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ABSTRACT 
 

The development of an excavation damaged zone (EDZ) around an underground excavation 
can change the physical, mechanical and hydraulic behaviors of the rock mass near an 
underground space. This might result in endangering safety, achievement of costs and 
excavation planed. This paper presents an approach to build a prediction model for the 
assessment of EDZ, based upon rock mass characteristics changed. Rock engineering 
systems (RES) was used as an appropriate method for choosing the best parameter that 
expresses the occurrence of EDZ. Modulus of deformation with the highest weight in the 
system was selected as the most effective changed parameter. The adaptive network-based 
fuzzy inference system (ANFIS) with modulus of deformation as input was used to build a 
prediction model for the assessment of EDZ. Three ANFIS models were implemented, grid 
partitioning (GP), subtractive clustering method (SCM) and fuzzy c-means clustering 
method (FCM). A comparison was made between these three models and the results show 
the superiority of the ANFIS-SCM model. Furthermore, a case study in a test gallery of the 
Gotvand dam, Iran was carried out to illustrate the capability of the ANFIS model defined. 
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1. INTRODUCTION 
 

The excavation of tunnel by blasting creates a zone of damaged rock around the tunnel in 
which the physical, mechanical and hydraulic properties of the rock zone immediately 
surrounding the excavation are changed. This zone is usually referred to as the excavation 
damaged zone. The disturbance and damage are mainly in the form of creation of new 
fractures, closure and opening of pre-existing fractures [1], and disturbance of the in situ 
stress [2]. Due to reduction of mechanical characteristics and increase in hydraulic 
properties (Figure 1), significant effects on the global behavior of the near-field rock mass 
and thus the overall performance of an excavation occur. The presence of this zone can pose 
problems related to stability and seepage and consequently impair the performance and 
functionality of the excavation [3]. Therefore, the understanding of the EDZ is essential for 
the optimal design of rock support. Furthermore, for support interaction studies at 
underground spaces, the mechanical properties of the EDZ, particularly those relating to 
deformation modulus are important. 

Various researches about the assessment of EDZ with different methods such as 
displacement measurement, seismic refraction, direct observation, using borehole cameras, 
numerical methods were carried out worldwide. Geophysical methods were extensively used 
in the investigation of EDZ in various projects [4-6]. These methods are mostly based on 
seismic velocity measurements, which enable a non-invasive investigation of a large volume 
of rock around an excavation [7, 8]. Acoustic emission monitoring was also used to quantify 
and localize the rock mass damage and in particular to follow the EDZ evolution during an 
excavation process [9]. Geo-electric methods in indurate clay rocks [10] and radar reflection 
survey in crystalline rock mass [11] were also employed. All these geophysical methods that 
yield quantitative results are most often used in conjunction with each other [12, 13] and 
with other techniques such as visual inspection [14], core drilling analysis [15], 
fluorescence-doped resin injection prior to over core [16] that this method allows very 
detailed interpretation and identification of open fractures in the EDZ, estimates the in situ 
aperture and can provide information on the connectivity of fractures. 

Hydraulic and pneumatic methods including hydraulic conductivity measurements; gas 
injection or extraction tests in boreholes; constitute a localized invasive means to delineate 
the EDZ and to estimate its transport properties. Different researches were carried out using 
such methods [17, 18].  

Furthermore, the technique known as Adaptive Neuro-Fuzzy Inference System (ANFIS) 
seems to be suited successfully to model complex problems where the relationship between 
the model variables is unknown [19]. ANFIS was used by various researchers worldwide  
[20-22]. 
 
 

2. DEFINITIONS OF DAMAGED AND DISTURBED ZONES 
 
Different definitions and names for the damaged and disturbed zones have been used. The 
EDZ is generally defined as the zone beyond the excavation boundary where, the rock has 
been considerably disturbed and/or damaged due to the excavation and re-distribution of 
stresses [23]. In this paper, the definitions of  Tsang et al. [2] are used, which are described 
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as follows: 
• The excavation disturbed zone (EdZ) is a zone with hydro-mechanical and geochemical 

modifications, without major changes in flow and transport properties. In the EdZ there are 
no negative effects on the long-term safety. 

• The excavation damaged zone (EDZ) is a zone with hydro-mechanical and geochemical 
modifications inducing significant changes in flow and transport properties. 

In addition, in this paper, a highly damaged zone (HDZ) is defined as a zone where, 
macro-scale fracturing or spalling may occur. The HDZ is part of the EDZ (Figure 1). 

