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ABSTRACT 
 

Weighted Uniform Simulation (WUS) is recently presented as one of the efficient 
simulation methods to obtain structural failure probability and most probable point (MPP). 
This method requires initial assumptions of failure probability to obtain results. Besides, it 
has the problem of variation in results when it conducted with few samples. In the present 
study three strategies have been presented that efficiently enhanced capabilities of WUS. To 
this aim, a progressively expanding intervals strategy proposed to eliminate the requirement 
to initial assumptions in WUS, while low-discrepancy samples simultaneously employed to 
reduce variations in failure probabilities. Moreover, to improve the accuracy of MPP, a new 
simple local search method proposed and combined with the simulation that strengthened 
the method to obtain more accurate MPP. The capabilities of proposed strategies 
investigated by solving several structural reliability problems and obtained results compared 
with traditional WUS and common reliability methods. Results show that proposed 
strategies efficiently improved the capabilities of conventional WUS. 
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1. INTRODUCTION 

 
In recent decades, reliability analysis of structures has become a topic with great interest 
between the engineers and designers [1-7]. This type of analysis inserts the probabilistic 
uncertainties in load and resistance model of structures that always exist but often neglected 
during conventional deterministic analyses and design methods [8]. A fundamental problem 
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in structural reliability theory is the computation of the multi-fold probability integral that 
provides the failure probability (Pf ) of structure as: 
 
    

  0
Pr [ 0 ]f G X

P ob G X f X dX


     (1) 

 
where X=[X1,…,Xn]

T is a vector of random variables representing uncertain structural 
quantities such as loads, environmental factors, material properties and structural dimensions 
[9]. The functions G(X) and f(X) denote the limit state function (LSF) and the joint 
Probability Density Function (PDF) of X respectively, such that: 

 if G(X) < 0 the system is in a failure state, 
 if G(X) = 0 the system is in a limit state (this state is considered as a failure state), 
 if G(X) > 0 the system is in a safe state [10]. 

Exact evaluation of this equation is difficult for common structures, hence during the two 
last decades intensive researches have been carried out to provide methods to solve Equation 
(1). Among proposed methods, First Order Reliability Methods (FORM) have been 
considered as the most acceptable computational methods of approximation attempt [11]. 
FORM works by linearizing LSF, searching Most Probable Point (MPP) in standard normal 
space, referred to as "U space" and approximating Pf based on reliability index instead of 
calculating it directly [12, 13]. These methods are encountered with serious drawbacks for 
the case of nonlinear LSFs. They may be listed as follows: 

1- To obtain the reliability index, one may need to solve a constrained optimization 
problem [10]. Therefore, a selection of proper parameters such as step size and initial search 
point significantly affects their accuracy and efficiency [14, 15]. Thus, researchers must 
have enough experience and skill in the field of optimization since selecting improper 
parameters may result in converging optimization algorithm to an improper answer. 
Moreover, most of classic optimization algorithms encounter a problem with multiple design 
points [13, 16]. 

2- The linearization of LSF will lead to a loss of precision in the reliability evaluation of 
nonlinear problems. If the safety domain is concave, FORM overestimates the Pf, while in 
the opposite case, it will be underestimated. Therefore, even if the method converges to an 
accurate design point, the result of FORM for Pf may be not reliable. By using Second Order 
Reliability Methods (SORM) this reliability evaluation may be more accurate, but it could 
make the formulation of the problem more complicated and fuzzier because curvature of the 
failure region must be obtained [17]. 

3- In FORM, it is assumed that all random variables have normal distribution. However, 
the basic variables of environmental actions and structural resistances for most of 
engineering structures are not normally distributed [17, 18]. For various probability 
distributions, transformation of random variables from original space to standard normal 
space requires numerous nonlinear mappings. These transformations can produce additional 
nonlinearity of safety margins in the equivalent normal space, even for linear LSF. 
According to Ref. [18] the transformations of the exponential or Gamma resistance variables 
can generate 24% errors in the FORM failure probability, and the transformation of Frechet 
action variables could generate a 31% drift. If the LSF is linear and MPP is determined, still 
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there is no certainty of FORM results. Over the past three decade several researchers 
improved the accuracy of the FORM method, also using higher order moments to overcome 
the limitations of this method has been developed [19-21]. 

