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ABSTRACT 
 

With the development of the technology and increase of human dependency on structures, 
healthy structures play an important role in people lives and communications. Hence, 
structural health monitoring has been attracted strongly in recent decades. Improvement of 
measuring instruments made signal processing as a powerful tool in structural heath 
monitoring. Wavelet transform invention causes a great evolution in signal processing. 
Wavelet transform decomposes a signal into several groups based on scaled and translated 
basic functions. In this study, a novel methodology based on wavelet transform using 
complex Morlet wavelet has been introduced for system identification. This process 
includes a multivariable constrained optimization problem for selecting suitable complex 
Morlet wavelet. Using selected wavelet, modal parameters and flexibility matrix of structure 
can be estimated properly. Because of small modal participation of higher mode; using 
finite number of modes leads to flexibility matrix with acceptable accuracy. Since damages 
cause change in structural properties, a damage index based on flexibility matrix has been 
applied and its performance has been investigated in some structures. 

 
Received: 20 April; Accepted: 15 October 

 
 

KEY WORDS: system identification; matrix updating; signal processing; wavelet 
transform; genetic algorithm. 

 
 

1. INTRODUCTION 
 

After 2nd world war, building construction developed widely around the world. However, 
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lifetime of human built structure is limited. Dilapidation and different internal and external 
factors damage and even destruct structures. For this reason, several studies have been 
conducted to detect structural damage. 

For health monitoring of structures, several methods based on structural response to 
different load conditions has been introduced. These methods are based on that damages 
cause change in physical properties (mass, stiffness and damping) of structure and thus, 
change its dynamic characteristic (natural frequency, mode shape, damping ratio, ...). 
Hence, investigating dynamic parameters of structure can help to find location of damage as 
well as its severity [1, 2]. 

The resonance frequency was used widely as a damage index in primary structural health 
monitoring (SHM) methods which were based on vibration response analysis. Because of 
low sensitivity of frequency to damage and its changes due to environmental condition, 
these methods are not reliable [3-5]. Mode shapes and its properties such as mode shape 
curvature, modal strain energy and dynamic flexibility are properties which substituted for 
frequency. Since slight damages have little influence on modal parameters in lower modes, 
accuracy of these methods depends on the number of implemented modes. Large number of 
mode increase the accuracy of methodology, but it is not economical [6-8]. 

Improvement of measuring instruments introduced other methods in SHM which directly 
use vibrational data. These methods are based on signal processing [9-11]. In signal 
processing, the part of signal which has all of its effects is considered. Generally, signals can 
be divided into stationary and non-stationary groups. In non-stationary signal, e.g. structural 
vibration response, signal behavior varies with time. This characteristic of signals should be 
considered for choosing the appropriate signal processing method. Based on signal type, 
several signal processing methods such as Fourier Transform (FT), Wavelet Transform 
(WT) and Hilbert Transform (HT) has been presented [12-14]. 

In the remaining of this paper, first a brief description of WT is introduced. After that a 
methodology for finding natural frequencies and mode shapes using free vibration 
acceleration response of structure based on WT is presented. Using obtained modal 
parameter and given mass, flexibility matrix of structure can be determined. Then, a 
Damage Index (ID), based on flexibility matrix, is implemented in order to control structural 
state. The performance of the proposed methodology is checked with obtained data from 
numerical model of two laboratory models. 
 
 

2. WAVELET TRANSFORM 
 
Wavelet Transform (WT) invention causes a great evolution in signal processing. WT is 
linear time-frequency method which expresses signal using a group of scaled and translated 
signals. Wavelet, ( )tψ , is a mother wave which is centered at specific time and has a very 
short duration and finite energy [15]. 
 

( ) 0t dtψ
+∞

−∞
=∫  

(1) 
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In a wavelet where 0t =  is supposed as center of time, center frequency (η ), time domain 

(
2
tσ ) and frequency domain (

2
ωσ ) variance are obtained using Eq. (2) to Eq. (4) [15]. 
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Wavelet can be real or imaginary. In study of vibrational behavior, imaginary wavelets 

are more effective because they can determine phase and amplitude information of signal. 
However, real wavelets are appropriate for peak isolation and determining non-uniformity. 

 
2.1 Continuous wavelet transform (CWT) 

A wavelet family, , ( )u s tψ , is a group of basic functions which obtained from scaled and 

translated wavelet. 
 

,

1
( ) ( )u s

t u
t

ss
ψ ψ −=

 
(5) 

 
Where u and s are translation and scale parameter, respectively. For each pair of u and s, 

, ( )u s tψ  is a child wavelet. Where s increases, the wavelet dilates in time domain and its 
amplitude decreases. Also, increase of scale parameter leads to decrease of the center 
frequency and frequency bandwidth. 

