
 

INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING  
Int. J. Optim. Civil Eng., 2013; 3(4):617-633 

 
 
 

A SURVEY OF CHAOS EMBEDDED META-HEURISTIC 
ALGORITHMS 

 
 

R. Sheikholeslami1 and A. Kaveh*, †, 2 
1Department of Civil and Environmental Engineering, Amirkabir University of Technology 

(Tehran Polytechnic), Tehran, Iran 
2Centre of Excellence for Fundamental Studies in Structural Engineering, Iran University of 

Science and Technology, Narmak, Tehran-16, Iran 
 
 

ABSTRACT 
 

This article presents a comprehensive review of chaos embedded meta-heuristic 
optimization algorithms and describes the evolution of this algorithms along with some 
improvements, their combination with various methods as well as their applications. The 
reported results indicate that chaos embedded algorithms may handle engineering design 
problems efficiently in terms of precision and convergence and, in most cases; they 
outperform the results presented in the previous works. The main goal of this paper is to 
providing useful references to fundamental concepts accessible to the broad community of 
optimization practitioners. 
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1. INTRODUCTION 
 

In nature complex biological phenomena such as the collective behavior of birds, foraging 
activity of bees or cooperative behavior of ants may result from relatively simple rules 
which however present nonlinear behavior with sensitivity to initial conditions. Such 
systems are generally known as “deterministic nonlinear systems” and the corresponding 
theory as “chaos theory”. Thus real world systems that may seem to be stochastic or random 
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may present a nonlinear deterministic and chaotic behavior. Although chaos and random 
signals share the property of long term unpredictable irregular behavior and many of random 
generators in programming softwares as well as the chaotic maps are deterministic; however 
chaos can help order to arise from disorder. Similarly, many meta-heuristic optimization 
algorithms are inspired from biological systems where order arises from disorder. In these 
cases disorder often indicates both non-organized patterns and irregular behavior, whereas 
order is the result of self-organization and evolution and often arises from a disorder 
condition or from the presence of dissymmetries. Self-organization and evolution are two 
key factors of many meta-heuristic optimization techniques. Due to these common 
properties between chaos and optimization algorithms, simultaneous use of these concepts 
seems to improve the performance [1]. Seemingly the benefits of such combination is a 
generic for other stochastic optimization and experimental studies confirmed this; although, 
this has not mathematically been proved yet [2]. 

Recently, chaos and meta-heuristics have been combined in different studies for different 
purposes. Some of the works have intended to show the chaotic behaviors in the meta-
heuristic algorithms. In some of the works, chaos has been used to overcome the limitations 
of meta-heuristics. Hence previous research can be classified into two types.  

In the first type, chaos is inserted into the meta-heuristics instead of a random number 
generator, i.e., the chaotic signals are used to control the value of parameters in the meta-
heuristic’s equations. The convergence properties of meta-heuristics are closely connected to 
the random sequence applied on their operators during a run. In particular, when starting 
some optimizations with different random numbers, experience shows that the results may 
be very close but not equal, and require also different numbers of generations to reach the 
same optimal value. The random numbers generation algorithms, on which most used meta-
heuristics tools rely, usually satisfy on their own some statistical tests like chi-square or 
normality. However, there are no analytical results that guarantee an improvement of the 
performance indexes of meta-heuristics algorithms depending on the choice of a particular 
random number generator [3]. 

In the second type, chaotic search is incorporated into the procedures of the meta-
heuristics in order to enrich the searching behavior and to avoid being trapped in local 
optimums. A traditional chaos optimization algorithm (COA) which is a stochastic search 
technique was proposed based on the advantages of chaos variables. The simple philosophy 
of the COA includes two main stages: firstly mapping from the chaotic space to the solution 
space, and then searching optimal regions using chaotic dynamics instead of random search 
[4]. However, COA also has some disadvantages. For example, in the large-scale 
optimization problems the efficiency of the algorithm will be very low and the COA often 
needs a large number of iterations to reach the global optimum.  

