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ABSTRACT 
 

Over the past few years, swarm intelligence based optimization techniques such as ant 

colony optimization and particle swarm optimization have received considerable attention 

from engineering researchers. These algorithms have been used in the solution of various 

structural optimization problems where the main goal is to minimize the weight of 

structures while satisfying all design requirements imposed by design codes. In this paper, 

artificial bee colony algorithm (ABC) is utilized to optimize different skeletal structures. 

The results of the ABC are compared with the results of other optimization algorithms from 

the literature to show the efficiency of this technique for structural design problems. 
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1. INTRODUCTION 
 

Optimization can be defined as finding solution of problems where it is necessary to 

maximize or minimize an objective function within a search domain which contains the 

acceptable values of variables while some restrictions are to be satisfied. There might be the 

large number of variables in the search domain that maximizes or minimizes the objective 

function while satisfying the restrictions. They are called feasible solutions and the solution 

                                                   
*
 Corresponding author: S. Talatahari, Marand Faculty of Engineering, University of Tabriz, 

Tabriz, Iran  
†
E-mail address: siamak.talat@gmail.com (S. Talatahari)  

mailto:siamak.talat@gmail.com


S. Talatahari, M. Nouri and F. Tadbiri 

 

558 

which is the best among them are known as the optimum solution of the problem. 

In structural optimization problems, the main goal is to minimize the weight or cost of 

structures while satisfying necessary limitation of structure. To achieve this goal, over the 

last decades many elegant and artificial optimization techniques have been successfully 

applied to a wide range of structural optimization problems. In recent years, direct search 

techniques based on the models of social interaction amongst organisms have been found 

capable of producing very powerful and robust search mechanisms [1]. Techniques 

belonging to this field imitate the collective behavior of a group of social insects (bees, 

termites, ants and wasps) to solve complex optimization problems. These insects live 

together in a nest and divide up the work tasks such as foraging, nest building and defense 

within the colony. Members of the colony perform their tasks by interacting or 

communicating in a direct or indirect manner in their local environment. The key feature of 

colony behavior is that even if one or some individuals fail in carrying out their task, the 

group as whole can still perform their tasks [2]. From the collective behavior in certain 

insect species emerges the swarm intelligence. Swarm intelligence based algorithms 

including particle swarm optimization (PSO) [3] and ant colony optimization (ACO) 

algorithms [4] have already been used for the weight minimization of structures involving 

discrete and continuous design variables. Swarm-based algorithms simulating bee swarm 

intelligence recently found new application areas in engineering design optimization. 

Karaboga and Basturk [5] presented a survey of these algorithms and their applications. 

Most of these algorithms make use of the bee metaphor imitating the food foraging 

behaviors of honeybees such as, the bee colony optimization algorithm [6,7], the Virtual 

Bee algorithm [8], the bee algorithm [9,10] and the Artificial bee colony algorithm [11- 13]. 

Karaboga and Basturk [11,12] proposed the artificial bee colony (ABC) algorithm for 

unconstrained and constrained function optimization problems. The performance of the 

ABC algorithm was compared to that of differential evaluation, particle swarm optimization 

and an evolutionary algorithm. They declared that the ABC algorithm performed better than 

these methods and it can be effectively employed to solve engineering problems [14,15]. 

There are many research applied the ABC algorithm to different optimization algorithms. 

This study utilizes the ABC Algorithm to optimum design of skeletal structures. The rest of 

the paper is organized as follows: Section 2 presents the formulation of optimum design of 

structures. The framework of the ABC algorithm is described in Section 3. Numerical 

examples are presented in Section 4 and finally Section 5 concludes the paper. 

 

 

2. OPTIMUM DESIGN OF STRUCTURE 
 

The objective of optimization is to find a set of design variables that has the minimum 

weight and also satisfies certain constraints, as 
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where {x} is the set of design variables; ng is the number of design variables; Di is the 

allowable set of values for the design variable xi; w({x}) presents the weight of the structure; 

nm is the number of members of the structure;  i denotes the material density of member i; 

Li and xi are the length and the cross-sectional of member i, respectively; gj({x}) denotes 

design constraints; and n is the number of the constraints. 