 

 
Figure 1. Various zones around an underground excavation 

 
 

3. ROCK ENGINEERING SYSTEMS 
 
The RES was established by Hudson in 1992 [24] and used by researchers worldwide [25-
30]. It is a method, which has the capability of simultaneous analysis of relations among 
effective parameters of rock mass, site or structure, and discusses their interactions. For rock 
mechanics modeling and rock engineering design for a specific project, it is needed to be 
able to identify the relevant physical variables and the linking mechanisms, and then 
consider their combined operation. It is important to ensure that all the relevant factors and 
their interactions will be taken into account [24]. An RES description of the overall 
interactive mechanisms in drill and blasting operation seems to be an appropriate approach 
for choosing the best parameter among physical, mechanical and hydraulic parameters that 
have been changed due to a blasting impact and stress redistribution after excavation. The 
selected parameter can be used for the assessment of EDZ. 
 
3.1 The Interaction Matrix and Its Coding 

Interaction matrix is the basic device used by the rock engineering systems. A systematic 
method for thinking about all the interactions is to list them in a matrix. The principal 
parameters considered relevant to the problem are listed along the leading diagonal of a 
square matrix from top left to bottom right and the interactions between pairs of principal 
parameters form the off-diagonal terms [24]. The off-diagonal terms, are assigned values, 
which describe the degree of the influence of one factor (or parameter) on the other factor 
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(or parameter) (Figure 2). Assigning these values is called coding the matrix. Several 
methods have been presented for numerically coding this matrix such as binary method, the 
expert semi-quantitative (ESQ) method [24] and the continuous quantitative coding (CQC) 
method [31]. Among these methods, the ESQ method is the most widely used, which is 
shown in Table 1. The sum of each row is the "cause" value and the sum of each column is 
the "effect" value, designated as coordinates (C, E) for each particular parameter. These 
procedures are shown in Figure 2. The result of comprising such a matrix is a table including 
useful information about the interactive intensity (C+E) and dominance (C-E) (Table 2). The 
percentage value of (C+E) can be used as the parameter's weighting factor (ai), as shown in 
Eq. (1): 
 

 

( )
100

( )
i i

i
i i

C E
a

C E


 

   (3) 
 

 
Figure 2. Illustration of the interaction matrix (after [24]). 

 
Table 1: Code number concepts [24] 

Code number Concept 

0 No interaction 
1 Weak interaction 
2 Medium interaction 
3 Strong interaction 
4 Critical  interaction 

 

 
Table 2: Result of an interaction matrix 

Parameters C E C+E C-E ai 

P1 C1 E1 C1+ E1 C1- E1 a1 
P2 C2 E2 C2+ E2 C2- E2 a2 
P3 C3 E3 C3+ E3 C3- E3 a3 
. . . . . . 

. . . . . . 
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4. CHOOSING THE BEST PARAMETER FOR ASSESSMENT OF EDZ, USING 
THE RES 

 
The identified 11 parameters, which can be changed by impact of blasting and stress 
redistribution after excavation are illustrated in Table 3. These parameters are listed along 
the leading diagonal of a square matrix, the interaction matrix. The interaction matrix coding 
was carried out based upon the views of 3 experts, using the ESQ coding and the results 
obtained are shown in Figure 3. 
 

Table 3: The main physical, mechanical and hydraulic parameters, changed after excavation 

No. Parameters 
P1 RQD 
P2 Uniaxial compressive strength 
P3 
P4 

Permeability 
Cohesion 

P5 Internal friction angle 
P6 
P7 

Deformation modulus 
Wave velocity 

P8 Effective porosity 
P9 Poisson’s ratio 
P10 Specific gravity 
P11 Brazilian tensile strength 

 

P1 
2 

1 
P2 

2 
2 

1 
2 

1 
2 

2 
3 

2 
3 

1 
1 

1 
2 

1 
3 

1 
2 

1 1 P3 1 1 2 2 2 1 1 1 
2 2 2 P4 2 2 2 2 1 1 2 
1 2 1 2 P5 2 2 1 1 1 2 
3 3 3 3 3 P6 3 1 3 3 3 
2 3 2 1 1 3 P7 2 2 2 2 
1 2 3 1 1 2 1 P8 1 2 2 
1 3 1 2 2 3 2 1 P9 1 2 
1 2 2 1 1 2 2 1 1 P10 2 
2 2 2 1 1 2 2 1 2 2 P11 

Figure 3. Illustration of the interaction matrix coding results 
 
The benefit of comprising an interaction matrix is the understanding of the interaction of 
parameters, which are assumed to have considerable influence on the assessment of EDZ. 
The results obtained helps finding the most representative parameter, which can be used for 
the assessment of EDZ. Weight of each parameter represents the degree of interactive 
intensity in the system. As it is shown in Table 4 and Figure 4, deformation modulus has the 
highest weight in the system, which controls other elements. Thus, the modulus of 
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deformation is the best parameter among other parameters that represents the behavior of 
rock mass after excavation, which can be used for the assessment of EDZ. 
 