The main contribution of this paper is to provide a state of the art review of the 
combination of chaos theory and meta–heuristics, and reports the evolution of these 
algorithms along with some improvements, their combinations with various methods as well 
as their applications.  
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2. AN OVERVIEW OF CHAOTIC SYSTEMS 
 
In mathematic chaos is defined as “randomness” generated by simple deterministic systems. 
The randomness is a result of the sensitivity of chaotic systems to the initial conditions; it 
means that slight changes in the parameters or the starting values for the data lead to vastly 
different future behaviors, such as stable fixed points, periodic oscillations, bifurcations, and 
ergodicity. However, because the chaotic systems are deterministic, chaos implies order. A 
system can make the transformation from a regular periodic system to a complex chaotic 
system simply by changing one of the controlling parameters. Also a chaotic movement can 
go through every state in a certain area according to its own regularity, and every state is 
obtained only once [6]. An example of chaotic map is shown in Figure 1. 
 

 

Figure 1. An example of chaotic map (Logistic map) 
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Considering a discrete-time series we can define chaos in the sense of Li-Yorke. A one-
dimensional iterated map is based on a function of a real variable and takes the form 
 
 1 ( )t tx F x   (1) 

 

where ( ) nx t  , t = 1, 2, 3, . . . and F is a map from n  to itself.  

Let F (p) denotes the composition of F with itself p > 0 times, then a point x is called a p-
periodic point of F if F (p) (x) = x but F (k) (x) ≠ x for all k such that k ≤ p. In particular, a point 
x satisfying F(x) = x is called a fixed point of F. The ε-neighborhood Nε(x) of a point x is 
defined by 
 

    |nN x y x y      (2) 

 

where ||.|| denotes the Euclidean norm in n . Then, we introduce the following definition of 
chaos in the sense of Li-Yorke [6]:  

Definition 1. If a discrete-time series satisfies the following conditions, then it is called 
chaotic: 

1) There exist a positive constant N such that for any p ≥ N, F has a p-periodic point. 

2) There exists an uncountable set nS   , which does not include any periodic point of 
F and satisfies the following conditions 

(a) ( )F S S  
(b) For any points , ( )x y S x y   

( ) ( )lim sup ( ) ( ) 0,n n

n
F x F y


   

and for any x S and any periodic point y of F, 
( ) ( )lim sup ( ) ( ) 0.n n

n
F x F y


   

(c) There exists an uncountable subset 0S S  such that for any 0,x y S , 

( ) ( )lim inf ( ) ( ) 0n n

n
F x F y


   

The set S in the above definition is called the scrambled set. 
Then, it is well known that the existence of a fixed point called a snap-back repeller in a 

system implies that the system is chaotic in the sense of Li-Yorke [7]. So a system is chaotic 
if it contains infinitely many periodic orbits whose periods are arbitrarily large. This 
definition essentially is a result of Sarkovskii’s theorem which was proved by the Russian 
mathematician A.N. Sarkovskii in 1964; however apparently presented in a famous paper by 
Li and Yorke [6] in which the word chaos first appeared in its contemporary scientific 
meaning [8]. 

A chaotic map can be used as spread-spectrum sequence for random number sequence. 
Chaotic sequences have been proven to be easy and fast to generate and store, and therefore 
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there is no need for storaging long sequences. One needs only a few functions (chaotic 
maps) and few parameters (initial conditions) for very long sequences. Also an enormous 
number of different sequences can be generated simply by altering its initial condition. In 
addition, these sequences are deterministic and reproducible. The choice of chaotic 
sequences can justified theoretically by their unpredictability, corresponding to their spread-
spectrum characteristic and ergodic properties [9]. Therefore when a random number is 
needed, it can be generated by iterating one step of the chosen chaotic map (cm) being 
started from a random initial condition at the first iteration of the run. The literature is rich in 
chaotic time series sequences, some of them are listed in following subsections. 

 
2.1. Logistic map 

This map, whose equation appears in nonlinear dynamics of biological population 
evidencing chaotic behavior [10] 
 
 1 (1 )k k kx ax x    (3) 

 
In this equation, xk is the kth chaotic number, with k denoting the iteration number. 

Obviously, (0,1)kx   under the conditions that the initial (0,1)ox   and that 

0 {0.0,0.25,0.5,0.75,1.0}x  . In the experiments a = 4 is used. 

 
2.2. Tent map 

Tent map [11] resembles the logistic map. It generates chaotic sequences in (0, 1) assuming 
the following form 
 

 1

/ 0.7             0.7

10 / 3 (1 )....
k k

k
k k

x x
x

x x otherwise


  

 (4) 

 
2.3. Sinusoidal map 

This iterator [10] is represented by 
 
 2

1 sin( )k k kx ax x   (5) 

 
For a = 2.3 and 0.7ox 

 

it has the following simplified form: 

 
 1 sin( )k kx x   (6) 

 
It generates chaotic sequence in (0, 1). 
 