Di can be considered either as a continuous set or as a discrete one [16]. In the 

continuous problems, the design variables can vary continuously in the optimization process  
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where xi,min and xi,max are minimum and maximum allowable values for the design variable xi, 

respectively. If the design variables represent a selection from a set of parts as  
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then the problem is considered as a discrete one, where r is the number of available discrete 

values. In order to handle the constraints, a penalty approach is utilized. In this method, the 

aim of the optimization is redefined by introducing the penalty function as 
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where v  denotes the sum of the violations of the design. The constant ε1 and ε2 are selected 

considering the exploration and the exploitation rate of the search space. Here, ε1 is set to 

0.9, ε2 is set unity [17]. 

This paper investigates two types of skeletal structures consisting of trusses and frames. 

The constraint conditions for these structures are briefly explained in the following 

subsections. 

 

2.1. Constraint conditions for truss structures 

For truss structures, the stress limitations of the members are imposed according to the 

provisions of ASD-AISC [18] as follows: 
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i is calculated according to the slenderness ratio: 
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where E is the modulus of elasticity; Fy is the yield stress of steel; Cc denotes the 

slenderness ratio dividing the elastic and inelastic buckling regions;

 

  presents the 

slenderness ratio. 

The other constraint is the limitation of the nodal displacements, as 
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where i  is the nodal deflection; 
u

i is the allowable deflection of node i; and nn is the 

number of nodes. 

 

2.2. Constraint conditions for steel frames 

Optimal design of frame structures is subjected to the following constrains according to 

LRFD-AISC [19] provisions: 
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where T  is the maximum lateral displacement; H is the height of the frame structure; R is 

the maximum drift index (1/300); di is the inter-story drift; hi is the story height of the ith 

floor, ns is the total number of stories; Ri presents the inter-story drift index permitted by the 

code of the practice (1/300); Pu is the required strength (tension or compression); Pn is the 

nominal axial strength (tension or compression); t  is the resistance factor ( t = 0.9 for 

tension, t = 0.85 for compression); Mux and Muy are the required flexural strengths in the x 

and y directions, respectively; Mnx and Mny are the nominal flexural strengths in the x and y 

directions (for two-dimensional structures, Mny =0); and b  denotes the flexural resistance 

reduction factor ( b = 0.90).  
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3. ARTIFICIAL BEE COLONY ALGORITHM 
 

The foraging behavior, learning, memorizing and information sharing characteristics of 

honeybees have recently been one of the most interesting research areas in swarm 

intelligence. The ABC algorithm as a swarm intelligent optimization algorithm is inspired 

by honey bee foraging. This section reviews the framework of the algorithm, briefly. 

 

3.1. General aspects 

The ABC provides a population based search procedure in which individuals called foods 

positions are modified by the artificial bees with time and the bees aim is to discover the 

places of food sources with high nectar amount and finally the one with the highest nectar. 

In the ABC system, artificial bees fly around in a multidimensional search space and some 

(employed and onlooker bees) choose food sources depending on the experience of 

themselves and their nest mates, and adjust their positions. Some (scouts) fly and choose the 

food sources randomly without using experience. If the nectar amount of a new source is 

higher than that of the previous one in their memory, they memorize the new position and 

forget the previous one. Thus, the ABC system combines local search methods, carried out 

by employed and onlooker bees, with global search methods, managed by onlookers and 

scouts, attempting to balance exploration and exploitation process. This model that leads to 

the emergence of collective intelligence of honeybee swarms consists of three essential 

components: food sources, employed foragers, and unemployed foragers, and defines two 

leading modes of the honeybee colony behavior: requirement to a food source and 

abandonment of a source. The main components of this model are as below: 

 

1. Food sources: In order to select a food source, a forager bee evaluates several 

properties related with the food source such as its closeness to the hive, richness of the 

energy, taste of its nectar, and the ease or difficulty of extracting this energy. For the 

simplicity, the quality of a food source can be represented by only one quantity although it 

depends on various parameters mentioned above. 