Table 4: The results of comprising interaction matrix for selecting the best parameter 

No. Parameters C E C+E C-E ai (%) 
1 RQD 13 16 29 -3 7.44 
2 Uniaxial compressive strength 22 21 43 1 11.03 
3 Permeability 13 20 33 -7 8.46 
4 Cohesion 18 15 33 3 8.46 

5 Internal friction angle 15 15 30 0 7.69 

6 Deformation modulus 28 23 51 5 13.08 
7 Wave velocity 20 21 41 -1 10.51 
8 Effective porosity 16 13 29 3 7.44 
9 Poisson’s ratio 18 15 33 3 8.46 

10 Specific gravity 15 17 32 -2 8.21 
11 Brazilian tensile strength 17 19 36 -2 9.23 

Sum 195 195 390 0 100 

 

 
Figure 4. The histogram for C+E 

 
 

5. FIELD STUDY 
 
5.1 Site Descriptions and Geology 

The Gotvand dam is located on the Karun river in the Khuzestan province, south west of 
Iran. This dam with 178 m height and 730 m length of embankment, regulates the water of 
the Karun river, also serves power generation, flood control and irrigation needs [32]. The 
geology of area consists of two formations; Bakhtiary (BK) and Aghajari (AJ). The BK 
formation is composed of conglomerate, cherty limestone and inter bedded mudstones and 
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sandstone. The conglomerate mainly consists of limestone pebbles but it also contains a 
significant amount of fragments. This formation is of upper Pliocene age that overlies the AJ 
formation . 

The AJ formation contains 2 to 5 m thick layers of gray and greenish gray sandstones, 
inter bedded claystone, siltstone and brow reddish marlstone. More resistant than the fine-
grained, the sandstone usually forms topographic heights and steep benches alternating with 
gentler slopes corresponding to the softer inter bedds. The sandstones of the AJ formation 
are composed of the well-rounded siliceous-limy grains with approximately 70% lime and 
30% quartz. The AJ formation, of late Miocene to lower Pliocene age, overlies the Mishan 
formation [32]. 

Around the Gotvand dam, four galleries were excavated by drill and blast, three in the 
right bank (galleries A, C and D), and one in the lower part of the left bank (gallery B), to 
carry out the in situ tests. As deformation modulus is reduced in the EDZ (Figure1), plate 
loading tests were performed in galleries to determine deformation modulus for the 
assessment of EDZ. 
 
5.2 Plate loading Test for Determination of Deformation Modulus 

The plate loading test (PLT) is the most familiar in situ experiment in rock mass studying. It 
is generally conducted in special test galleries or underground spaces excavated by 
conventional drill and blast, having a span of 2 m and a height of 2.5 m. In the PLT, load is 
directly imposed on the wall of gallery, and the resultant displacement is measured on the 
loading point in rock. A cycle of loading and unloading (Figure 5) provides the load-
displacement curve, which is necessary to deformation modulus determination [33]. 
 

 
Figure 5. Pressure-displacement curves obtained from the PLT [33]. 

 
The recoverable displacement is used to evaluate the deformation modulus based on the 

theory of elasticity. Depending on the loading condition, the PLT can be classified into a 
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flexible type and a rigid type. In this paper, the flexible PLT procedure suggested by the 
ISRM 1981 in which Boussinesq’s equation is applied in the interpretation of the PLT 
results is used. The fundamental set-up of the PLT is illustrated in Figure 6. 
 