2.4. Gauss map 

The Gauss map is utilized for testing purpose in the literature [11] and is represented by 
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1

0                  0

1/ mod(1)...

1 1
1/ mod(1)

k
k

k

k
k k

x
x

x otherwise

x
x x




 


 
   

 

 (7) 

 
Here, [x] denotes the largest integer less than x and acts as a shift on the continued 

fraction representation of numbers. This map also generates chaotic sequences in (0, 1). 
 

2.5. Circle map 

The Circle map [12] is represented by 
 
 1 ( / 2 )sin(2 ) mod(1)k k kx x b a x      (8) 

 
With a = 0.5 and b = 0.2, it generates chaotic sequence in (0, 1). 
 

2.6. Sinus map 

Sinus map is defined as 
 
 2sin( )

1 2.3( ) kx
k kx x 
   (9) 

 
2.7. Henon map 

This map is a nonlinear 2-dimensional map most frequently employed for testing purposes, 
and it is represented by 
 
 2

1 11k k kx ax bx     (10) 

 
The suggested parameter values are a = 1.4 and b = 0.3. 
 

2.8. Ikeda map 

An Ikeda map is a discrete-time dynamical system defined by [13] 
 

 

    
    

1

1

2 2

1 0.7 cos sin ,

0.7 sin cos ,

6
0.4

1

n n n n n

n n n n n

n
n n

x x y

y x y

x y

 

 







  

 

 
 

 (11) 
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2.9. Zaslavskii map 

One of the interesting dynamic systems evidencing chaotic behavior is the Zaslavskii map 
[14], the corresponding equation is given by: 
 

 
 

 
1 1

1

  mod1

cos 2

k k k

r
k k k

x x v y

y x e y





 




  

 
 (12) 

 
where mod is the modulus after division and v = 400, r = 3, α = 12.6695. In this case, 

ty [–1.0512, 1.0512]. 

 
 

3. USE OF CHAOTIC SYSTEMS IN META-HEURISTICS 
 
In the artificial intelligence community, the term meta–heuristic was created and is now well 
accepted for general algorithms that represent a family of approximate optimization methods 
which are not limited to a particular problem. There were many attempts to give a rigorous 
mathematical definition of meta-heuristics. Here are some of them, accompanied by 
explanations.  

1) “They are solution methods that orchestrate an interaction between local improvement 
procedures and higher level strategies to create a process capable of escaping from local 
optima and performing a robust search of a solution space.” [15] 

2) “These methods can be defined as upper level general methodologies that can be used 
as guiding strategies in designing underlying heuristics to solve specific optimization 
problems.” [16] 

3) “They are a set of concepts that can be used to define heuristic methods that can be 
applied to a wide set of different problems with relatively few modifications to make them 
adapted to a specific problem.” [17]. 

Design and implementation of such optimization methods has been at the origin of a 
multitude of contributions to the literature in the last 50 years. Genetic algorithms (GA) [18], 
simulated annealing (SA) [19], ant colony optimization (ACO) [20], particle swarm 
optimization (PSO) [21], harmony search algorithm (HS) [22], big bang-big crunch 
optimization (BB-BC) [23], imperialist competitive algorithm (ICA) [24], firefly algorithm 
(FA) [25], cuckoo search (CS) [26], charged system search algorithm (CSS) [27], magnetic 
charged system search algorithm (MCSS) [28], and ray optimization (RO) [29], are some 
familiar examples of meta-heuristics. Generally, a meta-heuristic algorithm uses two basic 
strategies while searching for the global optima; exploration and exploitation. The 
exploration enables the algorithm to reach at the best local solutions within the search space, 
and the exploitation provides the ability to reach at the global optimum solution which may 
exist around the local solutions obtained. In exploitation, the promising regions are explored 
more comprehensively, while in exploration the non-explored regions are visited to make 
sure that all the regions of the search space are fairly explored. 

Due to common properties between chaos and meta-heuristic optimization algorithms, 
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simultaneous use of these concepts seems to improve the performance and to overcome the 
limitations of meta-heuristics. The previous research can be categorized into two types. In 
the first type, chaotic system is inserted into the meta-heuristics instead of a random number 
generator for updating the value of parameters; and in the second type, chaotic search is 
incorporated into the procedures of the meta-heuristics in order to enrich the searching 
behavior and to avoid being trapped in local optimums using traditional chaos optimization 
algorithms (COA). 

