Solution 

Upon satisfaction of the termination condition (by reaching either MI or 𝑁𝐹𝐸𝑚𝑎𝑥) the 

updated position of the sensitive particle is reported as the optimal solution. 

 

The termination mechanism prevents excessive resource consumption while allowing 

sufficient exploration of the search space. 

 

 
3. SOUND SAMPLES OR RANDOM NUMBERS 

 

In the present case study, two synthetic signals are considered with uniform and normal 

distributions,  as well as two natural signals; i.e. a Wolf sound and a Door knocking sound.  

Figure 1 compares distribution of these signals regarding their probability density. 

 

 

Figure 1: Probability density of the treated artificial and natural sound signals  
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Such distributions are transferred to the exploration and exploitation mechanisms in the 

algorithm. While the "Uniform" distribution exhibits a flat density [−1,1], promoting maximal 

exploration through unbiased sampling, bell-shaped curve of the "Normal" distribution supports a 

balanced trade-off between exploration and exploitation by concentrating search efforts around 

the mean and allowing occasional long-range jumps. Notably, natural sounds such as "Door 

knocking sound" and "Wolf sound" display non-uniform, structured distributions: the former is 

sharply peaked about zero, indicating a strong bias toward exploitation in localized regions, where 

the latter shows a broader, asymmetric spread, suggesting moderate exploration with directional 

preference, akin to modulated stochastic search behavior. These characteristics demonstrate that 

real-world audio signals inherently embody dynamic statistical properties similar to those 

intentionally engineered in metaheuristic processes. Consequently, natural sound distributions can 

serve not only as biologically plausible models of stochasticity but also as effective sources of 

adaptive randomness, offering a novel pathway to balance exploration and exploitation in 

optimization algorithms by leveraging the intrinsic variability and temporal structure of auditory 

phenomena. 
 

 
Figure 2: Time domain plots and Magnitude spectra for artificial and natural sound signals  
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The sound signals are also converted from the time domain to the frequency domain using the 

Fast Fourier Transform (FFT); allowing a detailed examination of their spectral characteristics. 

The extracted frequency-domain features, namely maximum magnitude (Max. Mag.), dominant 

frequency (Dom. Freq.), mean magnitude (Mean Mag.), energy, entropy, spectral centroid, and 

bandwidth, are summarized in Table 1. The time-domain waveforms (amplitude versus time) and 

their corresponding frequency-domain spectra (magnitude versus frequency) are shown in Figure 

2, offering a comprehensive visualization of both temporal and spectral attributes of the signals. 

Door knocking sound exhibits a relatively low max. magnitude (848.31) and dominant 

frequency (164.18 Hz), along with a low spectral centroid (257.15 Hz) and narrow bandwidth 

(173.77 Hz). By these characteristics it indicates energy concentration in the lower frequency 

range and a short, impulsive spectral profile. This corresponds to a transient, sparse signal with 

limited frequency spread; favoring exploitation due to its focus on a narrow region of the search 

space. In contrast, the sound of Wolf, shows a significantly higher max. magnitude (5792.65) and 

dominant frequency (584.35 Hz), with a higher centroid (738.32 Hz) and broader bandwidth 

(273.51 Hz), reflecting a richer, more sustained spectral structure. The matter offers a balanced 

but slightly exploration-biased behavior, as it covers a wider frequency band while maintaining 

energy concentration around dominant components. 

On the other hand, both random signals display extreme spectral characteristics. The uniform 

random signal has a very high dominant frequency (9912.55 Hz), an extremely high spectral 

centroid (12023.77 Hz), and the largest bandwidth (6925.22 Hz), indicating widespread energy 

distribution across the frequency spectrum. This aligns with a pure exploration strategy, where the 

signal excites a broad range of frequencies, mimicking an algorithm’s global search behavior. 

Similarly, the normal random signal also exhibits a high centroid (12050.81 Hz) and bandwidth 

(6957.95 Hz), despite a low dominant frequency (8.04 Hz), which may result from phase 

randomness rather than energy concentration. Its high entropy (10.0660) and energy values 

confirm a complex, unpredictable spectral structure, typical of stochastic processes used to 

maintain diversity in metaheuristic search. 

 

Table 1: Features of four natural and artificial sound signals 

Input Signal Type Centroid 
Dominiat 

Frequency 

Max. 

Magnitude 

Mean 

Magnitude 
Energy Entropy Band width 

Door knocking 

sound 
Natural 257.151 164.182 848.313 3.925 28097884.935 5.704 173.773 

Wolf sound Natural 738.318 584.352 5792.649 9.029 349044211.088 4.594 273.509 

Random: Uniform  Artificial 12023.772 9912.548 561.510 137.054 855714143.011 10.065 6925.220 

Random: Normal  Artificial 12050.809 8.041 447.750 113.920 590752002.295 10.066 6957.954 

 

Notably, both random signals demonstrate significantly higher energy and spectral entropy 

with respect to the natural sounds, reflecting their sustained and irregular amplitude fluctuations 

over time. High entropy indicates greater spectral disorder, which is desirable in exploration 

phases to avoid premature convergence. In contrast, the lower entropy of the Door knocking and 

Wolf sounds reflects more structured, predictable patterns, suitable for fine-tuning solutions in 

exploitation phases. 
To practically evaluate the impact of these acoustic signals on the optimization of real-world 
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structural problems, two complex, high-dimensional case studies will be solved in the following 

section by SEO under the influence of treated distinct input sound signals. It should be noted that, 

in addition to the inherent characteristics of each sound signal, SEO itself incorporates a unique 

decaying operator specifically designed to modulate exploration and exploitation. Such an 

operator is consistently applied to each sound signal, thereby ensuring a fair and balanced 

assessment of the individual effects of each acoustic input on the optimization performance. 
 