Considering these shortcomings in FORM, when an accurate solution is necessary for 
reliability analysis of a structure, simulation methods could be considered as suitable 
alternative. These methods do not rely on a simplifying approximation to the shape of the 
LSF, so they may be more accurate comparing to some analytical methods. Monte Carlo 
Simulation (MCS) as a well-known simulation method may well be reliable in 
approximating Pf for all types of LSF. But despite high accuracy and robustness, this method 
is very time consuming in the evaluation of low failure probability problems as well as finite 
element based problems [13, 22, 23]. These obscurities have led researchers to develop 
variance reduction techniques such as stratified sampling [24], Latin Hypercube Sampling 
[25, 26], Importance Sampling [27, 28] and Directional Sampling [29-31]. During past 
decade, some novel techniques such as Subset Simulation [7, 32], Line Sampling [33, 34] 
and Local Domain Monte Carlo Simulation [35] were also proposed to treat high 
dimensional reliability problems. Although these techniques require much fewer samples 
than MCS, due to the possibility of significant errors in understanding and analysis of the 
problem as well as the errors of simplifications, these methods may need to be verified by 
MCS. Rashki et al. was presented a simulation method that eliminates some limitations of 
common reliability methods [36]. This method referred to as Weighted Uniform Simulation 
(WUS), simply approximates Pf as well as MPP with a reliable accuracy. However, two 
drawbacks could be observed in this method.  One is a need for an initial assumption for 
reliability index, and the other is a tolerance in results when a low numbers of samples are 
employed. 

In this paper three strategies are offered to enhance the accuracy and efficiency of 
method, which has eliminated aforementioned drawbacks. These approaches are presented 
in the later sections after brief review of WUS. 
 
 

2. WUS FOR APPROXIMATING FAILURE PROBABILITY 
 
WUS is the simple method that approximates Pf and MPP with few samples at the accuracy 
of MCS. In this method, the first step in WUS is to generate random numbers in specific 
intervals based on initial assumption of Pf. Based on competency of the samples, WUS then 
attributes a weight index, wi, to generated samples. The indicator I, then separates the failed 
samples (Ii=1) from those in the safe region (Ii=0). The matrix of the generated random 

values (x) and the assigned weight matrix W  are as follows: 
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where: 
 

 
1

( )
s

i j ji
j

w f x


  (3) 

 
In the Equation (2), s is number of random variables and n is random numbers generated 

for each variable. Attributing weights to generated samples, WUS approximated Pf as: 
 

 Pf  i1

n Ii.wi

i1

n wi

,  (4) 

 
Assuming X1 and X2 are the two basic random variables, the required WUS steps for Pf 

approximation are shown in Figure 1. 

 

Figure 1. Failure probability estimation using WUS. (A) Sample generation, (B) Weighting of 
samples, (C) Failure probability estimation 

 
which MPP is the sample in failure region that has the maximum weight [36]. Thus, 

P

(A) (B) (C) 



ENHANCING WEIGHTED UNIFORM SIMULATION FOR STRUCTURAL... 

 

639

 
 MPP  max(I. W ) (5) 
 

It can be seen that the nature of MPP determination in WUS is basically different with 
FORM. However, the result of MPP provided by WUS is comparable with that of FORM. 
 
 

3. PROPOSED STRATEGIES FOR ENHANCING EFFICIENCY OF WUS 
 
As mentioned, WUS approximates Pf with few samples but with high accuracy. But, still 
some drawbacks could be seen in the case of initial failure probability assumption and also 
accuracy of MPP when few samples are employed. Besides, the method has the variation in 
Pf approximation, similar to that of MCS. 

The following is an expanding interval strategy accommodated with a simple local search 
method proposed to eliminate the deficiencies of MPP and requiring initial assumptions for 
Pf. Besides, for the case of variance reduction of WUS results, low-discrepancy samples are 
employed instead of common random samples. 