 
3.1 Chaotic update of internal parameters for meta-heuristics  

For simulating complex phenomena, sampling, numerical analysis, decision making and in 
particular in meta-heuristic optimization, random sequences are needed with a long period 
and reasonable uniformity. On the other hand as mentioned before chaos is a deterministic, 
random-like process found in nonlinear dynamical system which is non-period, non-
converging and bounded. The nature of chaos looks to be random and unpredictable, 
possessing an element of regularity. Mathematically, chaos is randomness of a simple 
deterministic dynamical system, and chaotic system may be considered as sources of 
randomness [30-32].  

However, meta-heuristics are non-typical; hence, the critical issue in implementing meta-
heuristic methods is the determination of “proper” parameters which must be established 
before running these algorithms. The efficient determination of these parameters leads to a 
reasonable solution. That is why; these parameters may be selected chaotically by using 
chaotic maps. In this case, sequences generated from chaotic systems substitute random 
numbers for the parameters where it is necessary to make a random-based choice. By this 
way, it is intended to improve the global convergence and to prevent to stick on a local 
solution. 

Alatas et al. [33] proposed different chaotic maps to update the parameters of PSO 
algorithm. This has been done by using of chaotic number generators each time a random 
number is needed by the classical PSO algorithm. Twelve chaos-embedded PSO methods 
have been proposed and eight chaotic maps have been analyzed in the unconstrained 
benchmark functions. The simulation results show that the application of deterministic 
chaotic signals may be a possible strategy to improve the performances of PSO algorithms. 
Also Alatas [32] presented another interesting application. He has integrated chaos search 
with HS for improved performance. Seven new chaotic HS algorithms have been developed 
using different chaotic maps. A similar utilizing of chaotic sequences for artificial bee 
colony (ABC) [34], BB-BC [35], ICA [1], and CSS [36] have been performed by 
researchers. Based on the results obtained from literature it is not easy to say which chaotic 
map performs the best. However, we can say that chaotic maps have a considerable positive 
impact on the performance of meta-heuristics. 

In these studies generally unconstraint problems were considered. On the other hand, 
most of the real life problems including design optimization problems require several types 
of variables, objective and constraint functions simultaneously in their formulation. In 
engineering design as the first attempts to analyze the performance of meta-heuristics in 
which chaotic maps are used for parameters updating process, Talatahari et al. [37] 
combined the benefits of chaotic maps and the ICA to determine optimum design of truss 
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structures. These different chaotic maps were investigated by solving two benchmark truss 
examples involving 25- and 56-bar trusses to recognize the most suitable one for this 
algorithm. As an example taken from the original paper a 56-bar dome truss structure is 
shown in Figure 2. 
 

 

Figure 2. A 56-bar dome spatial truss structure [37] 

Members of the dome are into 7 groups. Table 1 shows the statistical results and the 
optimum weight for the 56-bar dome truss using the ICA algorithms where cm is a chaotic 
map based on the Sinusoidal map for CICA-1, Logistic map for CICA-2, Zaslavskii map for 
CICA-3 and Tent map for CICA-4 [37]. The results show that the use of Sinusoidal map 
(CICA-1) results in a better performance for the chaotic ICA than others. Two other larger 
examples were also considered by Talatahari et al. [37] to obtain more clear details about the 
performance of the new algorithm. These were 200- and 244-bar trusses with 29 and 32 
design variables, respectively. Almost for all examples, the performance of the new 
algorithm is far better than the original ICA; especially when the standard deviations of the 
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results are compared. The standard deviation of the new algorithm is much better than the 
original ICA and this illustrates the high ability of the new algorithm. 
 

Table 1: Optimal design comparison for the 56-bar dome truss 

 ICA CICA-1 CICA-2 CICA-3 CICA-4 

Best weight (kg) 546.14 546.13 546.16 546.15 546.15 
Average weight (kg) 547.91 546.21 546.31 546.24 546.34 

Std Dev (kg) 5.791 0.49 0.62 0.56 0.59 

 
As another attempt in optimization problems related to the engineering design a new 

improved CSS using chaotic maps was presented for engineering optimization by Talatahari 
et al. [38]. They defined five different variants of the new methodology by adding the chaos 
to the enhanced CSS. Then, different chaotic systems were utilized instead of different 
parameters available in the algorithm. To evaluate the performance of the new algorithm two 
sets of examples were considered: In the first set four well-known benchmark examples 
including design of a piston lever, design of a welded beam, design of a four-storey, two-bay 
frame, and design of a car side impact were selected from literature to compare the variants 
of the new method. In the second set two mechanical examples consisting of a 4 step-cone 
pulley design and speed reducer design problems were utilized in order to compare the 
variants of the new method with other meta-heuristics. As an example taken from the 
original paper, in design of a 4 step-cone pulley the objective is to design a pulley with 
minimum weight using 5 design variables, as shown in Figure 3. 
 