2. Employed foragers: An employed forager carries information about her specific 

source and shares it with other bees waiting in the hive. The information includes the 

distance, the direction and the profitability of the food source. 

3. Unemployed foragers: A forager bee that looks for a food source to exploit is called 

unemployed. It can be either a scout who searches the environment randomly or an onlooker 

who tries to find a food source by means of the information given by the employed bee. 
 

3.2. The algorithm 

The flowchart of the ABC algorithm is given in Figure 1. Each cycle of the search consists 

of three steps after initialization stage: placing the employed bees onto the food sources and 

calculating their nectar amounts; placing the onlookers onto the food sources and 

calculating the nectar amounts; and determining the scout bees and placing them onto the 

randomly determined food sources. 
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Figure 1. Flowchart of the ABC algorithm 

 

In the ABC algorithm, the first half of the colony consists of the employed artificial bees 

and the second half includes the onlookers. In this algorithm, for every food source, there is 

only one employed bee. In other words, the number of employed bees is equal to the number 

of food sources around the hive. The employed bee whose food source has been abandoned 

becomes a scout. 

The position of a food source represents a possible solution to the considered 

optimization problem and the nectar amount of the food source corresponds to the quality or 

fitness of the associated solution. The number of the employed bees or onlooker bees is 

equal to the number of solutions in the population. In the first step, the ABC algorithm 

generates randomly distributed predefined number of initial population, P (position of the 

food sources) of SN populations, where PSN. Each position of the food source, xijk is 

three-dimensional in nature with i=1,2,…,SN; j=1,2,…,D and k=1,2,…,V; where D is the 

dimension of each variable and V is the number of variables in the objective function. After 

initialization, the population of the positions (solutions) is subjected to repeated cycles, 
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C=1,2,…,MCN (maximum cycle number) of the search process of the employed bees, 

onlooker bees and scout bees. An employed bee produces a modification on the solution in 

its memory depending on the local information and tests the nectar amount (fitness value) of 

the new food source (new solution). Provided that the nectar amount of the new source is 

higher than that of the previous one, the bee memorizes the new position and forgets the old 

one. Otherwise, it keeps the position of the previous source in its memory. When all the 

employed bees complete the search process, they share the nectar information of the food 

sources and their position information with the onlooker bees in the dance area. An 

onlooker bee evaluates the nectar information taken from all the employed bees and selects 

a food source with a probability related to its nectar amount. As in the case of an employed 

bee, the onlooker bee produces a modification on the position in its memory and checks the 

nectar amount of the candidate source. If its nectar amount is higher than that of the 

previous one, the onlooker bee memorizes the new position and forgets the old one. 

 

 

4. NUMERICAL EXAMPLES  
  

Four truss and frame examples are selected to show efficiency and validation of the ABC 

algorithm containing:  

 A 25-bar truss  

 A 72-bar truss  

 A 1-bay, 8 story frame 

 A 3-bay, 15-story frame  

All of the structural analysis as well as the optimization process are performed by 

MATLAB software and the ABC algorithm parameters are set as follows: a colony of bees 

size NP=50, the maximum number of cycle MNC=300, and LIMIT=50. 

 

4.1. A 25- bar truss 

The topology and nodal numbers of a 25-bar spatial truss structure are shown in Figure 2. In 

this example, designs for a multiple load case are performed and the results are compared to 

those of other optimization techniques [14,20,21]. The material density is considered as 0.1 

lb/in
3
 (2767.990 kg/m

3
) and the modulus of elasticity is taken as 10,000 ksi (68,950 MPa).  

This spatial truss is subjected to two loading as described in [20]. 