 
3.1 Expanding interval strategy to eliminate initial assumptions required 

A review on reliability methods reveals that most of them require proper assumptions for 
their parameters to obtain reliability results. These parameters are often initial search point 
and assumed reliability index that affect the efficiency and accuracy. Improper selection for 
these values could mislead researchers by providing inaccurate solution. Furthermore for 
some methods such as MCS, it is also accommodates with high wasted computational costs. 
As an instance, consider a problem possesses a Pf of less than 10-7, while one assumes it to 
be 10-4. Based on the assumed failure probability and a 95% confidence interval, MCS 
requires more than 106 system evaluations to achieve an error of less than 20% in the failure 
probability calculations [37]. However, after performing MCS, the achieved result would be 
Pf=0, since the assumed reliability index was less than its real values by a great amount. 
This is an iterative process of leading to useless sets of computations; in particular when 
finite element based analysis is involved. 

As it was mentioned in Section 2, requirement to assuming a conservative reliability 
index was also a part of WUS to determine intervals for sample generation. But since the 
nature of samples distribution in WUS was uniform, this problem could be easily eliminated 
by employing step-by-step expanding the aforementioned intervals around the mean values. 
As it is shown in Figure 2, if first interval had no specifications of proper interval, one could 
expand the interval and generate new samples in the border of two intervals. 
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Figure 2. Gradually increasing intervals till obtain failure probability convergence 
This process could continue until the obtained result satisfies desired convergence criteria 

for the problem. This strategy could help to conduct new WUS by employing the former 
samples and thus avoid wasted sample even if the initial assumption for reliability index was 
not adequate. 
 
3.2 Low-discrepancy samples in WUS to reduce variances in results 

The application of low discrepancy sampling methods in structural reliability problems was 
realized by Nie and Ellingwood for the directional simulation [38], and it was also 
successfully employed for importance sampling by Dai and Wang [39]. These studies reveal 
the capacity of low-discrepancy sequence application in structural reliability analysis. For 
the case of improving the convergence rate and eliminating the deviation of results, the 
effect of low-discrepancy of samples was also investigated in WUS. For this, two important 
classes of sequences of points that are well suited to multivariate integration are examined. 
They may be referred as lattice points and digital sequences. Hence, a Good Lattice Point 
(GLP), Sobol and Halton sequences have been considered alongside with the common 
random samples. A popular empirical method to study the uniformity of low-discrepancy 
sequence is to plot its two-dimensional projection [39]. Figure 3 shows two dimensional 
scattered plots with the sample size 100 for random, GLP set, Sobol and Halton sequences. 
 

Figure 3. Two dimensional scatter plot of different point set 
 

C) Halton sequence(A)Random numbers B) GLP set D) Sobol sequence 

Generated samples in 3th step 

Generated samples in 5th step 

Generated samples in 4th step 

Generated samples in 2nd step 

Generated samples in 1st step 
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3.3 Improving MPP accuracy using a new local search method 

For designers, it is not only important to obtain the Pf but also to know the design point of 
the structure [10]. As it was seen before, besides the failure probability estimation, WUS 
provided a new solution for MPP. However, when the failure probability approximated by 
using few samples, the obtained MPP may be inaccurate since design space may not be 
properly covered by only few samples. For this case, progressively expanding the intervals 
in WUS could be an advantage for accurately determining MPP. To this aim, by 
simultaneously employing proposed strategy together with a local search, improvement in 
MPP accuracy could also be feasible without using large number of samples. This is 
possible by employing a simple local search method when MPP appears in the simulation 
process. According to Figure 4, the accurate MPP could be in the vicinity of the sample with 
a maximum weight among others. When that sample was observed, a new random sampling 
using normal distribution around the MPP with the standard division of 0.2 of original 
standard deviation, could lead to an accurate MPP. Figure 4 signifies this manner 
schematically. 
 

 

Figure 4. Enhanced WUS vs. conventional WUS 

 
 

4. NUMERICAL EXAMPLES 
 
To investigate the efficiency of proposed strategies in WUS, four examples solved by using 
these strategies and compared with MCS and FORM. It should be noted that the FORM 
algorithm which is used for computations is the improved FORM that is proposed by Der 
Kiureghian and Dakessian [40]. 
 