 

4. OPTIMIZATION OF STRUCTURAL PROBLEMS 
 

In this section, following the presentation of a general framework for formulating structural 

optimization problems, two numerical examples are presented in the fields of structural 

geometry and size optimization. Prior to performing the design, a sensitivity analysis is 

conducted on the key parameters of the SEO algorithm. Accordingly, the objective (cost) 

function is defined as [22]: 

( ) ( )

1

3 22

1 1 1

,
m m

a b

i i i ij ij

i i j

W A x A L A x x 
= = =

 
= = − 

 
                               (6) 

where 

( ), 0    1, 2, , kg A x k p =      

    1, 2, , LB UB

i i iX X X i n  =   

 

In Eq. (6), 𝐴 = {𝐴1, 𝐴2, … ,  𝐴𝑚}𝑇  denotes the vector of size variables, where the cross-

sectional areas of the members are selected from a predefined discrete list of sections.  

Additionally, {𝑥1,  𝑥2, … ,  𝑥𝑛}𝑇 represents the vector of nodal coordinates. The design vector 

X is consisted by both 𝐴  and 𝑥  vectors. The function 𝑊(𝐴, 𝑥)  is a nonlinear objective 

function representing the total structural weight. Here, 𝜌 denotes the material density, while 

𝐴𝑖 and 𝐿𝑖 are the cross-sectional area and length of the ith member, respectively. Finally, 𝑥𝑖𝑗
𝑟  

represents the jth coordinate of node r in member i .  Each variable 𝑋𝑖 must lie within its lower 

bound 𝑋𝑖
𝐿𝐵 and upper bound 𝑋𝑖

𝑈𝐵. The functions 𝑔𝑘(𝐴, 𝑥) represent the behavior constraints 

of the structural problem. 
Performance of the algorithm is evaluated by the present works, under fair comparison 

conditions [11]. In each independent case, SEO is run 10 times. Constraint handling is 

implemented using an external penalty function, with the penalty coefficient of 1000. The 

population size N is set to 10, and the objective function evaluations are limited to 15000.   
 

5.1 The 244-bar power transmission tower 
5.1.1 Problem definition 

Figure 3 illustrates the structural geometry of a 244-member transmission tower, consisting 

of 77 nodes and 244 elements. To reduce the number of design variables and satisfy 

constructability requirements, the members are grouped into 26 design groups. The design 
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variables correspond to the cross-sectional areas of the structural members, which are selected 

from a discrete set of standard sections in Table 2. 

 
Figure 3: The 244-bar power transmission tower 

 

The material properties include: the density of 2767.99 𝑘𝑔/𝑚³, the elastic modulus of 

210 𝐺𝑃𝑎  and the yield strength of 233.3 𝑀𝑃𝑎 . The problem is modeled under two 

optimization scenarios: sizing design and simultaneous design of size and geometry.  
Loading conditions and nodal displacement constraints are summarized in Table 3. 

According to the specifications of AISC-ASD89, the allowable tensile stress (+σ) and 

compressive stress (−σ) are calculated by Eq.(7) and Eq.(8), considering the stability of 

compression members and buckling effects. 

 

0.6 yF + =                                                                                       (7) 
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




−

   
−    

      
= + −  
  

 


                                         (8) 

where E denotes Young's modulus, 𝐹𝑦 represents the yield strength, 𝐶𝑐 = √2𝜋2𝐸/𝐹𝑦)  is 

the critical slenderness ratio, and 𝜆 = 𝑘𝐿/𝑟 represents the maximum slenderness ratio. Here, 
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k is the effective length factor, L is the member length, and r is the gyration radius of the cross-

section. 
Table 2: The available cross-sectional areas for designing the 244-bar power transmission tower 

No. Section 
A 

(𝐦𝐦𝟐) 

r 

(𝐦𝐦) 
No. Section 

A 

(𝐦𝐦𝟐) 

r 

(𝐦𝐦) 
No. Section 

A 

(𝐦𝐦𝟐) 

r 

(𝐦𝐦) 

1 L1.25X1.25X3/16 280.00 6.198 16 L3.5X3.5X7/16 1567.74 14.859 31 L5X5X3/4 2329.03 25.146 

2 L2X2X1/4 312.26 10.109 17 L3X3X1/2 1774.19 14.834 32 L5X5X3/8 2696.77 25.044 

3 L2X2X1/8 461.29 10.008 18 L3X3X1/4 1090.32 17.628 33 L5X5X5/16 3064.51 24.714 

4 L2X2X3/16 605.16 9.931 19 L3X3X3/16 1348.38 17.526 34 L5X5X5/8 3780.64 24.841 

5 L2X2X3/8 741.93 9.906 20 L3X3X3/8 1600.00 17.450 35 L5X5X7/16 4477.41 24.765 

6 L2X2X5/16 877.42 9.881 21 L3X3X5/16 1851.61 17.374 36 L5X5X7/8 5148.38 24.714 

7 L2.5X2.5X1/2 581.93 12.573 22 L3X3X7/16 2096.77 17.348 37 L6X6X1 2354.83 30.480 

8 L2.5X2.5X1/4 767.74 12.471 23 L4X4X1/2 1251.61 20.193 38 L6X6X1/2 2812.90 30.226 

9 L2.5X2.5X3/16 941.93 12.421 24 L4X4X1/4 1548.38 20.091 39 L6X6X3/4 3264.51 30.226 

10 L2.5X2.5X3/8 1116.13 12.370 25 L4X4X3/4 1845.16 20.015 40 L6X6X3/8 3709.67 29.972 

11 L2.5X2.5X5/16 1451.61 12.370 26 L4X4X3/8 2135.48 19.939 41 L6X6X5/16 4148.38 29.972 

12 L3.5X3.5X1/2 703.22 15.138 27 L4X4X5/16 2419.35 19.863 42 L6X6X5/8 4587.09 29.972 

13 L3.5X3.5X1/4 929.03 15.037 28 L4X4X5/8 2974.19 19.787 43 L6X6X7/16 5445.15 29.718 

14 L3.5X3.5X3/8 1148.38 14.961 29 L4X4X7/16 3509.67 19.761 44 L6X6X7/8 6277.41 29.718 

15 L3.5X3.5X5/16 1361.29 14.910 30 L5X5X1/2 1954.83 23.978 45 L6X6X9/16 7096.76 29.718 

 