CWT of ( )f t  expresses the similarity between signal and , ( )u s tψ  wavelet family for 
several values of u and s and can be calculated using Eq. (6) [15]: 

 

*1
( , ) ( ) ( )

t u
wf u s f t dt

ss
ψ

+∞

−∞

−= ∫
 

(6) 

 
Where *, denotes complex conjugate. ( , )wf u s  are coefficients corresponding to time u 

and scale s. Properties of CWT is dependent on mother wavelet. Using Eq. (7), ( )f t  can be 
reconstructed based on wavelet coefficient [15]. 
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Time-Frequency Resolution of WT is function of Heisenberg rectangle with tσ  and ωσ  

of mother wavelet. Scaled and translated wavelet has u center time and sη  frequency 

center and its time and frequency variance are 
2
tsσ  and 

2 sωσ , respectively. Therefore, 
resolution of WT changes with s, but the area of rectangle is the same [15]. 

 

 
Figure 1. Heisenberg rectangle of ,u sψ  for different scale [15] 

 
Frequency resolution has direct relation with scale parameter, while time resolution 

decreases with scale parameter growth. Therefore, high frequency signals should be 
evaluated with small scale parameters whereas higher scales should be used for low 
frequency signals. 

 
2.2 Analytical Wavelet Transform 

For assessment the time evolution of a signal, analytical wavelet which can separate phase 

and amplitude information of a signal must be used. af  is an analytical function if its FT for 
negative frequency is zero. In analytical wavelet transform, an analytical wavelet, which is 
equal to a sine wave multiplied by a window, is used. This transform is like Windowed 
Fourier Transform (WFT) with varied scale [15]. 

 

, , ,( , ) , , i u
u s u sWf u s f f g eξ

ξψ= =
 

(9) 

 
Eq. (9) expresses analytical wavelet transform in which ,  is inner product.  

Based on [16], for ( ) ( ) cos( )x t A t tω=  with ( ) ( ) i tZ t A t eω=  analytical form, its analytical 
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wavelet transform is calculated using Eq. (10). 
 

,

*
, ,

1 1
( , ) ( ), ( ) ( ), ( ) ( ) ( )
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(10) 

 
Using Taylor series of ( )A t  at t u=  and neglecting of the terms with order higher than1, 

because of negligible amount of 
'( )A t  around t u= ; the Eq. (10) is simplified into Eq. (11) 

[16]. 
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Generalized form of Eq. (11), for WT of ( ) ( ) cos( ( ))x t A t tϕ=  is obtained using Eq. (12). 
 

( )( , ) ( ) ( ( ) )
2
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(12) 

 
 

3. SYSTEM IDENTIFICATION 
 
3.1 Frequency and damping ratio recognition 

Eq. (13) gives free vibration response of  a n DOF system [17]: 
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(13) 

 
Where ( )x t  and ( )x t&&  are displacement and acceleration free vibration response of 

structure, respectively. In this equation, iA  or '
iA  and iθ  denotes amplitude and phase angle 

of motion, respectively. if  and 21 idi if f ξ= −  are un-damped and damped natural frequency 

and ξ  is damping ratio. Mode number is indicated by i.  
Acceleration response is more applicable in signal processing because of its higher 

frequency content than displacement. By using complex Morlet wavelet, based on previous 
sections, WT of acceleration response is given by Eq. (14). 
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Complex Morlet wavelet, with cf  center frequency and bf  frequency bandwidth, is one 

of the most common wavelets in signal processing. If 2b cf f ≥ , the simplified relation of 

Morlet wavelet in time and frequency domain is expressed using Eq. (15) and Eq. (16), 
respectively [13]. 
 

2

21
( ) c b

t
j f t f

b

t e e
f

πψ
π

−
=

 
(15) 

2 2( )( ) b cf sf faf e πψ − −=  (4) 

 

 
Figure 2. Morlet wavelet for different fb and fc [18] 

 
Fig. 2 shows that frequency resolution has direct and indirect relation with bf  and cf , 

respectively. For i c is f f= , Eq. (17) gives tiσ  and iωσ . 
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Based on Heisenberg principle ( 1 2t ωσ σ ≥ ) and Eq. (17), ,b cf f  should be chosen such 

that appropriate time and frequency resolutions are obtained. A solution for this selection is 
finding a pair which minimizes the modified Shannon entropy. Eq. (18) presents modified 
Shannon entropy [18]. 
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It is observed that i c is s f f= =  maximizes 2 2( )b i cf sf fe π− − . In this situation, the 

corresponding mode of if  has the most participation in wavelet coefficients.  
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Rewriting Eq. (20) and substituting t for u leads to Eq. (21). 
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By applying exponential logarithm and derivative, separately, to the amplitude and phase 

of wavelet coefficients and combining obtained equations, natural frequencies and damping 
ratios are achieved [13]. 
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For decomposing two closely spaced frequency component, 1,i if f + , assuming 

