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ABSTRACT 
 

Displacements induced by earthquake can be very large and result in severe damage to earth 

and earth supported structures including embankment dams, road embankments, excavations 

and retaining walls. It is important, therefore, to be able to predict such displacements. In this 

paper, a new approach to prediction of earthquake induced displacements of slopes (EIDS) 

using hybrid support vector regression (SVR) with particle swarm optimization (PSO) is 

presented. The PSO is combined with the SVR for determining the optimal value of its user-

defined parameters. The optimization implementation by the PSO significantly improves the 

generalization ability of the SVR. In this research, the input data for the EIDS prediction 

consist of values of geometrical and geotechnical input parameters. As an output, the model 

estimates the EIDS that can be modeled as a function approximation problem. A dataset that 

includes 45 data points was applied in current study, while 36 data points (80%) were used for 

constructing the model and the remainder data points (9 data points) were used for assessment 

of degree of accuracy and robustness. The results obtained show that the SVR-PSO model can 

be used successfully for prediction of the EIDS. 
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1. INTRODUCTION 
 

Field observations show that landslides of man-made and natural slopes in strong 

earthquakes are common phenomena [1]. Earthquakes with magnitudes greater than 4.0 can 
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cause landslides on very susceptible slopes, and earthquakes with magnitudes greater than 

6.0 can generate widespread landsliding [2, 3]. Whether a particular slope produces a 

landslide in an earthquake depends on details of slope configuration, material strength and 

ground motion [1].  

Deformations triggered by earthquakes in man-made and natural slopes may develop in 

three consequent stages.  

In the first stage, which is co-seismic, gravity as well as seismic forces, which during the 

relatively short duration of an earthquake may bring about instability, can generate a failure 

surface or active a pre-existing slip plane causing permanent displacements of the slope. Co-

seismic displacements, unless the residual strength of the material in which they occur drops 

to very low values, are usually small and are controlled by the magnitude and duration of the 

application of the earthquake inertia forces, the geometry of the slope, and the undrained 

strength of the material mobilized during the earthquake.  

The second stage, which is post-seismic, follows immediately after the earthquake if the 

fast residual undrained shear strength on the slip surface generated by the shock is less than 

that required to maintain static equilibrium; i.e. if the initial safety factor (SF) of the slope, 

SF at the end of the earthquake is less than one. A drop in resisting forces will thus lead to 

an acceleration of the mass downslope. In this case, down-slope displacements, initiated by 

the earthquake will continue with an outward movement of the toe, the velocity of motion 

providing the kinetic energy necessary for further transport of slide material. As a result of 

this, when the mass comes to rest in a new position of equilibrium, its SF will be greater 

than one.  

A third stage of displacements, which is not examined here, may follow. In this stage 

further movements may develop as a result of creep and consolidation processes, as well as 

from destabilizing hydrostatic forces if deep open cracks produced by the shock are filled 

with surface or ground water [1]. Additional movements may occur, which will be slow and 

associated with progressive failure and drained strength of the soil. This third stage may 

follow immediately the first stage if, at the end of the earthquake, the post-seismic static SF 

is close to one, or if the residual factor is less than one. Several methods for the evaluation of 

first first-stage, co-seismic displacements have been proposed [4-8]. The extension of the 

evaluation of co-seismic displacements into the second stage has also been studied [9-11]. 

In the field of EIDS modeling, although previous efforts are valuable and revealed the 

better performance of intelligence-based models in preference to scaling equation, the 

pursuit of the novel model introduction with more accurate results is always ongoing. The 

SVR is a potent data mining model, which was developed by Vapnik [12] and co-workers 

based on statistical learning theory for solving problems encountered in petroleum industry. 

Although this method is a powerful methodology for modeling of different phenomena, it 

suffers from some shortcomings, which limit its application. In every the SVR modeling, a 

series of user-defined parameters exist that required to be chosen by user precisely. Incorrect 

input of aforementioned parameters by user can lead to erroneous and even deceptive 

results. Hence, it is crucial to employ a potent optimization algorithm for searching the 

proper value of these parameters [13, 14]. By now, there have been several optimization 

algorithms, such as genetic algorithm (GA) inspired by the Darwinian law of survival of the 

fittest [15], ant colony optimization (ACO) inspired by the foraging behavior of ant colonies 

[16], biogeography-based optimization (BBO) inspired by the migration behavior of island 
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species. Also, recently new optimization algorithms are developed consisting of charged 

system search (CSS) [17], ray optimization (RO) [18], democratic particle swarm 

optimization (DPSO) [19], colliding bodies optimization (CBO) [20] and enhanced colliding 

bodies optimization (ECBO). In present paper, for the achievement of the above mentioned 

purpose, a fast, robust, and easy to used method so-called particle swarm optimization 

(PSO) is applied as the searching strategy for finding the optimal value of user-defined 

parameters. Indeed, PSO is capable of improving the performance of SVR through 

determining their free parameters. Integration of SVR model and PSO method produced a 

model, which can predict the EIDS with good precision. 