 

Figure 3. A 4 step-cone pulley [39] 
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Four design variables are associated with the diameters of each step, and the fifth 
corresponds to the width of the pulley. In this example, it is assumed that the widths of the 
cone pulley and belt are identical. There are 11 constraints, out of which 3 are equality 
constraints and the remaining are inequality constraints. The constraints are imposed to 
assure the same belt length for all the steps, tension ratios, and power transmitted by the belt. 
The 4 step pulley is designed to transmit at least 0.75 hp (0.75 · 745.6998W), with an input 
speed of 350 rpm and output speeds of 750, 450, 250, and 150 rpm. This problem is 
considered to compare the chaotic CSS (CCSS) method with other meta-heuristic algorithms 
which was solved by using Teaching–learning-based optimization (TLBO) and ABC, 
previously [39]. It is observed from Table 2 that CCSS gives better results than the other 
methods for the best, mean, and standard deviation [39]. 

Due to the simplicity and potency of these methods, it seems that they can easily be 
utilized for many engineering problems to find the optimum designs. 
 

Table 2. Statistical results of the 4 step-cone pulley for different meta-heuristics 

Method Best Mean Std Dev 

TLBO 16.63451 24.0113 0.34 

ABC 16.63466 36.0995 0.06 

CCSS 16.41235 29.1058 0.11 

 
3.2 Chaotic search strategy in meta-heuristics  

The basic idea of chaos optimization algorithm (COA) generally includes two major stages. 
Firstly, based on the selected chaotic map (cm) define a chaotic number generator for 
generating sequences of points then map them to a design space. Afterwards, evaluate the 
objective functions with respect to these points, and choose the point with the minimum 
objective function as the current optimum. Secondly, the current optimum is assumed to be 
close to the global optimum after certain iterations, and it is viewed as the center with a little 
chaotic perturbation, and the global optimum is obtained through fine search. Repeat the 
above two steps until some specified convergence criterion is satisfied, and then the global 
optimum is obtained [40]. The pseudo-code of COA is summarized as follows 

Step 1 Initialization. Initialize the number N of chaotic search, different initial value of n 
chaos variables cmi

0, and the lower and upper bound of the decision variables (XL
 and 

XU). Set the iteration counter as k = 1. Determine the initial design variables as 
 

 0 0( ),       1, 2,...,i L i U Li i i
x X cm X X i n     (13) 

 
Evaluate the objective function and set f* = f (x0). 

Step 2 Variable mapping. Map chaotic variables cmk into the variance range of the 
optimization variables by the following equation 
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 1 1( ),       1, 2,...,k k
i L i U Li i i

x X cm X X i n      (14) 

 
Step 3 Searching for optimal solution. Evaluate the objective function.  

 If k ≤ N, then 
   If f (xk+1) ≤  f*, then x* = xk+1, f* = f (xk+1). 
   Set k = k+1, cmk = cmk+1, and go to step 2. 
 Else if k > N is satisfied then stop. 
Due to the pseudo-randomness of chaotic motion, the motion step of chaotic variables 

between two successive iterations is always big, which resulted in the big jump of the design 
variables in design space. Thus, even if the above COAs have reached the neighborhood of 
the optimum, it needs to spend much computational effort to approach the global optimum 
eventually by searching numerous points. 

Hence, the hybrid methods attracted the attention of some researchers, in which chaos is 
incorporated into the meta-heuristics where the parallel searching ability of meta-heuristics 
and chaotic searching behavior are reasonably combined. Wu and Cheng [41] integrated GA 
with COA, which uses chaos sequence to generate original population and add chaotic fine 
search to genetic operation which can avoid premature convergence. Guo and Wang [42] 
presented a novel immune evolutionary algorithm (IEA) based on COA to improve the 
convergence performance of the IEA. Ji and Tang [43] and Liu et al. [4] suggested a hybrid 
method of SA and PSO combined with chaos search, and examined its efficiency with 
several nonlinear functions, respectively. Similar approaches were also presented for PSO 
by Wang and Liu [44], Gao and Liu [45], and He et al [46]. Finally Baykasoglu [47] 
presented how can the performance of great deluge algorithm (GDA) be enhanced by 
integrating with COA for solving constrained non-linear engineering design optimization 
problems. Such hybrid methods can save much CPU time and enhance the computational 
efficiency of algorithms. 
 