, 1 1( ) / 2i i i if f f+ += +  and , 1 1i i i if f f+ +∆ = − , Eq. (27) can be obtained from Eq. (17). 
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In Eq. (26) and Eq. (27), α  is a parameter which defines the allowable overlap of two 
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adjacent Gaussian windows of Morlet wavelet. The possibility of complete modal 
separation is in direct relation with α . Previous studies show that 2α =  is an optimum 
parameter [13]. 
 

 
Figure 3. Schematic demonstration of effect of α  on mode seperation [19] 

 
The other factor which affects wavelet coefficients is end-effect. Fig. 4 shows that 

despite wavelet focusing at a specific time and representing the frequency content of signal 
in its neighborhood, at both beginning and end of signal, the time window may extend to out 
of signal domain. In order to eliminate the end-effect, a specific length of signal, 

iT∆ , 

should be neglected [13, 19]. 
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Figure 4. Schematic demonstration of end-effect [19] 
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Researches show that for 4β ≥ , the end-effects are negligible. If iT∆  is defined such 

that iT Tγ∆ ≤ , the Eq.(29) should be satisfied. In this equation T is the length of signal [13]. 

 
2

( )b c if f Tf
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β
≤

 
(29) 

 

As a result, finding bf  and cf  is constrained optimization problem in which modified 

Shannon entropy should be minimized such that bf  and cf  situate in the following range. 
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Among computational intelligent techniques like Genetic Algorithm (GA), Particle 

Swarm Optimization (PSO), Simulated Annealing (SA) and Neural Network (NN), GA is a 
powerful tool for solving constrained multi variable problems [20]. 

GA is a population based probabilistic technique for solving complex problems through 
the application of the principles of evolutionary biology which is similar to Darwin’s theory. 
In this method, participation of a member is presented by a fitness value. New and more 
evolutionary-fit individual solutions are produced during a cycle of generations. This 
process continues until reaching optimum solution [21]. GA includes following steps: 

Initialization: At first, a population of individual is selected randomly. 
Crossover: Genetic information of the population is combined by cutting and exchanging 

their chromosomes. This operation increases the potential for joining successful members. 
Mutation: In this step, structure of some individual changes randomly. This operation 

prevents the population from trapping GA in local solutions. 
Selection: For every generation, a selection of the proportion of the existing population is 

chosen to breed a new population 
Termination: Previous steps are repeated until stopping criteria is satisfied. 
 

3.2 Mode shapes determination 

k-th mode shape can be obtained from WT of recorded signals in all DOFs for k-th 
frequency. To achieve this purpose, j-th component of k-th complex mode 
shape, kj kj kjr s iϕ = + , is calculated using Eq.(31) by selecting a reference sensor, r [22, 23]. 

 
( , )

( , )
j k

kj
r k

Wf u s

Wf u s
ϕ =

 
(31) 

 
Where ( , )j kWf u s  and ( , )r kWf u s  are wavelet coefficients of j-th and r-th DOF, respectively. 

Since k jϕ  is not constant in signal duration, actual and estimated real mode shapes are different. 
Eq. (32), presents an optimum estimation of k-th mode in order to decrease this mismatch. 
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Where ( , )k i jp u s
 and ( , )k i jp u s

 are real and imaginary part of wavelet coefficients 
and n is the signal duration [22, 23]. 
 
3.3 Flexibility matrix estimation 

Each column of flexibility matrix is the displacement of all DOF due to unit load on the 
corresponding DOF of column. Therefore, the flexibility matrix can be obtained by 
imposing unit load on each DOF and measuring the displacement of all DOFs [24]. This 
process would be difficult and impossible for complex structures which include high DOF. 

If mode shapes are normalized such that T M Iφ φ = , flexibility matrix of structure can be 
obtained using Eq.(33) [25].  
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Where F is flexibility matrix, 1 2[ , , , ]nφ φ φ φ= K  is normalized mode shape matrix, iφ  is i-

th mass normalized mod shape, Λ  is diagonal matrix of Eigen values and n is the DOF 
number. Because of inverse relation between flexibility matrix and mode order, only limited 
number of modes leads to a matrix with acceptable accuracy. So, with frequencies and 
modes shapes which were obtained from previous sections, the flexibility matrix can be 
calculated easily. 