In the combined size and geometry optimization scenario, the node 29 is considered a key 

node, allowed to move freely in the two horizontal directions, X and Y, with equal 

displacements. The coordinates of this node are permitted to vary within the range of 700 to 

1300 mm. Similarly, the node 77 has coordinates that can be adjusted within the range of 2000 

to 5000 mm during optimization. 
 

Table 3:  The load cases and displacement bounds for the 244-bar power transmission tower 

Load 

Case 
Node 

Loads (𝐤𝐍) Displacement limitations (𝐦𝐦) 

𝐅 𝐱  𝐅𝐳 X Z 

1 1 10 - 30 45 15 

 2 10 - 30 45 15 

 17 35 - 90 30 15 

 24 175 - 45 30 15 

 25 175 - 45 30 15 

2 1 0 - 360 45 15 

 2 0 - 360 45 15 

 17 0 - 180 30 15 

 24 0 - 90 30 15 

 25 0 - 90 30 15 
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To preserve the structural and geometric symmetry of the tower, positions of the nodes 28, 

26, and 27 are defined relative to the node 29. Likewise, positions of the nodes 74, 75, and 76 

are determined based on geometric relationships with the node 77. The remaining nodes are 

accordingly adjusted in relation to the aforementioned nodes to maintain the overall tower 

shape and its symmetry characteristics. For instance, nodes 29 and 27, along with their 

corresponding symmetric counterparts on opposite sides of the structure, must remain aligned 

a straight line to ensure geometric symmetry and proper load distribution. 

Such a simultaneous geometry and sizing design enables enhanced structural performance 

through the coordinated adjustment of member sizing and geometric configuration, satisfying 

structural requirements, symmetry constraints, and practical constructability. 
 

Table 4: The sensitivity of SEO results in the 1st example to the VCS key parameters 

No SEI a b c 
Best 

(𝒄𝒎𝟑) 

Mean 

(𝒄𝒎𝟑) 

Std 

(𝒄𝒎𝟑) 
No SEI a b c 

Best 

(𝒄𝒎𝟑) 

Mean 

(𝒄𝒎𝟑) 

Std 

(𝒄𝒎𝟑) 

1 0.25 0.25 0.5 0 880,924.8 1.495e+08 4.70e+08 25 0.25 4 1 0 1.121e+06 5.24e+08 1.10e+09 

2 1 0.25 0.5 0 814,504.1 824,372.5 7,920.5 26 1 4 1 0 835,976.6 870,288.8 35,920.1 

3 4 0.25 0.5 0 827,921.6 883,276.8 26,591.0 27 4 4 1 0 758,241.3 838,738.6 38,941.4 

4 10 0.25 0.5 0 1.012e+06 1.055e+06 29,946.9 28 10 4 1 0 803,798.3 846,285.9 24,393.7 

5 0.25 1 0.5 0 1.002e+06 2.427e+08 7.63e+08 29 0.25 6 1 0 1.203e+06 5.67e+08 1.19e+09 

6 1 1 0.5 0 818,808.3 844,856.8 39,241.1 30 1 6 1 0 856,522.8 894,175.9 25,706.6 

7 4 1 0.5 0 762,585.0 817,689.0 28,217.8 31 4 6 1 0 815,436.0 845,371.0 30,719.6 

8 10 1 0.5 0 779,276.6 837,532.8 26,250.6 32 10 6 1 0 790,528.8 833,197.3 26,835.7 

9 0.25 4 0.5 0 1.602e+06 16.17e+08 3.82e+09 33 0.25 0.25 1.5 0 859,021.4 904,852.5 49,642.8 

10 1 4 0.5 0 920,914.9 1.047e+06 878,67.1 34 1 0.25 1.5 0 819,332.2 830,309.7 94,85.5 

11 4 4 0.5 0 827,801.3 871,680.1 30,758.3 35 4 0.25 1.5 0 883,216.8 925,715.3 37,278.7 

12 10 4 0.5 0 826,428.2 848,868.9 22,879.6 36 10 0.25 1.5 0 1.034e+06 1.08e+06 29,356.0 

13 0.25 6 0.5 0 1.725e+06 1.725e+09 2.41e+09 37 0.25 1 1.5 0 885,447.9 940,141.6 40,140.9 

14 1 6 0.5 0 1.101e+06 1.245e+06 131,792.5 38 1 1 1.5 0 813,174.9 827,780.6 13,590.7 

15 4 6 0.5 0 849,301.1 916,852.4 50,068.4 39 4 1 1.5 0 826,701.1 842,792.9 9,656.4 

16 10 6 0.5 0 841,181.1 887,874.6 45,718.3 40 10 1 1.5 0 816,025.3 870,565.8 26,742.8 

17 0.25 0.25 1 0 843,066.5 891,458.2 51,215.8 41 0.25 4 1.5 0 939,093.6 2.28e+08 7.18e+08 

18 1 0.25 1 0 819,657.5 830,793.6 7,070.2 42 1 4 1.5 0 820,763.7 838,336.3 8,639.5 