4.1 Example 1 

The aim here is to investigate the effect of size of low-discrepancy samples and also the 
accuracy of proposed local search method for a highly nonlinear problem with variables 

g = 0 g = 0 
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involving four different PDFs. For this purpose, reliability analysis of a tension plate with 
the edge crack was investigated (Figure 5). The LSF of the problem could be considered as 
follows [41]: 
 

 
2 3 4

1.12 0.23 10.56 21.74 30.42 *IC

c c c c
g K S c

w w w w


                              
 (6) 

 
where KIC is the critical mode I stress intensity factor, S is the applied normal traction and w 
and c are the width of plate and half length of the crack, respectively. The statistical 
parameters of problem are presented in Table 1.  According to that, Pf for four different PDF 
states of random variables was investigated. c and w are considered random variables with 
uniform PDF while KIC and, S were considered random with: 1) Normal, 2) Log-Normal, 3) 
Extreme type I and 4) weibul PDFs. 

w

crack

2c

 
Figure 5. Finite tensile plate that includes an edge crack 

 
Table 1: Random variables for Example 1 

Random variable Mean S.D PDF

C 5 cm 321  cm Uniform

W 25 cm 324  cm Uniform

S 500 

kgf/cm2 50 kgf/cm2

Case 1 Normal 
Case 2 Log-Normal 
Case 3 Ext. type I 
Case 4 weibul 

ICK  4500 
kgf/cm1.5

450 
kgf/cm1.5 

Case 1 Normal 
Case 2 Log-Normal 
Case 3 Ext. type I 
Case 4 weibul 

 
The problem was also solved with MCS using 30,000,000 samples with a failure 

probability being referred to as Pf accurate. It was then compared to those obtained by WUS 
using Equation (7): 
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   f f accurate f accurateerrmaximum obtained relative or P P P   (7) 

 
Table 2 shows the MCS results for different number of samples for the mentioned cases. 

This table also presented averages and maximum obtained relative errors as in Eq. 7. 
 

Table 2: Effects of PDFs of random variables on MCS results and corresponding errors for 
different number of samples for Example 1 

Number of samples 104 5×104 105 2×105 5×105 106 5×106 107 3×107 

310fP   

Case 1 1.100 0.860 0.460 0.490 0.558 0.569 0.587 0.592 0.606 
Case 2 1.000 0.220 0.210 0.295 0.328 0.413 0.391 0.389 0.375 
Case 3 0.200 0.960 0.910 0.620 0.660 0.655 0.751 0.752 0.737 
Case 4 4.000 2.020 2.350 2.375 2.742 2.697 2.593 2.604 2.632 

Maximum error (%) 166.40 41.83 44.06 21.41 12.62 11.15 4.11 3.50 "true" 
Average error (%) 93.17 34.17 25.59 16.56 8.81 7.45 2.66 2.21 "true" 

It could be found that MCS required about 5×106 samples to obtain results with less than 
5% errors. Table 3 presented Pf and their relative errors using FORM and SORM, which has 
revealed that FORM had about 30%-37% error in computation of Pf. the corresponding error 
was recorded as 14%-19% for SORM. Although these methods provide solutions with few 
LSF evaluations, but it is clear that they provide unacceptable accuracies for engineering 
purposes. 
 

Table 3: Effects of PDFs of random variables on FORM and SORM results and corresponding 
errors for Example 1 

FORM SORM

310fP   

Case 1 0.781 0.705 
Case 2 0.514 0.448
Case 3 0.985 0.835
Case 4 3.158  2.804 

Maximum error (%) 36.98 19.24
Average error (%) 29.87 13.84 

 
For the case of WUS, the reliability index was assumed to be 3.5 and low-discrepancy 

samples employed to obtain failure probabilities and the obtained results are presented in 
Table 4 and 5 for 104 and 50625 samples respectively. Figures 6 and 7 illustrate relationship 
between number of samples and relative error in MCS and WUS methods. 
 