 

4. DIRECTION OF FUTURE RESEARCH 
 
Chaos embedded meta-heuristic optimization algorithms can be used to optimize single as 
well as multiobjective optimization problems. It has been applied in various fields like 
engineering design, operational research, etc. Though in the last decade some work has been 
done in this area, most of it has been concentrated on application of some conventional or 
ad-hoc techniques to certain difficult problems. Despite the success of these modern meta-
heuristic algorithms, there are some important questions which remain unanswered. It is 
known that how these algorithms work, and also partly understood why these algorithms 
work. However, it is difficult to describe mathematically why these algorithms are 
successful. In fact, these are unresolved open problems. Any mathematical analysis will thus 
provide important insight into these algorithms. Another question is why does a balanced 
combination of randomization and a deterministic component lead to a much more efficient 
algorithm (than a completely deterministic and/or a completely random algorithm)? How to 
measure or test if a balance is reached?  
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In addition, a current trend is to use simplified meta-heuristic algorithms to deal with 
complex optimisation problems. Possibly, there is a need to develop more complex and 
hybrid meta-heuristic algorithms combined with chaos theory which can truly mimic the 
exact working mechanism of some natural and biological systems, leading to more powerful 
next generation, self-regulating, self-evolving, self-organizing and truly intelligent 
algorithms. For example Chaotic swarming of particles (CSP) is a newly developed type of 
meta-heuristic algorithms. This algorithm is proposed by Kaveh et al. [48]. The framework 
of the CSP is illustrated in Figure 4. 

 

 
Figure 4. Flowchart of the CSP algorithm [48] 

 
The CSP is inspired from the chaotic and collective behavior of species such as bees, 

fishes, and birds in which chaos theory is used to control the value of the parameters of PSO 
and to increase the local search capability of the PSO in order to enhance search behavior 
and skip local optima. The CSP approach not only performs exploration by using the 
population-based evolutionary searching ability of PSO, but also performs exploitation by 
using the chaotic local searching behavior. In the CLSPSO1 (chaotic local search) phase, the 
initial positions of the particles are determined chaotically in the search space. Also the 
values of the fitness function for the particles are calculated. The best particle among the 



  R. Sheikholeslami
 
 and A. Kaveh  

 

630 630 

entire set of particles is treated as a global best. After reaching a pre-defined number of 
iterations, the CLSPSO1 is stopped and switched to PSO while CPVPSO applies for 
updating the value of parameters in the velocity updating equation. In the second phase, the 
CLSPSO2 (updating process) is activated if PSO stops moving. CLSPSO2 causes the 
particles to escape from local minima using the logistic map. After a better solution is found 
by the CLSPSO2 or after a fixed number of iterations, the PSO will continue. The algorithm 
is terminated when the termination criterion has been met: that is, if there is no significant 
improvement in the solution [48]. 
 
 

5. CONCLUSIONS 
 
As an important tool in optimization theory, meta-heuristic algorithms explore the search 
space of the given data in both exploration and exploitation manner and provide a near-
optimal solution within a reasonable time. Meta-heuristics have many features that make 
them as suitable techniques not only as standalone algorithms but also to be combined with 
other optimization methods. Even the standard meta-heuristics have been successfully 
implemented in various applications; however, many modification and improvements to 
these algorithms have been also reported in the literature. Each of them is tightly related to 
some aspects of these algorithms such as parameters setting or balancing of exploration and 
exploitation. In this paper, we turn the attention to chaos embedded meta-heuristic 
algorithms and survey most of the modifications proposed in the literature.  

Chaos is a bounded unstable dynamic behavior that exhibits sensitive dependence on 
initial conditions and includes infinite unstable periodic motions in nonlinear systems. 
Recently, the idea of using the benefits of chaotic systems has been noticed in several fields. 
One of these fields is optimization theory. Experimental studies show the performance of 
combining chaos and meta-heuristics. Here chaos embedded meta-heuristics are classified 
into two general categories. First category contains the algorithms in which chaos is used 
instead of random number generators. On the other hand in the second category chaotic 
search that uses chaotic map is incorporated into meta-heuristics to enhance searching 
behavior of these algorithms and to skip local optima. 