19 4 0.25 1 0 872,576.1 915,735.4 31,543.1 43 4 4 1.5 0 815,482.1 828,596.2 8,505.7 

20 10 0.25 1 0 1.005e+06 1.056e+06 45,467.6 44 10 4 1.5 0 826,339.7 851,279.3 24,215.0 

21 0.25 1 1 0 924,182.3 1.570e+08 4.95e+09 45 0.25 6 1.5 0 1.011e+06 2.41e+08 7.59e+08 

22 1 1 1 0 819,039.8 840,511.0 40,362.7 46 1 6 1.5 0 820,826.6 847,660.7 153,65.9 

23 4 1 1 0 762,505.7 829,581.2 25,234.9 47 4 6 1.5 0 826,937.8 844,486.4 15,962.0 

24 10 1 1 0 837,113.0 872,059.0 20,198.6 48 10 6 1.5 0 806,404.1 843,467.4 21,672.8 

 

5.1.2 Sensitivity analysis 

A comprehensive sensitivity analysis was conducted to investigate the influence of key 
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parameters: SEI, a , b , and c, on the performance of the algorithm. The study evaluated 48 

alternative combinations of the parameters by varying 𝑆𝐸𝐼 within {0.25, 1, 4, 10}, 𝑎 within 

{0.25, 1, 4, 6}, and 𝑏 within {0.5, 1, 1.5}, while 𝑐 was fixed to zero. For each case, the 

algorithm’s performance was assessed using three metrics: the best cost value, the mean cost 

across independent runs, and the standard deviation (𝑆𝑡𝑑) as a measure of consistency. This 

approach enabled identification of robust parameter settings and detection of the conditions 

leading to instability or poor convergence. 

According to  

Table 4, a strong interaction is observed between 𝑆𝐸𝐼 and a with significant implications 

for algorithmic stability. Generally, when 𝑆𝐸𝐼 was set to 0.25 and 𝑎 ≥ 1, the mean objective 

values increased dramatically, exceeding hundreds of millions, and were accompanied by 

extremely high standard deviation (e.g., over 700 million), indicating severe run-to-run 

variability and a lack of convergence reliability. These outcomes suggest that such 

combinations can lead to unstable search behavior, likely due to an imbalance between 

exploration and exploitation. In contrast, moderate values of 𝑆𝐸𝐼 between 1 to 4, combined 

with 𝑎 = 1 consistently yielded the most favorable results, achieving mean objective values 

below 850000 with significantly lower variability, thus ensuring both solution quality and 

repeatability. Figure 4 illustrates sensitivity of SEO to 𝑎, 𝑏, 𝑆𝐸𝐼 distinctly as well as the overall 

picture. 

Parameter 𝑏 demonstrated a stabilizing effect across configurations. Increasing 𝑏 from 0.5 

to 1.5 generally reduced both the mean objective value and the standard deviation, particularly 

under favorable 𝑆𝐸𝐼 and 𝑎 settings. The lowest variability (𝑆𝑡𝑑 < 8100) was observed when 

𝑎 = 1, 𝑏 = 1.5, and 𝑆𝐸𝐼 = 4, highlighting its role in enhancing convergence consistency. 

The optimal case among the treated alternatives, is 𝑆𝐸𝐼 = 4 , 𝑎 = 4 , 𝑏 = 1 , and 𝑐 = 0 ; 

(shown in Figure 5) that achieves the best cost (about 758200) with almost  minimal 

dispersion.  
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Figure 4: Sensitivity of the best result of SEO to VCS parameters in the 244-bar truss design 
Such a sensitivity analysis underscores the critical importance of parameter calibration. 

The parameters 𝑆𝐸𝐼 and 𝑎 exhibit high nonlinearity and strong interaction effects, requiring 

careful tuning to avoid erratic behavior. In contrast, 𝑏 acts as a robustness-enhancing factor. 

 
Table 5: Comparison of optimum designs for the 244-bar power transmission tower 

No 
Design 

Var. 

JA [23] 
SEO 

Rabbit [15] 

SEO 

Uniform Rand 

SEO 

Normal Rand 

SEO 

Knocking 

Size  Size Layout Layout Layout 

1 A1 280 280 767.74 312.26 2096.77 

2 A2  −  A9 1845.16 1845.16 3264.51 1845.16 1845.16 

3 A10  −  A21 461.29 461.29 1148.38 1451.61 461.29 

4 A22  −  A30 1954.83 1845.16 3509.67 3509.67 2419.35 

5 A31  −  A34 703.22 703.22 941.93 3509.67 581.93 

6 A35  −  A42 2696.77 2696.77 2419.35 1954.83 2096.77 

7 A43  −  A46 280 280 703.22 280 941.93 

8 A47  −  A54 2696.77 2696.77 3264.51 3064.51 2696.77 

9 A55  −  A60 280 280 581.93 1361.29 767.74 

10 A61  −  A68 280 280 461.29 280 461.29 

11 A69  −  A76 3064.51 2696.77 2135.48 2696.77 2329.03 

12 A77  −  A92 2329.03 2329.03 2329.03 2329.03 2696.77 

13 A93  −  A96 581.93 581.93 1251.61 312.26 1845.16 

14 A97  −  A98 280 280 312.26 605.16 877.42 

15 A99  −  A110 6277.41 6277.41 4148.38 5148.38 3264.51 

16 A111  −  A134 1845.16 1845.16 1251.61 1251.61 2329.03 
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17 A135  −  A146 280 280 280 461.29 605.16 