In order to study the effect of the colony size on the convergence rate of the ABC 

algorithm, ten different colonies consisting of 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 bees 

were used. The averages of each set of 10 independent runs for each colony are given in 

Figure 3 where the objective function versus cycle numbers is shown. It can be seen from 

this figure that the convergence rates increase with greater numbers of bees. After 300 

cycles, with the exception of the colony of 10 bees the results of all the colonies are very 

close to each other and they have almost the same weight. The colony size may be set at any 

value between 30 and 100. However, larger values increase the required analysis number 

and with small ones, the probability of losing the optimum design increase; as a result, in 

the current research the colony size is set at 50 bees for all examples. Table 1 compares the 

obtained result by this study with other methods. The present algorithm needs only 15000 
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analyses to find the optimum result while it is 30000 for standard ABC [14]. 

 

 
 

Figure 2. Twenty five bar space truss 

 

 

Figure 3. Comparison of the convergence rates of ABC with ten different colony sizes 

 

Table 1. Performance comparison for 25-bar space truss 
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Element group 

Optimal cross section area 

IACO [22] BB-BC [21] 
Standard ABC 

[14] 
This study 

1 A1 0.01 0.01 0.011 0.01 

2 A2- A5 2.042 2.092 1.979 2.1157 

3 A6 - A9 3.001 2.964 3.003 2.9149 

4 A10 - A11 0.01 0.01 0.01 0.01 

5 A12 - A13 0.01 0.01 0.01 0.01 

6 A14 - A17 0.684 0.689 0.690 0.7832 

7 A18 - A21 1.625 1.601 1.679 1.6032 

8 A22 -A25 2.762 2.686 2.652 2.5654 

Best weight 545.03 545.38 545.20 545.20 

Analysis number 3502 20566 30000 15000 

 

3.2. 72- bar truss 

For the 72-bar space truss structure shown in Figure 4, the material density is 0.1 lb/in
3
 

(2767.990 kg/m
3
) and the modulus of elasticity is 10,000 ksi (68,950 MPa). The members 

are subjected to the stress limits of 25 ksi (172.375 MPa). The uppermost nodes are 

subjected to the displacement limits of 0.25 in (0.635 cm) in both the x and y directions. The 

minimum permitted cross-sectional area of each member is 0.10 in
2
 (0.6452 cm

2
), and the 

maximum cross-sectional area of each member is 4.00 in
2
 (25.81 cm

2
).  

 

Figure 4. 72- bar spatial truss 

Table 2. Performance comparison for 72-bar spatial truss 
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Element group 
Optimal cross section area 

ACO [24] BB-BC [21] GA [23] This study 

1 A1 - A4 1.948 1.8577 1.755 1.909 

2 A5- A12 0.508 0.5059 0.505 0.520 

3 A13 – A16 0.101 0.1000 0.105 0.100 

4 A17 - A18 0.102 0.1000 0.155 0.100 

5 A19 – A22 1.303 1.2476 1.155 1.284 

6 A23 – A30 0.511 0.5269 0.585 0.503 

7 A31 – A34 0.101 0.1000 0.100 0.100 

8 A35 –A36 0.100 0.1012 0.100 0.100 

9 A37 –A40 0.561 0.5209 0.460 0.512 

10 A41 –A48 0.492 0.5172 0.530 0.523 

11 A49 –A52 0.100 0.1004 0.120 0.100 

12 A53 –A54 0.107 0.1005 0.165 0.100 

13 A55 –A58 0.156 0.1565 0.155 0.157 

14 A59 –A66 0.550 0.5507 0.535 0.537 

15 A67 –A70 0.390 0.3922 0.480 0.410 

16 A71 –A72 0.592 0.5922 0.520 0.563 

Best weight 380.24 379.85 385.76 379.70 

Analysis number 18500 20566 --- 15000 

 

 

 

Figure 5. Convergence history of the best result obtained by the ABC  

Figure 5 presents the convergence characteristic curve of the ABC. For this spatial truss 

structure, it takes about 500 iterations (15000 analyses) for the ABC to converge, while it is 
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18500 and 20566 for the ACO [24] and BB-BC [21], respectively. Compared to the other 

methods, the best weight is belonged to the ABC with the weight of 379.70 lb. These results 

demonstrate the efficiency of the ABC compared to GA [23], ACO and BB-BC methods. 