Table 4: Effects of PDFs of random variables on WUS results with low-discrepancy samples 
with 104 samples for Example 1 

Types of pseudo-random samples Random Halton Sobol GLP Uniform 

310fP   

Case 1 0.519 0.644 0.614 0.588 0.647 
Case 2 0.394 0.336 0.354 0.347 0.388 
Case 3 0.546 0.720 0.780 0.669 0.520 
Case 4 2.359 2.565 2.746 2.660 2.740 

Maximum error (%) 25.97 10.46 5.84 9.22 29.46 
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Average error (%) 13.91 5.39 4.29 5.25 10.89 

 
Table 5: Effects of PDFs of random variables on WUS results with low-discrepancy samples 

with 154 (50625) samples for Example 1 
Types of pseudo-random samples Random Halton Sobol GLP Uniform 

310fP   

Case 1 0.558 0.592 0.610 0.593 0.604 
Case 2 0.366 0.360 0. 381 0.364 0.371 
Case 3 0.738 0.737 0.717 0.753 0.746 
Case 4 2.416 2.595 2.633 2.612 2.633 

Maximum error (%) 8.20 4.07 2.74 3.00 1.19 
Average error (%) 4.75 1.97 1.21 2.03 0.68 
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Figure 6. Relationship between number of samples and average of errors for Example 1 
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Figure 7. Relationship between number of samples and maximum of errors for Example 1 
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The result shows that low-discrepancy samples efficiently increases the convergence rate 

and reduces the errors. It can be seen that by employing low-discrepancy samples, WUS 
obtained reliability results with the accuracies similar to MCS while the required samples in 
WUS are reduced to 1%. Table 6 presented the results of proposed MPP search method for 
the four cases mentioned while the results of improved FORM also presented for 
comparison. Results show that for all four cases, MPP provided by the introduced local 
search method was more accurate from those extracted from the improved FORM. 
Therefore, it can be found that enhanced WUS is more efficient and accurate than 
conventional WUS, not only for the case of Pf approximation, but also for the case of MPP 
determination.  

Table 6: MPP and weight index calculated by FORM and WUS for Example 1 

 
Method 

MPP Weight index 
( 810 ) ICK  0  c w 

Case 1 
WUS 3493.240 571.404 5.500 23.004 5.2221 

FORM 3360.664 581.321 5.307 24.319 1.9107 

Case 2 
WUS 3642.409 595.813 5.499 23.004 4.2252 

FORM 3597.478 619.246 5.328 24.228 1.4563 

Case 3 
WUS 3979.953 651.319 5.498 23.008 4.3651 

FORM 4048.149 703.674 5.286 24.405 1.4645 

Case 4 
WUS 3347.578 547.626 5.499 23.006 9.6508 

FORM 3066.605 540.088 5.226 24.599 4.1626 

 
4.2 Example 2. 

This example investigates the efficiency of expanding interval strategy for problem with 
high values of reliability index. The limit state of problem is a function with two 
independent normal random variables that is presented as: 
 

  
2

1

8 2 i
i

g X


    (8) 

 
In the absence of absolute operator for the proposed LSF, the reliability index of problem 

is 8 [39,42], while by inserting absolute operator, the reliability index reduces to 7.92 
because the absolute operator causes the generation of two separate failure regions. For the 
proposed level of safety, the approximation of Pf by MCS seems to be impossible by 
common computers since MCS requires about 3.271017 samples to obtain results with 
coefficient of variations less than 5% error. Besides FORM and SORM are not able to 
approximate Pf accurately, since obtaining result in these methods is based on MPP, which 
means that it just considers one of two existed failure domains. But, as it was shown in 
Table 7, WUS to approximate Pf accurately, requires only 449995 Samples, meaning a very 
minor fraction of that provided by the other method. 

 
Table 7: The WUS results employing low-discrepancy samples for Example 2 
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Types of pseudo-random samples Random Halton Sobol GLP 
1510fP   1.202 1.236 1.249 1.221 

Reliability index 7.919 7.915 7.914 7.917 

 
To obtain results, initial reliability index assumed to be 1 and then the proposed 

expanding interval strategy employed to obtain reliability results. To this aim, low-
discrepancy samples employed and intervals gradually increased (10% per step) till the 
difference between the obtained reliability indices converged to 0.01. Results show that after 
11 steps, all of the employed sampling methods converged to proper Pf without renewing 
sampling (see Figure 8). Therefore, if there is no premier perception about Pf of a problem, 
one could obtain accurate solutions by performing proposed enhanced WUS. It should be 
noted that if the require time to generate 449995 samples and corresponding simulation 
computations is about 0.1 second, the similar required computations time for 3.271017 
samples (size of requires samples in MCS) is more than 2300 years. 
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Figure 8. Increasing the number of samples and the probability of failure converging for Example 
2 

 
Example 3.  