 
3.4 Structural assessment using flexibility matrix 

Structural damage causes change in flexibility matrix. Thus, comparing flexibility matrix 
with its primary condition and health state would be an appropriate approach for recognition 
of location and severity of damage. In this study, a Damage Index (DI) based on flexibility 
matrix is implemented. 
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Where iDI  is damage index in i-th DOF and 
H

ijf
 and 

D

ijf  are i-th row and j-th column of 

flexibility matrix in health and damage state, respectively. 
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4. VERIFICATION OF PROPOSED METHODOLOGY 
 
For verification of proposed method, numerical model of two laboratory model has been 
investigated. The first one (Fig. 5) is a 3-DOF, two dimensional laboratory model [26]. This 
model is a 3-story moment frame which presents a building with one-eighth scale. In this 
model 10mm×10mm and 12mm×12mm steel boxes are used for beams and columns and 
each story is considered as a 10-kg mass. Fig. 6 shows three first mode shapes of this model. 
For data acquisition, the acceleration response of the model to an initial displacement has 
been recorded. Two structural damage scenarios have been considered for this model. The 
first scenario includes 20% stiffness reduction in the middle 10cm of third story columns 
and the second one is 20% stiffness reduction in the middle 10cm of first story columns. 

 

 
Figure 5. 3-DOF Laboratory Model 

 
 

 
Figure 6. Three first mode shape of 3-DOF model 
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Table 1: Natural frequencies of 3-DOF models in Hz 

Estimated 
(1st scenario) 

Estimated 
(1st scenario) 

Estimated 
(Health) 

Numerical 
(Health) 

Laboratory 
(Health) 

 

2.35 2.328 2.318 2.31 2.14 1st mode 
8.045 8.057 8.059 8.11 8.24 2nd mode 
13.061 12.896 13.495 14.73 13.41 3rd mode 

 

 
Figure 7. DI in different DOFs of 3-DOF model 

 
The second considered model is a laboratory steel bridge benchmark (Fig. 8) [27, 28]. 

Deck of this model includes two 18-ft longitudinal and seven 3-ft transvers beam which are 
made from S3x5.7 connected together with rigid connection. The deck is supported with six 
3.5ft W12x26 columns. The connections between deck and columns are hinge. Fig. 9 shows 
three first modes of benchmark. Acceleration response of the model to a random vertical 
vibration has been recorded in location which is showed in Fig. 10. It should be noted that 
the mass of bridge is considered to be concentrated at sensor locations. Releasing the 
rotational DOF of S11 and S22 has been considered as the first and second structural 
damage scenario, respectively. 

 

 
Figure 8. Steel bridge benchmark [28]  



A NOVEL METHODOLOGY FOR STRUCTURAL MATRIX IDENTIFICATION... 

 

411

 
Figure 9. Location of sensors and DOFs 

 

 
Figure 10. Three fisrt mode shapes of bridge benchmark 

 
Table 2: Natural frequencies bridge benchmark in Hz 

Estimated 
(1st scenario) 

Estimated 
(1st scenario) 

Estimated 
(Health) 

Numerical 
(Health) 

Laboratory 
(Health) 

 

23.61 23.61 23.61 22.45 22.37 1st mode 
26.93 26.93 26.95 27.5 27.01 2nd mode 
34.65 34.65 34.66 33.55 33.38 3rd mode 

 

 
Figure 11. DI in different DOFs of bridge benchmark 

 
 

5. CONCLUSION 
 

In this paper, a methodology, based on analytical wavelet transform using complex Morlet 
wavelet has been introduced for determining natural frequencies, mode shapes and 
flexibility matrix of structure. As mentioned before, Morlet wavelet is a time domain 
function with two unknown parameters (,b cf f ). Selection of these two parameters is a 
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constrained optimization problem. Studies show that if 0 1cf< ≤ , more acceptable results 

can be obtained. In this study, GA has been applied for finding ,b cf f  and it is observed that 

by considering third DOF as references sensor, (81.34, 1) would be optimum answer in 3-
DOF model. Also, (1651.37, 0.99) would be optimum answer in bridge benchmark if S12 is 
selected as references sensor. 

Tables 1 and 2 show experimental, numerical and estimated values of natural frequencies 
in 3-DOF model and bridge benchmark, respectively. The results show the acceptable level 
of accuracy in frequency estimation. Also the results show that minor damages have little 
effect on lower natural frequency modes and these changes give no information about the 
location of damage. 

Figs. 7 and 11 indicate the sensitivity of proposed damage index to location and severity 
of damage. Proposed DI increases with increase of damage severity. 

For future studies, investigating the effects of references location, type and location of 
imposed loads and studying other kinds of structures and scenarios are suggested. 
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