18 A147  −  A154 280 280 312.26 280 581.93 

19 A155  −  A156 280 280 312.26 312.26 941.93 

20 A157  −  A168 5148.38 5445.15 4477.41 5148.38 3780.64 

21 A169  −  A192 1251.61 1251.61 929.03 1090.32 1548.38 

22 A193  −  A208 280 280 461.29 280 312.26 

23 A209  −  A216 280 280 280 312.26 605.16 

24 A217  −  A224 280 280 280 767.74 312.26 

25 A225  −  A232 280 280 280 1090.32 461.29 

26 A233  −  A244 280 280 461.29 280 312.26 

27 𝑋26 (cm) - - 104.921 97.1313 155.871 

28 𝑋74 (cm) - - 452.825 391.123 347.670 

Best volume (𝒄𝒎𝟑) 861,705.0 861,165.1234 852,513.77 915,903.51 758,241.31 

Mean 863,374.8 871,816.0650 967,209.74 967,763.83 838,738.57 

SD 2,990.7 8,164.5612 139,438.68 70,481.54 38,941.373 

𝐍𝐅𝐄𝒎𝒂𝒙 (𝑵𝑭𝑬) (13,326) 25,000 (8,306) 15,000 15,000 15,000 

 
Figure 5: The selected decay pattern in SEO after the sensitivity analysis 

 

5.1.3 Investigating the effectiveness of input signals 

The optimization results of the 244-bar power transmission tower, summarized in Table 5, 

present a comparative analysis of the Sound Energy Optimizer (SEO) under three different 

sound signal inputs: "SEO-Normal Random", "SEO-Uniform Random", and "SEO-

Knocking", with the aim of evaluating the influence of these auditory signals on the 

algorithm’s performance. 
The objective was to identify which type of acoustic signal enhances convergence and 

solution quality in structural layout optimization. Among the three, SEO-Knocking achieved 

the best optimal design with a minimum volume of 758,241.31 cm³, significantly 

outperforming both SEO-Normal Random (852,513.77 cm³) and SEO-Uniform Random 

(915,903.51 cm³). Furthermore, SEO-Knocking demonstrated superior consistency, yielding 

a lower mean volume (838,738.57 cm³) and a smaller standard deviation (38,941.373 cm³) 

compared to the other variants, which exhibited higher means and greater variability. This 

indicates that the structured impulsive pattern of the "knocking" signal improves the balance 

between exploration and exploitation in the search process. In contrast, the random-noise 

signals, particularly the uniform random, led to less stable and less efficient optimization 

trajectories. Therefore, the results suggest that the nature of the acoustic input signal 
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meaningfully influences SEO’s performance, with the knocking signal providing the most 

effective guidance for reaching high-quality solutions in structural optimization problems. 

Furthermore, given that transmission towers are generally erected in open environments, 

simultaneous optimization of their geometric configuration and dimensional parameters offers 

a promising approach to substantially reduce structural weight. This reduction not only lowers 

material consumption and construction costs for new transmission infrastructure but also 

supports a more economical and sustainable expansion of power networks in response to rising 

electricity demand. Consequently, such optimal designs enhance the power system’s capacity 

to meet growing energy needs efficiently, while ensuring the protection of public health, 

safety, and environmental integrity. 
 

5.2 The 1016-bar double-layer grid 

5.2.1 Problem definition 
As a representative example of large-scale double-layer grids the 1016-member space truss 

of Figure 6 is considered here. This structure features a double-layered lattice configuration, 

which is widely used in the roofing of large industrial and public halls due to its high stiffness, 

efficient load distribution, and excellent structural performance. 

 
Figure 6: The 1016-bar double-layer grid 

 

To reduce the number of design variables and comply with practical construction 

requirements and standardization, the structural members are grouped into 25 design groups. 

In this approach, all members within a group share the same cross-sectional area, and section 

selection is made from a discrete set of standard steel profiles. This discrete set is presented 

in   

In this problem, loading is applied as a vertical downward concentrated force of 30 𝑘𝑁 at 

all upper-layer joints of the structure. It represents a combination of dead load, live load, and 

environmental loads under practical operating conditions. 
A nodal displacement constraint is also considered, such that the maximum allowable 

vertical displacement (in the z-direction) is limited to 0.15 m. The limit is imposed to ensure 

adequate structural performance under loading and to prevent excessive deformations. 

Additionally, slenderness ratio constraints are applied: for tension members, the 



M. Shahrouzi and A.M. Taghavi 

 

350 

slenderness ratio must not exceed 300, and for compression members, it must not exceed 200. 

These limitations are implemented to prevent buckling in compression members and to ensure 

overall structural stability under maximum loading conditions. 

Stress and stability constraints are enforced according to the AISC 360-10 specification 

using the Load and Resistance Factor Design (LRFD) method. Accordingly, the allowable 

stress is calculated by Eq. (9) for tension members, and by Eq.(10) for compression members. 

This design approach ensures structural safety against various failure modes (including tensile 

yielding, compressive buckling, and local or global instability) by incorporating appropriate 

partial safety factors. 
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 Table 6. The use of discrete values ensures that the optimized solutions are compatible 

with real-world manufacturing and construction practices for steel profiles. 

The material properties are as follows: density of 7833.413 𝑘𝑔/𝑚³, elastic modulus of 

205 𝐺𝑃𝑎 , and yield strength of 248.2 𝑀𝑃𝑎 . These values correspond to high-quality 

structural steel commonly used in construction.  

In this problem, loading is applied as a vertical downward concentrated force of 30 𝑘𝑁 at 

all upper-layer joints of the structure. It represents a combination of dead load, live load, and 

environmental loads under practical operating conditions. 
A nodal displacement constraint is also considered, such that the maximum allowable 

vertical displacement (in the z-direction) is limited to 0.15 m. The limit is imposed to ensure 

adequate structural performance under loading and to prevent excessive deformations. 

Additionally, slenderness ratio constraints are applied: for tension members, the 

slenderness ratio must not exceed 300, and for compression members, it must not exceed 200. 