 
Figure 6. The set-up of PLT 

 
In the following, to show the formulation, the cylindrical coordinates system (r, θ, z) is 

used and the displacement components are represented by (u, v, w), respectively. It is 
assumed that the total force (P) is applied perpendicular to the plane of  z = 0, and the 
displacement component (w) in the z direction is measured. The flexible plate loading test 
gives the uniform pressure (p) in a circular area of radius a, and the resultant displacement 
(w) is measured in boreholes behind loaded surface by utilizing extensometers, which can 
provide the relative displacement at different depths . Thus the test procedure consists of 
preparation of the test site, drilling the instrumentation hole, installation of the extensometer, 
adjustment of the loading system, imposing the uniform pressure, measuring the rock 
deformation, recording the data, and subsequent data processing. The displacement (w) is 
usually measured along the center axis of r = 0, which can be formulated as a function of the 
uniform pressure (p) . In the case that the pressure (p) is given in a circular area of radius r < 
a, the normalized displacement (w /a) is written as follows: 
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By introducing two functions of dimensionless: 
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where, E, ν are the deformation modulus and Poisson’s ratio respectively. Therefore the 
maximum displacement (wmax) appears at the center of loaded area, which is given by: 
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In the general case, which the pressure (p) is given in a circular area of radius b < r < a, 

avoiding the instrumentation hole, the normalized displacement (w /a) is written as follows: 
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The relative displacement (Δw) measured by the extensometer is formulated as follows:  
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where, 
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    (8) 

 
In these equations, the subscript (i and j) of w and the superscript (i and j) of z represent 

the number of displacement measurement by the extensometer . 
 
 

6. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM 
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A fuzzy inference system can model the qualitative aspects of human knowledge and 
reasoning processes without employing precise quantitative analyses. Neural networks (NN) 
are information-processing programs inspired by mammalian brain processes. NN are 
composed of a number of interconnected processing elements analogous to neurons. The 
training algorithm inputs to the NN a set of input data and checks the NN output desired 
result. Combining neural networks with fuzzy logic has been shown to emulate the human 
process of expert decision-making reasonably. In traditional NN, only weight values change 
during learning, therefore the learning ability of neural networks is combined with the 
inference mechanism of fuzzy logic for a neuro-fuzzy decision-making system [34]. 

An adaptive neural network is a network structure consisting of several nodes connected 
through directional links. Each node is characterized by a node function with fixed or 
adjustable parameters. Once the fuzzy inference system is initialized, neural network 
algorithms can be used to determine the unknown parameters (premise and consequent 
parameters of the rules) minimizing the error measure, as conventionally defined for each 
variable of the system. Due to this optimization procedure the system is called adaptive. An 
adaptive network is presented in Figure 7a, which is functionally equivalent to a fuzzy 
inference system in Figure 7b. 
 

 
Figure 7. a The first-order of  Takagi– Sugeno–Kang (TSK) fuzzy model, b Corresponding 

ANFIS architecture (after [35]) 
 

In practice, a neural fuzzy model is used [36], which consists of five layers: 
Layer 1: each node i in this layer generates a membership grades of a linguistic label. For 

instance, the node function of the ith node might be: 
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where, x is the input to node i, and Ai is the linguistic label (small, large, …) associated with 

this node; and  , ,i i iV b  is the parameter set that changes the shapes of the membership 

function. Parameters in this layer are referred to as the "premise parameters". 
Layer 2: Each node in this layer calculates the "firing strength" of each rule via 

multiplication: 
 

 
2 ( ). ( ) 1,2i i Ai BiQ W x y i     (10) 

 
Layer 3: The ith node of this layer calculates the ratio of the ith rule's firing strength to the 

sum of all rules’ firing strengths: 
 

 3
2

1

, 1, 2i
i i

j
j

w
Q W i

w


  


 (11) 

 
For convenience, outputs of this layer will be called "normalized firing" strengths. 
Layer 4: Every node i in this layer is a node function: 

 

 
4 ( )i i i i i i iQ W f W p x q y r     (12) 

 
where, iW  is the output of layer 3. Parameters in this layer will be referred to as "consequent 

parameters". 
Layer 5: The single node in this layer is a circle node labeled R that computes the 

"overall output" as the summation of all incoming signals: 
 

 5 i i
i i i

i

w f
Q Overall Output W f

w
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 (13) 

 
For a given data set, different ANFIS models can be constructed, using different 

identification methods. Grid partitioning (GP), Subtractive clustering method (SCM) and 
Fuzzy C-means clustering method (FCM) are three methods used in this paper to identify 
the antecedent membership functions. 
 
6.1 Grid Partitioning of the Antecedent Variables 

This method proposes independent partitions of each antecedent variable [35]. The expert 
developing the model can define the membership functions of all antecedent variables using 
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prior knowledge and experience. They are designed to represent the meaning of the 
linguistic terms in a given context. However, for many systems no specific knowledge is 
available on these partitions. In that case, the domains of the antecedent variables can simply 
be partitioned into a number of equally spaced and equally shaped membership functions. 
Therefore, in the grid partitioning method, the domain of each antecedent variable is 
partitioned into equidistant and identically shaped membership functions. Using the 
available input-output data, the parameters of the membership functions can be optimized. 
 