 

 

2. A BRIEF REVIEW OF METHODS USED IN THIS STUDY 
 

2.1 Support vector regression 

Support vector machines (SVMs), was introduced as a machine learning technique by 

Vapnik [12], have received so much attention due to their promising capabilities in 

simultaneous and prediction error minimization since its development [21-23]. The 

underlying concept of support vector regression (SVR) is to map the original data into a 

higher-dimensional feature space and to fit a linear function with least reasonable 

complexity to the feature space [24, 25]. The latter stage is as well as making the function as 

flat as possible to reduce the complexity and means better generalization to a considerable 

extent. 

Let the training samples be denoted as      1 1{ , | , ,..., , }n nXY x y x y x y where n is the 

number of training samples. In SVR, the ultimate goal is to find linear relation between n-

dimensional input vectors nx R  and output variables y R  as follow: 

 

( ) Tf x w x b   (1) 

 

Where, b and w are offset of the regression line and the slope respectively. For 

determining the values of b and w, it is necessary to minimize following equation:  
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Loss function, utilized in SVR is ε-insensitive which has been proposed by Vapnik 

(1995) [12] as below: 
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This problem can be reformulated in a dual space by: 
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(5) 

 

Where, *, 0i i   are positive Lagrange multipliers. C is regulated positive parameter 

which determines trade-off between approximation error and the weight vector norm w . 

After calculation of Lagrange multipliers i and *

i , training data points, those meeting the 

conditions * 0i i   , will be applied to construct the decision function. Hence, the best 

linear hyper surface regression is given by: 
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Which desired weight vector of the regression hyper plane is given by: 
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In nonlinear regression, Kernel function is applied for mapping input data onto higher 

dimensional feature space in order to generate a linear regression hyper plane. In the case of 

the nonlinear regression, the learning problem is again formulated in the same way as in a 

linear case, i.e., the nonlinear hyperplane regression function becomes: 

 

 *

1

( ) ( , )
l

i i i

i

f x K x x b 
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    (8) 

 

Where, ( , )iK x x is kernel function which is defined as follow: 

 

( , ) ( ) ( ) , 1,...,T

i j i jK x x x x i j l     (9) 

 

Where, ( )ix and ( )jx are projection of the xi and xj in feature space respectively.  

One may choose any arbitrary kernel functions, e.g., linear kernel function 

   , , ,i j i jK x x x x  radial basis function (RBF)
   2, exp( 2 ), 0i j i jK x x x x      , 

polynomial kernel function    , ( , 1) , 0d

i j i jK x x x x d   ,  etc. In highly non-linear spaces, 

RBF kernel usually yields more promising results in comparison with other mentioned 
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kernels [26]. Thus, we use only RBF kernel functions in this study. 

 

2.2 Particle swarm optimization 

The PSO is one of the recent evolutionary optimization methods. This technique was firstly 

suggested by Eberhart and Kennedy [27] in order to solve problems with continuous search 

space. The PSO is based on the metaphor of communication and social interaction, such as 

bird flocking and fish schooling. The PSO uses social rules to search in the design space by 

controlling the trajectories of a set of independent particles. The position of each particle, xi, 

representing a particular solution of the problem, is used to compute the value of the fitness 

function to be optimized. Each particle may change its position and consequently may 

explore the solution space, simply varying its associated velocity. In fact, the main the PSO 

operator is the velocity update, which considers the best position, in terms of fitness value 

reached by all the particles during their paths, t

gP , and the best position that the agent itself 

has reached during its search, t

iP , resulting in a migration of the entire swarm toward the 

global optimum. 

At each iteration the particle moves around according to its velocity and position; the cost 

function to be optimized is evaluated for each particle in order to rank the current location. 

The position of each particle is updated using its velocity vector as shown in Eq. (2) and 

depicted in Fig. 1. 