In this example, ability of extended WUS method for solving problems with island failure 
region investigated. For this purpose, reliability analysis of the damped single degree of 
freedom system with dynamic vibration absorber investigated that is subjected to harmonic 
force [43]. For this structure that is shown in Figure 9, the amplitude of vibration depends on 
R ,  , 1  and 2 where R is the mass ratio of the absorber to the original system;   is the 

damping ratio of the original system; 1 is the ratio of the natural frequency of the original 

system to the excitation frequency and 2  is the ratio of the natural frequency of the 
absorber to the excitation frequency. By considering allowable level of vibration (y0) equal 
to 27, The LSF of problem expressed as: 
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 27g y   (9) 

 
where, y is the amplitude of the original system that is normalized by the amplitude of its 
Quasi-static response. The amplitude, y, expressed as [43]: 
 

 

2

2

2 22 2 2 2 2

2
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                 
               

 (10) 

 

 
Figure 9. Tuned vibration absorber [43] 

 
To evaluate the reliability of system, it is assumed that 1  and 2  are random 

variables with normal distribution N(1,0.025), while 01.0R and 01.0  are 
deterministic. According to Figure 10, this problem has island failure region that highly 
reduces the accuracy of FORM and SORM for the case of failure probability estimation.  

Using MCS with 1.5107 samples, the accurate Pf of problem computed as 0.01097. 
For the case of WUS, expanding intervals strategy with low-discrepancy samples 
employed to approximate the Pf, and the obtained results are presented in Figure 11. The 
expanding interval procedure started with 260 samples in first step, while convergence 
criteria considered being 0.01 of differences in reliability indices. It can be seen that by 
employing GLP, Haltom and Sobol sampling, enhanced WUS properly converged to the 
solution in five steps with 1742 samples while the relative error values are 1.66%, 1.42% 
and 0.66%, respectively.  
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Figure 10. Failure region of Example 3 

To demonstrate the variation in results for conventional WUS, 100 separate 
simulations were conducted by using common random samples while the samples size 
for each simulation was equal to that performed by using low discrepancy methods. This 
was led to achieve failure probabilities with the minimum error of 0.12% and maximum 
of 28%. It means that performing WUS with common random samples sometimes 
provided high accurate results (with 0.12% error) and sometimes provided failure 
probabilities with large errors (with 28.44% errors). Hence, enhanced WUS has been 
eliminated this variation with acceptable accuracy that is less than 2% error. 
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Figure 11. Increasing the number of samples and the probability of failure converging for 

Example 3 
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Although the computed failure probabilities by using improved FORM and SORM 

gave great error (33.6% and 52.9% respectively), the MPP provided by improved FORM 
compared with that provided by proposed WUS based local search methods (see Table 
8). Results show that similar to previous example, proposed local search method 
provided more accurate solution compared to improved FORM. 
 

Table 8: MPP and weight index calculated by FORM and WUS for Example 3 

method MPP 
Weight index 

β1 β2 
WUS 0.9632 0.9537 15.584

FORM 1.0407 1.0455 1.288 

 
 

5. CONCLUSIONS 
 
In this study, three different strategies were introduced to enhance the accuracy and 
efficiency of WUS. Firstly, the need for a primary estimation of reliability index in WUS 
was eliminated by proposing an expanding intervals strategy. To reduce the variation of 
computed failure probabilities, low-discrepancy samples were then employed successfully 
instead of common random samples. Finally, they were accommodated with a new MPP 
local search method that works by distributing new samples around the former MPP, 
resulted from WUS, during simulation process by which more certain MPP results were 
determined. The proposed strategies were examined by solving several analytical and 
engineering problems. Results indicated that by employing all three approaches 
simultaneously, not only the requirement for WUS initial assumptions was eliminated, but 
also the methods provided more accurate MPP result. This was the case even though Pf of 
the problem was approximated by low number of samples compared to that of conventional 
WUS. 
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