6.2 Subtractive Clustering Method 

Subtractive clustering method proposed by Chiu [37] in which data points are considered as 
the candidates for center of clusters. The algorithm continues as follow: 

At first a collection of n data points  1 2 3, , ,..., nX X X X in an M-dimensional space is 

considered. Since each data point is a candidate for cluster center, a density measure at data 
point iX  is defined as: 
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where, ar  is a positive constant. Hence, a data point will have a high density value if it has 

many neighboring data points. The radius ar  defines a neighborhood; data points outside this 

radius contribute only slightly to the density measure. After the density measure of each data 
point has been calculated, the data point with the highest density measure is selected as the 
first cluster center. Let 1cX  be the point selected and 1cD  its density measure. Next, the 

density measure for each data point ix   is revised as follows: 
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where, br  is a positive constant. After the density calculation for each data point is revised, 

the next cluster center 2cX  is selected and all of the density calculations for data points are 

revised again. This process is repeated until a sufficient number of cluster centers are 
generated. 
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6.3 Fuzzy C-means Clustering Method 

Fuzzy C-means method is a data clustering algorithm proposed by Bezdek [38] in which 
each data point belongs to a cluster to a degree specified by a membership grade. FCM 
partitions a collection of n vector , 1, 2,...,iX i n ,  into C fuzzy groups, and finds a cluster 

center in each group such that a cost function of dissimilarity measure is minimized. The 
stages of FCM algorithm are therefore, first described in brief. At first, the cluster centers 

, 1, 2,...,ic i C  randomly from the n points  1 2 3, , ,..., nX X X X is choosen. After that the 

membership matrix U using the following equation is computed: 
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where, ij i jd c x   is the Euclidean distance between ith cluster center and jth data point, 

and m is the fuzziness index. Then, the cost function according to the following equation is 
computed. The process is stopped if it is below a certain threshold. 
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In final step, a new c fuzzy cluster centers , 1, 2,...,ic i C  using the following equation 

is computed: 
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7. PREDICTION OF DEFORMATION MODULUS USING, ANFIS MODEL 
 
In this paper, the GP, SCM and FCM are applied to model the EDZ, using MATLAB 
environment. Figure 8 shows the fuzzy architecture of the ANFIS. As it can be seen in 
Figure 8, X, Y and Z coordinates (location of installation extensometers from the portal of 
test gallery that in these points, displacements and modulus of deformations are obtained) 
were introduced as input parameters into the ANFIS models and deformation modulus as 
output. The proposed models were trained with 80 data sets obtained from a test gallery in 
the Gotvand dam for training phase. The 10 samples of training data sets are shown in Table 
5. 
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Figure 8. Architecture of the ANFIS based on the GP, SCM and FCM 

 
Table 5: Samples of the training data sets used for learning the ANFIS 

No. 
Depth of extensometer in 

instrumentation hole 
(m) 

Input Output 

X (m) Y (m) Z (m) 
Deformatin modulus 

(GPa) 
1 0.5 6 7.75 3 3.18 
2 1 6 8.25 3 6.48 
3 0.4 7.65 6 9 7.75 
4 1.2 8.45 6 9 14.9 
5 0.4 7.65 6 27 4.3 
6 0 6 7.25 9 2.11 
7 0.9 6 3.85 27 9.42 
8 2.3 9.55 6 3 24.95 
9 0.4 7.65 6 27 4.32 
10 0.5 6 4.25 9 3.33 

 
The characterizations of the ANFIS models are revealed in Table 6. 
 

Table 6: Characterizations of the ANFIS models 

ANFIS parameter 
ANFIS 
(GP)

ANFIS 
(SCM)

ANFIS 
(FCM) 

Membership function type Gaussian Gaussian Gaussian 
Output membership function Linear Linear Linear 
Number of nodes 110 262 86 
Number of linear parameters 52 128 120 
Number of nonlinear parameters 78 192 20 
Total number of parameters 130 320 140 
Number of training data pairs 80 80 80 
Number of testing data pairs 19 19 19 
Number of fuzzy rules 13 32 30 

 
The number of rules obtained for the GP, SCM and FCM models are 13, 32 and 30 

respectively. The membership functions (MF) of the input parameters for different models 
are shown in Figure 9. 
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Figure 9. Membership functions obtained: (a) GP, (b) SCM, (c) FCM 

 
To evaluate the performances of the ANFIS models, the variance account for (VAF) ( Eq. 