 
1

1 1 2 2( ) ( )t t t t t t t t

i i i i g iV V C r P X C r P X       (10) 
1 1t t t

i i iX X V    (11) 

 

where, t

iV is the velocity vector at iteration t, r1and r2 represents random numbers in the 

range [0,1]; 
t

gP denotes the best ever particle position of particle i, and t

iP corresponds to the 

global best position in the swarm up to iteration t [28]. The remaining terms are problem-

dependent parameters; for example, C1 and C2 represent "trust" parameters indicating how 

much confidence the current particle has in itself (C1: cognitive parameter) and how much 

confidence it has in the swarm (C2: social parameter), and ω is the inertia weight.   

The PSO algorithm has several advantages including: PSO is based on the intelligence. It 

can be applied into both scientific research and engineering use. Then PSO have no 

overlapping and mutation calculation. The search can be carried out by the speed of the 

particle. During the development of several generations, only the most optimist particle can 

transmit information onto the other particles, and the speed of the researching is very fast. 

After that the calculation in PSO is very simple. Compared with the other developing 

calculations, it occupies the bigger optimization ability and it can be completed easily. The 

last one is PSO adopts the real number code, and it is decided directly by the solution. The 

number of the dimension is equal to the constant of the solution [29].  

Recently, the PSO was used in different applications by various researchers worldwide 

[30-33]. 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=488968
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Figure 1. Depiction of the velocity and position updates in PSO 

 

 

3. PARAMETERS OPTIMIZATION OF THE SVR BASED ON PSO 
 

The generalization ability of the SVR is extremely dependent upon its learning parameters, 

i.e., the RBF kernel parameter 5 52 ,2     , the error margin  0.01,0.6  , and the 

regularization parameter 5 152 ,2C   
, to be set correctly. Finding the best combination of 

hyper-parameters is often troublesome due to the highly non-linear space of the model 

performance with respect to these parameters. Although an exhaustive search method could 

be utilized to tune these hyper-parameters, it suffers from the main drawbacks of being very 

time-consuming and lacking a guarantee of convergence to the globally optimal solution. 

For example, the real-value genetic algorithm (GA) was employed to determine the optimal 

parameters of SVR, which were then applied to construct the SVR model, referred to as 

SVR-GA [34-36]. The ACO has also been used to select the model parameters of SVR by 

several researchers [37-39]. Recently, the harmony search (HS) has also been utilized to 

select the model parameters of SVR [40]. 

In this paper, we have adopted the PSO for optimal parameter selection of SVR in order 

to improve runtime efficiency of learning procedure of SVR– PSO. Fig. 2 shows the 

algorithm process of the selection of the SVR model parameters based on PSO. 
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Figure 2. The process of optimizing the SVR parameters with the PSO 

 

 

4. INPUT/ OUTPUT DATA SPACE 
 

The main scope of this study is to implement the above methodology in the problem of the 

earthquake induced displacements prediction for slopes. Dataset applied in this study for 

determining the relationship among the set of input and output variables are gathered from 

open source literature [41]. The original data covering the 45 case studies are presented in 

Table 1 that 36 cases (80%) were used for training and 9 cases (20%) were used for testing. 

The data sets in Table 1 was created through processing of an initial data set referring to five 

typical embankments of slope angle β= 2:3 and pore water pressure ratio ru=0.1. These 

embankments were studied in order to determine the static safety factor F, the critical 

acceleration coefficient (ky), and the earthquake induced displacement u due to an 

earthquake of certain magnitude. A computer program was written in MATLAB 

environment in order to calculate induced displacements for r = 5, 10, 15 km and M=6, 6.5 

and 7 Richter. The datasets in Table 1 contains data for 45 slopes, were u was calculated 

through the use of Eqs. (12) to (14). The formulation of the problem in the current example 

case refers to the mapping of the parameters: height (H), unit specific weight (γ), cohesion 
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(c), angle of internal friction (φ), significant duration of shaking (D5–95), maximum 

horizontal acceleration (kmax) to displacement (u). 

 

10

max 5 95 max

log 1.87 3.477
yku

k D k

 
  

 
 (12) 

 

Where D5–95: significant duration of shaking, i.e., 5–95% normalized Arias intensity 

(sec), 
max

MHEA
K

g
  (MHEA: maximum horizontal equivalent acceleration, characterizes the 

amplitude of shaking within the sliding mass) and ky: yield acceleration of the slope [41]. 
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Where M: earthquake magnitude and r: distance in km [41]. 