These limitations are implemented to prevent buckling in compression members and to ensure 

overall structural stability under maximum loading conditions. 

Stress and stability constraints are enforced according to the AISC 360-10 specification 

using the Load and Resistance Factor Design (LRFD) method. Accordingly, the allowable 

stress is calculated by Eq. (9) for tension members, and by Eq.(10) for compression members. 

This design approach ensures structural safety against various failure modes (including tensile 

yielding, compressive buckling, and local or global instability) by incorporating appropriate 

partial safety factors. 
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 Table 6: The steel pipe sections 

No. Type  
Area 

𝐢𝐧𝟐 (𝐜𝐦𝟐) 

Gyration 

radius 

𝒊𝒏 (𝒄𝒎) 

No. Type  

Area 

𝐢𝐧𝟐 

(𝐜𝐦𝟐) 

Gyration 

radius 

𝒊𝒏 (𝒄𝒎) 

1 ST 1/2 
0.25 

(1.6129) 

0.2608 

(0.662432) 
20 EST 3 1/2 

3.68 

(23.741888) 

1.3063 

(3.318002) 

2 EST 1/2 
0.32 

(2.064512) 

0.25 

(0.635) 
21 DEST 2 1/2 

4.03 

(25.999948) 

0.8439 

(2.143506) 

3 ST 3/4 
0.33 

(2.129028) 

0.3333 

(0.846582) 
22 ST 5 

4.3 

(27.74188) 

1.8801 

(4.775454) 

4 EST 3/4 
0.43 

(2.774188) 

0.3224 

(0.818896) 
23 EST 4 

4.41 

(28.451556) 

1.4762 

(3.749548) 

5 ST 1 
0.49 

(3.161284) 

0.4197 

(1.066038) 
24 DEST 3 

5.47 

(35.290252) 

1.0465 

(2.65811) 

6 EST 1 
0.64 

(4.129024) 

0.4073 

(1.034542) 
25 ST 6 

5.58 

(35.999928) 

2.2441 

(5.700014) 

7 ST 1 1/4 
0.67 

(4.322572) 

0.5399 

(1.371346) 
26 EST 5 

6.11 

(39.419276) 

1.8406 

(4.675124) 

8 ST 1 1/2 
0.8 

(5.16128) 

0.6229 

(1.582166) 
27 DEST 4 

8.1 

(52.25796) 

1.3744 

(3.490976) 

9 EST 1 1/4 
0.88 

(5.677408) 

0.5241 

(1.331214) 
28 ST 8 

8.4 

(54.19344) 

2.9378 

(7.462012) 

10 EST 1 1/2 
1.07 

(6.903212) 

0.7889 

(2.003806) 
29 EST 6 

8.4 

(54.19344) 

2.1958 

(5.577332) 

11 ST 2 
1.07 

(6.903212) 

0.6045 

(1.53543) 
30 DEST 5 

11.3 

(72.90308) 

1.7244 

(4.379976) 

12 EST 2 
1.48 

(9.548368) 

0.7658 

(1.945132) 
31 ST 10 

11.9 

(76.77404) 

3.6782 

(9.342628) 

13 ST 2 1/2 
1.7 

(10.96772) 

0.9515 

(2.41681) 
32 EST 8 

12.8 

(82.58048) 

2.8777 

(7.309358) 

14 ST 3 
2.23 

(14.387068) 

1.1637 

(2.955798) 
33 ST 12 

14.6 

(94.19336) 

4.3715 

(11.10361) 

15 EST 2 1/2 
2.25 

(14.5161) 

0.9238 

(2.346452) 
34 DEST 6 

15.6 

(100.64496) 

2.0616 

(5.236464) 

16 DEST 2 
2.66 

(17.161256) 

0.7018 

(1.782572) 
35 EST 10 

16.1 

(103.87076) 

3.6287 

(9.216898) 

17 ST 3 1/2 
2.68 

(17.290288) 

1.3369 

(3.395726) 
36 EST 12 

19.2 

(123.87072) 

4.3421 

(11.028934) 

18 EST 3 
3.02 

(19.483832) 

1.1349 

(2.882646) 
37 DEST 8 

21.3 

(137.41908) 

2.7578 

(7.004812) 

19 ST 4 
3.17 

(20.451572) 

1.5102 

(3.835908) 
-     
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where 𝑃𝑢 denotes the required strength (demand), and 𝑃𝑟 represents the nominal axial 

strength. 𝐴𝑔 is the gross cross-sectional area of the member, and 𝐴𝑒 is the effective net area. 

The yield stress is denoted by 𝐹𝑦 , and the ultimate tensile strength is represented by 𝐹𝑢 . 𝐹𝑒 

indicates the elastic buckling stress, while 𝐹𝑐𝑟 stands for the critical buckling stress. The 

modulus of elasticity is denoted by E . L is the unbraced length of the member, r is the radius 

of gyration, and k is the effective length factor, which is taken as unity in this example. 