(19)) and the root mean square error (RMSE) (Eq. (20)) indices  with 19 sets of data were 
used. A few samples of data sets for testing are presented in Table 7. 
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Table 7: Samples for testing the ANFIS models 

No. 
Depth of extensometer in 
instrumentation hole (m) 

Input Output 

X 
(m) 

Y 
(m) 

Z 
(m) 

Deformation modulus 
(GPa) 

1 0 6 7.25 3 0.955 
2 0.6 4.15 6 3 9.274 
3 0.9 6 3.85 3 2.55 
4 0.5 6 7.75 27 3.829 
5 1.2 3.55 6 27 9.66 

 

 
var( )

1
var( )

y y
VAF

y

 
  
 

 (19) 

 

 
2

1

1
( )

N

i

RMSE y y
N 

   (20) 

 
where, var denotes the variance, y and 'y  are the measured and predicted values, 
respectively, and  is the number of samples. The higher the VAF, the better is the model 
performance. For instance, a VAF of 100% means that the measured output has been 
predicted exactly (perfect model). VAF=0 means that the model performs as poorly as a 
predictor using simply the mean value of the data. Also, the lower RMSE indicates the better 
performance of the model. In addition, the determination coefficient (R2) is calculated. 
Figure 10 illustrates the correlation between measured and predicted values of the 
deformation modulus for three ANFIS models. 
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Figure 10. Correlation between measured and predicted values of deformation modulus: (a) GP, 

(b) SCM, (c) FCM 
 

A comparison between the results of three models is shown in Table 8. As it can be 
observed from this table, the SCM model with R2= 0.99, VAF= 98.10 and RMSE = 1.49 
performs better than the other two models for the modeling of EDZ. 

 
Table 8: A comparison between the results of three models 

ANFIS model RMSE VAF R2 
ANFIS (GP) 1.68 97.45 0.98 

ANFIS (SCM) 1.49 98.10 0.99 

ANFIS (FCM) 3.65 87.03 0.94 

 
SCM with the best performance was selected to assess the potential of creating the EDZ 

and HDZ around a test gallery in the Gotvand dam. For instance, the EDZ and HDZ around 
6-section with different distances (Z = 3 m, Z = 5m, Z = 10 m, Z = 12 m, Z = 16 m and Z = 
22 m) from the portal of the gallery were obtained, as shown in Figure 11. In these sections, 
the data generating (random (x,y,z)) was carried out, using MATLAB environment. The 
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modulus of deformation for rock mass in the Gotvand dam is 5.8 GPa [39]. As the EdZ is a 
zone without major changes in flow and transport properties [2] and there are no negative 
effects on the long-term safety [40], a modulus of deformation of 5 GPa is assumed for this 
zone. Also, a threshold of less than 2 GPa was chosen to recognize the HDZ, which is a part 
of EDZ. 

 

 
Figure 11. The EDZ and HDZ around different sections of a gallery, Gotvand dam 

 
In Figure 11, the orange region shows HDZ ( 2E ), while the black region is EDZ (

2 5E  ). According to the results of ANFIS modeling, the EDZ at the test gallery around 
the Gotvand dam extends approximately 0.5-1 m into the rock mass. Also, variation of 
deformation modulus of the EDZ is approximately 26-83% of the undisturbed rock, since 
the minimum and maximum values for the black and grey regions are 1.01 GPa and 4.32 
GPa respectively. 
 
 

6. CONCLUSIONS 
 
In this paper a new approach for the assessment of EDZ was proposed and the following 
remarks were concluded: 
 Using the RES, among the 11 effective parameters on the EDZ, deformation modulus 

was selected as the best parameter for the assessment of EDZ. 
 A comparison was made between three ANFIS models, GP, SCM and FCM, using the 

PLT measurements, and based upon the performance indices; R2, RMSE and VAF, SCM 
with R2= 0.99, RMSE= 1.49 and VAF= 98.10 was selected as the best predictive model. 

 Based upon the results of ANFIS-SCM modeling, the extent of the EDZ at the test 
gallery around Gotvand dam is approximately 0.5-1 m into the rock mass. Furthermore, 
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deformation modulus of the EDZ is approximately 26-83% of the undisturbed rock. 
 The ANFIS-SCM modeling as a good tool can estimate the damage occurred due to 

blasting around each section of an underground excavation. 
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