Finally a new combination of swarm intelligence and chaos theory is introduced in which 
the tendency to form swarms appearing in many different organisms and chaos theory has 
been the source of inspiration, and the algorithm is called Chaotic Swarming of Particles 
(CSP). This method is a kind of multi-phase optimization technique which employs chaos 
theory in two phases, in the first phase it controls the parameter values of the PSO and the 
second phase is utilized for local search using COA.  

Though we have already seen some examples of successful combinations of chaos and 
meta-heuristic algorithms, there still remain many open problems due to the existence of 
many inherent uncertain factors. 
 
 
 
 



A SURVEY OF CHAOS EMBEDDED META-HEURISTIC ALGORITHMS 

 

631

REFERENCES 
 
1. Talatahari S, Farahmand Azar B, Sheikholeslami R, Gandomi AH. Imperialist 

competitive algorithm combined with chaos for global optimization. Commun 
Nonlinear Sci Numer Simul, 2012; 17:1312-9. 

2. Tavazoei MS, Haeri M. An optimization algorithm based on chaotic behavior and 
fractal nature. J Comput Appl Math, 2007; 206:1070-81. 

3. Bucolo M, Caponetto R, Fortuna L, Frasca M, Rizzo A. Does chaos work better than 
noise?. IEEE Circuits Syst Mag, 2002; 2(3): 4-19.  

4. Liu B, Wang L, Jin Y H, Tang F, Huang DX. Improved particle swarm optimization 
combined with chaos. Chaos Soliton Fract, 2005; 25(5): 1261-71.  

5. Liu S, Hou Z. Weighted gradient direction based chaos optimization algorithm for 
nonlinear programming problem. Proceedings of the 4th World Congress on Intelligent 
Control and Automation, 2002, 1779-83, 

6. Li TY, Yorke JA. Period three implies chaos. Amer Math Monthly, 1975; 82: 985-992.  
7. Tatsumi K, Obita Y, Tanino T. Chaos generator exploiting a gradient model with 

sinusoidal perturbations for global optimization. Chaos Soliton Fract, 2009; 42:1705-
1723.  

8. Hilborn RC. Chaos and Nonlinear Dynamics. Oxford University Press, USA, 2000.  
9. Heidari-Bateni G, McGillem CD. A chaotic direct-sequence spread spectrum 

communication system, IEEE Trans Commun, 1994; 42(2-4): 1524-7.  
10. May R. Mathematical models with very complicated dynamics. Nature, 1976; 261:459-

67.  
11. Peitgen H, Jurgens H, Saupe D. Chaos and Fractals. Springer-Verlag, Berlin, 

Germany, 1992. 
12. Zheng WM. Kneading plane of the circle map. Chaos Soliton Fract, 1994; 4(7):1221-

33.  
13. Dressler U, Farmer JD. Generalized Lyapunov exponents corresponding to higher 

derivatives. Physica D, 1992; 59: 365-77.  
14. Zaslavskii GM. The simplest case of a strange attractor. Physics Letters A, 1978; 69(3): 

145-7. 
15. Glover F, Kochenberger GA. Handbook of Metaheuristic. Kluwer Academic 

Publishers, 2003. 
16. Talbi EG. Metaheuristics: from design to implementation. John Wiley & Sons, New 

Jersey, 2009. 
17. Dorigo M. Metaheuristics network website, http://www.metaheuristics.net/. Visited in 

January 2010. 
18. Holland JH. Adaptation in Natural and Artificial Systems. University of Michigan 

Press, Ann Arbor, 1975. 



  R. Sheikholeslami
 
 and A. Kaveh  

 

632 632 

19. Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science, 
New Series, 1983; 220(4598):671-80. 

20. Dorigo M, Maniezzo V, Colorni A. The ant system: optimization by a colony of 
cooperating agents. IEEE Trans Syst Man Cybernet B, 1996; 26(1) 29–41.  

21. Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. In Proceedings 
of the 6th International Symposium on Micro Machine and Human Science, Nagoya, 
Japan, 1995. 

22. Geem ZW, Kim JH, Loganathan GV. (2001) A new heuristic optimization algorithm; 
harmony search. Simul, 2001; 76:60–8.  