 
Table 7: Comparison of the optimum designs for the 1016-bar double-layer grid 

Sizing 
variables 

ECBO 

[24] 
DE-MENT 
[25] 

ESSOA 
[26] 

SEO – 
Rabbit [15] 

SEO 

Uniform Rand 

SEO 

Normal Rand 

SEO 

Knocking 

A1 EST 5 ST 2 1/2 ST 6 ST 6 EST 5 DEST 4 EST 5 

A2 EST 5 DEST 2 ST 5 EST 5 DEST 3 EST 4 EST 4 

A3 ST 3 DEST 2 1/2 EST 3 ST 3 1/2 ST 4 ST 3 ST 3 1/2 

A4 ST 3 1/2 DEST 3 EST 2 1/2 ST 2 1/2 ST 3 EST 3 1/2 ST 2 1/2 

A5 ST 2 1/2 ST 6 ST 3 ST 2 1/2 ST 4 ST 3 1/2 ST 3 

A6 ST 2 DEST 5 EST 1 1/2 ST 3 EST 2 ST 2 1/2 EST 1 1/2 

A7 DEST 2 ST 8 EST 1 1/2 DEST 2 EST 2 EST 1 EST 1 

A8 DEST 2 ST 6 ST 1 1/2 ST 3 EST 1 EST 1 1/2 EST 2 

A9 EST 2 EST 4 EST 3 DEST 2 1/2 ST 1 ST 1 1/4 ST 3 

A10 ST 6 DEST 2 1/2 EST 2 1/2 ST 3 EST 1 DEST 2 1/2 EST 3 1/2 

A11 ST 2 ST 5 EST 4 EST 3 1/2 DEST 5 ST 3 1/2 DEST 2 

A12 EST 8 ST 1 ST 10 ST 12 EST 8 DEST 5 ST 12 

A13 EST 3 1/2 ST 4 ST 4 ST 4 ST 6 ST 6 ST 4 

A14 ST 5 ST 2 1/2 ST 5 ST 6 EST 5 EST 3 1/2 ST 5 

A15 ST 4 EST 2 1/2 EST 4 ST 4 EST 4 ST 5 ST 5 

A16 EST 5 ST 2 1/2 ST 6 DEST 4 EST 3 1/2 EST 5 ST 6 

A17 ST 5 ST 2 1/2 EST 4 EST 4 EST 5 DEST 4 ST 6 

A18 EST 5 DEST 2 ST 5 EST 4 DEST 5 ST 6 EST 5 

A19 EST 5 EST 1 1/4 EST 6 EST 5 DEST 5 EST 5 DEST 4 

A20 ST 8 ST 2 EST 6 DEST 4 EST 12 ST 8 EST 5 

A21 ST 5 ST 2 1/2 ST 6 EST 5 ST 5 ST 6 ST 5 

A22 ST 3 DEST 2 ST 3  1/2 ST 3 ST 3 1/2 ST 3 ST 3 

A23 EST 2 1/2 DEST 2 1/2 ST 3  1/2 ST 3 ST 3 1/2 ST 3 1/2 ST 3 

A24 ST 5 DEST 3 EST 2 1/2 ST 2 1/2 ST 2 1/2 ST 4 ST 3 1/2 

A25 ST 4 ST 6 EST 1 1/2 ST 4 ST 8 ST 3 1/2 EST 1 1/2 

Best 

weight (kg) 
67,839 65,125 67,079 65,823.12 73,323.32 71,842.17 64,354.37 

Mean 73,042 68,403 70,408 76,409.30 85,013.16 77,059.49 69,263.74 

SD 9,158 1,663 2,703 8,587.21 9,668.586 4,726.478 6,285.975 

𝐍𝐅𝐄𝒎𝒂𝒙 (𝑵𝑭𝑬) 67,839 16,290 11,680 
10,000 

(4,815) 
15,000 15,000 

15,000 

(7,835) 
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5.2.2 Investigating the effectiveness of input signals 

Table 7 presents a comparative analysis of the optimal designs obtained by various 

optimization algorithms for the 1016-bar double-layer grid structure. The algorithms 

compared include Enhanced Colliding Bodies Optimization (ECBO) [24], Doppler Effect-

Mean Euclidian Distance Threshold (DE-MENT) [25], Enhanced Shuffled Shepherd 

Optimization Algorithm (ESSOA) [26], Sound Energy Optimizer (SEO) with a Rabbit sound 

signal (SEO–Rabbit) [15], and three new variants of the proposed SEO algorithm employing 

different randomization strategies: uniform random (SEO-Uniform Rand), normal random 

(SEO-Normal Rand), and Door knocking sound signal (SEO-Knocking). 

The performance of each algorithm is evaluated based on the best, mean, and standard 

deviation (SD) of the final structural weight (in kg) over multiple independent runs. As 

illustrated in the Table 7, the SEO Knocking approach achieves the lightest design with a best 

weight of 64,354.37 kg, outperforming all other methods. This result demonstrates the 

effectiveness of the knocking sound signal in enhancing search efficiency and solution quality. 

In comparison, DE-MENT and ESSOA yield best weights of 65,125 kg and 67,079 kg, 

respectively, while ECBO results in a less competitive best weight of 67,839 kg. The proposed 

SEO–Rabbit and SEO Uniform Rand produce higher best weights of 65,823.12 kg and 

73,323.32 kg, respectively, indicating relatively lower optimization performance in this case. 

Furthermore, the mean weight and standard deviation values highlight the robustness and 

consistency of the algorithms. The SEO Knocking method exhibits a mean weight of 

69,263.74 kg and an SD of 6,285.975 kg, reflecting a favorable balance between solution 

quality and convergence stability. In contrast, SEO Uniform Rand shows the highest mean 

weight (85,013.16 kg) and standard deviation (9,668.586 kg), suggesting less reliability across 

runs. Overall, the results confirm that the integration of the knocking sound signal into the 

SEO framework significantly improves both the optimality and robustness of the solution for 

large-scale truss optimization problems. 
 

 

6. CONCLUSION 

 

The primary objective of this study is to investigate the influence of different types of 

sound signals—both natural and synthetically generated—on the performance of the Sound 

Energy Optimizer as a recently developed physics-based metaheuristic algorithm. In this case 

study, the research aims to evaluate whether the real-world acoustic signals, i.e. the "Door 

knocking" and the "Wolf sound", provide a meaningful advantage over artificial random 

signals generated from "uniform" and "normal" distributions in solving complex structural 

optimization problems. Furthermore, the study seeks to assess how the statistical and spectral 

characteristics of these input signals affect the balance between exploration and exploitation 

during the optimization process. 