Table 2 compares the performance of the ABC algorithm with those of the previously 

reported algorithms in the literature.  

 

3.3. 1-bay 8- story frame 

Figure 6 shows the configureuration of the 1-bay 8-story framed structure and applied loads. 

Several researchers have developed design procedures for this frame; Camp et al. [25] used 

a genetic algorithm, Kaveh and Shojaee [26] utilized ACO and Kaveh and Talatahari [22] 

applied an improved ACO to solve this problem. 

  

 
Figure 6. 1-bay 8-story frame 

The ABC algorithm found the optimal weight of the one-bay eight-story frame to be 

30.91 kN which is the best one compared to the other method. Table 3 lists the optimal 
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values of the eight design variables obtained by this research, and compares them with other 

results. 
Table 3. Optimal design comparison for the 1-bay 8-story frame 

 Optimal W-shaped sections 
Element group 

This study IACO [22] ACO [26] GA [25] 
W21X44 W21X44 W16X26 W18X35 1 

W16X26 W18X35 W18X40 W18X35 2 
W14X22 W18X35 W18X35 W18X35 3 

W12X16 W12X22 W14X22 W18X26 4 

W18X35 W18X40 W21X50 W18X46 5 

W18X35 W16X26 W16X26 W16X31 6 

W18X35 W16X26 W16X26 W16X26 7 

W16X26 W12X14 W12X14 W12X16 8 

30.91 31.05 31.68 32.83 Weight (kN) 

 

4.4. Design of a 3-bay, 15-story frame 

The configureuration and applied loads of a 3-bay 15-story frame structure is shown in 

Figure 7. The displacement and AISC combined strength constraints are the performance 

constraint of this frame.  
Table 4. Optimal design comparison for the 3-bay, 15-story frame 

 Optimal W-shaped sections 
Element group 

This study ICA [27] HBB-BC [28] PSO [16] 
W36X135 W24X117 W24X117 W33X118 1 

W27X146 W21X147 W21X132 W33X263 2 
W24X94 W27X84 W12X95 W24X76 3 

W14X109 W27X114 W18X119 W36X256 4 

W24X68 W14X74 W21X93 W21X73 5 

W21X93 W18X86 W18X97 W18X86 6 

W30X90 W12X96 W18X76 W18X65 7 

W18X65 W24X68 W18X65 W21X68 8 

W16X36 W10X39 W18X60 W18X60 9 

W16X40 W12X40 W10X39 W18X65 10 

W21X44 W21X44 W21X48 W21X44 11 

93.76 93.85 97.69 111.66 Weight (kips) 

The optimum design of the frame obtained by using ABC has the minimum weight of 

93.76 kip. The optimum designs for PSO [16], HBB-BC [28] and ICA [27] had the weight 
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of 111.66 kips, 97.69 kips and 93.85 kips, respectively. Table 4 summarizes the optimal 

results for the various algorithms. Clearly, it can be seen that the present algorithm can find 

better design. 

  

 

Figure 7. 3-bay, 15-story frame 

5. CONCLUSION 
 

The ABC algorithm, based on mimicking the food foraging behavior of honeybee swarms, 
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is proposed to solve structural optimization problems containing truss and frame structures. 

Optimization software based on the ABC algorithm was coded in the MATLAB with using 

object-oriented technology. Four test problems were studied using the optimization program 

to show the efficiency of the ABC algorithm. The comparison of the results of the ABC with 

those of other algorithms demonstrated that the ABC algorithm provides results as good as 

or better than other algorithms and can be used effectively for solving such problems. 

Expanding and hybridizing this method can provide a fruitful era to find more efficient and 

powerful methods to optimum design of skeletal structures.      
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