23. Erol OK, Eksin, I. A new optimization method: big bang-big crunch. Adv Eng 
Software, 2006; 37(2):106-11. 

24. Atashpaz-Gargari E, Lucas C. Imperialist competitive algorithm: an algorithm for 
optimization inspired by imperialistic competition. In Proceedings of the IEE congress 
on evolutionary computation, 2007, 4661-7,  

25. Yang, XS. Nature-Inspired Metaheuristic Algorithms. Luniver Press, 2008.  
26. Yang XS, Deb S. Cuckoo search via L´evy flights. In Proceedings of the World 

Congress on Nature & Biologically Inspired Computing, 210-214, 2009.  
27. Kaveh A, Talatahari S. Novel heuristic optimization method: charged system search. 

Acta Mech, 2010; 213(3-4):267–89.  
28. Kaveh A, Motie Share MA, Moslehi M. Magnetic charged system search: a new meta-

heuristic algorithm for optimization. Acta Mech, 2013; 224(1): 85-107.  
29. Kaveh A, Khayatazad M. A new meta-heuristic method: ray optimization. Copmut 

Struct, 2012; 112-113:283–94. 
30. Schuster HG. Deterministic Chaos: An Introduction. 2nd Revised Ed, Physick-Verlag 

GmnH, D-6940 Weinheim, Federal Republic of Germany, 1988. 
31. Coelho L, Mariani V. Use of chaotic sequences in a biologically inspired algorithm for 

engineering design optimization. Expert Syst Appl, 2008; 34:1905-13. 
32. Alatas B. Chaotic harmony search algorithm. Appl Math Comput, 2010; 29(4):2687-99. 
33. Alatas B, Akin E, Ozer AB. Chaos embedded particle swarm optimization algorithms. 

Chaos Soliton Fract, 2009; 40:1715-34. 
34. Alatas B. Chaotic bee colony algorithms for global numerical optimization. Expert Syst 

Appl, 2010; 37:5682-7. 
35. Alatas B. Uniform big bang-chaotic big crunch optimization. Commun Nonlinear Sci 

Numer Simul, 2011; 16(9):3696-703. 
36. Talataharis S, Kaveh A, Sheikholeslami R. An efficient charged system search using 

chaos for global optimization problems. Int J Optim Civil Eng, 2011; 1(2): 305-25. 
37. Talatahari S, Kaveh A, Sheikholeslami R. Chaotic imperialist competitive algorithm 

for optimum design of truss structures. Struct Multidiscip Optim, 2012; 46:355-67. 



A SURVEY OF CHAOS EMBEDDED META-HEURISTIC ALGORITHMS 

 

633

38. Talatahari S, Kaveh A, Sheikholeslami R. Engineering design optimization using 
chaotic enhanced charged system search algorithms. Acta Mech, 2012; 223:2269-85. 

39. Rao RV, Savsani VJ, Vakharia DP. Teaching–learning-based optimization: a novel 
method for constrained mechanical design optimization problems. Comput Aided Des, 
2011; 43:303-15. 

40. Yang D, Li G, Cheng G. On the efficiency of chaos optimization algorithms for global 
optimization. Chaos Soliton Fract, 2007; 34:1366-75. 

41. Wu TB, Cheng Y, Zhou TY, Yue Z. Optimization control of PID based on chaos 
genetic algorithm. Comput Simul, 2009; 26:202-4. 

42. Guo ZL, Wang SA. The comparative study of performance of three types of chaos 
immune optimization combination algorithms. J Syst Simul, 2005; 17:307-9. 

43. Ji MJ, Tang HW. Application of chaos in simulated annealing. Chaos Soliton Fract, 
2004; 21:933-41. 

44. Wang Y, Liu JH. Chaotic particle swarm optimization for assembly sequence planning. 
Robot and Cim-Int Manuf, 2010; 26:212-22. 

45. Gao L, Liu X. A resilient particle swarm optimization algorithm based on chaos and 
applying it to optimize the fermentation process. Int J Inform Syst Sci, 2009; 5:380-91. 

46. He Y, Zhou J, Li C, Yang J, Li Q. A precise chaotic particle swarm optimization 
algorithm based on improved tent map. In Proceedings of the 4th International 
Conference on Natural Computation, 2008, 569-73.  

47. Baykasoglu A. Design optimization with chaos embedded great deluge algorithm. Appl 
Soft Comput, 2012; 12(3):1055-67. 

48. Kaveh A, Sheikholeslami R, Talatahari S, Keshvari-Ilkhichi M. Chaotic swarming of 
particles: a new method for size optimization of truss structures. Adv Eng Softw, 2014; 
67:136-47. 