The results of the numerical experiments, conducted on two high-dimensional structural 

design problems including a 244-bar power transmission tower and a 1016-bar double-layer 

grid, demonstrate that the nature of the input sound signal has a significant impact on the 

algorithm’s performance. Among the tested signals, the "Door knocking" sound consistently 

yields superior results, achieving the best optimal designs with significantly lower structural 
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weights or volumes and demonstrating higher convergence reliability across independent 

runs. This can be attributed to the repeated impulsive, transient nature of the knocking signal, 

which exhibits a concentrated energy distribution in the lower frequency range and promotes 

effective exploitation while maintaining sufficient exploration capability. 

In contrast, synthetic signals based on uniform and normal distributions led to less stable 

and less efficient optimization trajectories, despite their high spectral entropy and broad 

frequency coverage that favor global search. Their excessive randomness and lack of temporal 

structure result in premature convergence or erratic search behavior, ultimately producing 

inferior solutions compared to those obtained using natural sound inputs. 

Moreover, the sensitivity analysis highlights the importance of proper parameter 

calibration in the SEO framework, particularly for parameters such as SEI and a, which exhibit 

strong interaction effects. The achieved optimal parameter setting ensures stable convergence 

and high solution quality, further emphasizing the need for systematic tuning when applying 

the algorithm to real-world engineering problems. Future scope of work may include studying 

wider range of parameter values including  nonzero 𝑐. 

In conclusion, this study establishes that natural sound signals can serve as highly effective 

drivers in physics-based metaheuristic algorithms such as SEO. They not only can enhance 

the algorithm’s ability to navigate complex search spaces but also can improve the robustness 

and consistency of the optimization process. These findings underscore the potential of 

leveraging real-world physical phenomena, particularly acoustic data, as intelligent sources of 

stochasticity in computational optimization. Future work should explore the integration of 

adaptive sound signal selection mechanisms and investigate the application of SEO to other 

engineering domains requiring discrete and combinatorial design optimization. 

 
 

APPENDIX A: DEFINITION OF SPECTRAL INDICES 
 

In the frequency-domain signal analysis, spectral features are widely employed to characterize 

the distribution of signal energy across frequency components [27–29]. They are particularly 

useful in applications such as audio processing, biomedical signal analysis, vibration 

monitoring, and pattern recognition. This appendix provides formal mathematical definition 

and physical interpretation of the applied spectral features. 
Let 𝑋[𝑘] denote the Discrete Fourier Transform (DFT) of a discrete-time signal 𝑥[𝑛] of 

length 𝑁 , computed as: 
   

1
2 /

0
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−

=

= =  −                                        (11) 

Due to the conjugate symmetry of the DFT for real-valued signals, only the first 𝑀 =
⌊𝑁/2⌋ + 1 frequency bins (corresponding to non-negative frequencies) are considered. The 

frequency associated with bin 𝑘 is given by: 
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where 𝑓𝑠 is the sampling frequency in Hz. The magnitude and power spectra are defined as: 

 

   ( )     ( )
2

X k       ,     X k       .Magnitude P k Power=                 (13) 

The following features are derived from these spectral quantities. 

 

A.1. Max. Magnitude 

 

It is the highest amplitude observed in the frequency spectrum: 

 

 ( )
 

max      max  X k             

                                          0,1, , 1

Magnitude

k M

=

  −
               (14) 

It is often used to detect strong periodicities or resonances. 

 

A.2. Dominant Frequency 

 

It is the frequency at which the maximum magnitude occurs: 

 

 
 ( )max    arg  max  X k             k

k

=
           (15) 

   k maxDominant Frequency f=  

 

This metric is useful for identifying the principal oscillatory mode in the signal.   
 

 

A.3. Mean Magnitude 

 

The mean magnitude is the average of the spectral amplitudes across all frequency bins: 

 

  
1

0

1
  X k

M

k

Mean Magnitude
M

−

=

=         (16) 

It provides a measure of the overall spectral strength and is sensitive to the general level of 

frequency content. 
 

A.4. Total Energy 

 

According to Parseval’s theorem, the total energy of the signal in the frequency domain is 



M. Shahrouzi and A.M. Taghavi 

 

356 

equal to the sum of squared magnitudes (i.e., power): 

 

    
1 1

2

0 0

  X k    
M M

k k
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− −

= =

= =       (17) 

This quantity reflects the total power distributed across the spectrum and is invariant under 

unitary transforms such as DFT. 

 

A.5. Spectral Entropy 

 

Spectral entropy quantifies the uniformity of power distribution across frequency bins. 

First, the normalized power distribution is computed as a probability mass function: 
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The spectral entropy is then defined as the Shannon entropy of this distribution: 
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=
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By convention, 0 ⋅ 𝑙𝑜𝑔(0)  is taken as 0 . This feature ranges from 0 (all energy 

concentrated in one bin) to 𝑙𝑜𝑔(𝑀) (uniform distribution). Higher values indicate greater 

spectral complexity or randomness, making it suitable for analyzing noise-like or chaotic 

signals. 

 

A.6. Spectral Centroid 

 

The spectral centroid C represents the "center of mass" of the power spectrum, computed 

as a frequency-weighted average: 
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The feature is widely used in audio signal processing as a correlation of perceived 

brightness. A higher centroid indicates more energy in higher frequencies. 

 

A.7. Spectral Bandwidth 

 

The spectral bandwidth measures the spread of the spectrum around the spectral centroid 

C, similar to the role of standard deviation in statistics: 
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A large bandwidth indicates a broad distribution of energy, while a small value represents 

a narrowband or tonal signal. 
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