 
Table 1: The original data were used for training and testing model [41] 

Case No. 
Input parameters Output parameter 

H (m) ɣ (KN/m3) C (KPa) Φ (o) D5–95 kmax u (cm) 

1 12 22 8 35 7.9 0.24 0.25 

2 12 22 8 35 8.35 0.2 0.06 

3 12 22 8 35 9.55 0.13 0.0008 

4 12 22 8 35 11.1 0.33 2.7 

5 12 22 8 35 11.5 0.27 0.82 

6 12 22 8 35 12.7 0.18 0.036 

7 12 22 8 35 16 0.45 18.16 

8 12 22 8 35 16.4 0.37 7.37 

9 12 22 8 35 17.65 0.24 0.55 

10 10 22 5 35 7.9 0.24 1.19 

11 10 22 5 35 8.35 0.2 0.4 

12 10 22 5 35 9.55 0.13 0.014 

13 10 22 5 35 11.1 0.33 8.45 
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14 10 22 5 35 11.5 0.27 3.31 

15 10 22 5 35 12.7 0.18 0.3 

16 10 22 5 35 16 0.45 42 

17 10 22 5 35 16.4 0.37 20.4 

18 10 22 5 35 17.65 0.24 2.7 

19 10 21 5 36 7.9 0.24 0.55 

20 10 21 5 36 8.35 0.2 0.16 

21 10 21 5 36 9.55 0.13 0.003 

22 10 21 5 36 11.1 0.33 4.84 

23 10 21 5 36 11.5 0.27 1.68 

24 10 21 5 36 12.7 0.18 0.1 

25 10 21 5 36 16 0.45 27.84 

26 10 21 5 36 16.4 0.37 12.4 

27 10 21 5 36 17.65 0.24 1.24 

28 8 22 6 36 7.9 0.24 0.094 

29 8 22 6 36 8.35 0.2 0.02 

30 8 22 6 36 9.55 0.13 0.0001 

31 8 22 6 36 11.1 0.33 1.34 

32 8 22 6 36 11.5 0.27 0.35 

33 8 22 6 36 12.7 0.18 0.001 

34 8 22 6 36 16 0.45 10.8 

35 8 22 6 36 16.4 0.37 3.94 

36 8 22 6 36 17.65 0.24 0.2 

37 6 21 5 35 7.9 0.24 0.07 

38 6 21 5 35 8.35 0.2 0.013 

39 6 21 5 35 9.55 0.13 7.34 

40 6 21 5 35 11.1 0.33 1.07 

41 6 21 5 35 11.5 0.27 0.26 

42 6 21 5 35 12.7 0.18 0.006 

43 6 21 5 35 16 0.45 9.24 

44 6 21 5 35 16.4 0.37 3.24 

45 6 21 5 35 17.65 0.24 0.16 
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4. PREDICTION OF EARTHQUAKE INDUCED DISPLACEMENTS OF 

SLOPES 
 

4.1 Pre-processing of data 

In data-driven system modeling methods, some pre-processing steps are usually 

implemented prior to any calculations, to eliminate any outliers, missing values or bad data. 

This step ensures that the raw data retrieved from database is perfectly suitable for 

modeling. In order to soften the training procedure and improve the accuracy of estimation, 

all data samples are normalized to adapt to the interval [-1, 1] according to the following 

linear mapping function: 

 

min

max min

2 1M

x x
x

x x

 
  

 
 (15) 

 

Where x is the original value of the dataset, xM is the mapped value, and xmax (xmin) 

denotes the maximum (minimum) raw input values, respectively.  

 

4.2 Evaluation criteria 

To verify the performance of the model, four statistical criteria viz. mean squared error 

(MSE), variance account for (VAF), root mean squared error (RMSE), squared correlation 

coefficient (R2) and mean absolute percentage error (MAPE) were chosen to be the measure 

of accuracy. Let tk be the actual value and ˆ
kt be the predicted value of the kth observation and 

n be the number of observations, then RMSE, MSE, VAF, R2 and MAPE could be defined, 

respectively, as follows: 
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
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Where ˆ( )t t
  denotes the mean value of the ˆ( ), 1,..., ,k k

k n   respectively. 
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4.3 Results and discussion 

In this paper, a hybrid SVR with PSO was proposed to predict the EIDS, using MATLAB 

environment. Fig. 3 shows the architecture of the SVR-PSO model used. As it can be seen in 

Fig. 3, height (H), unit specific weight (γ), cohesion (c), angle of internal friction (φ), 

significant duration of shaking (D5–95), maximum horizontal acceleration (kmax) were  

defined  as  input  parameters  into  the  SVR-PSO  model  and  the displacement as output. 

 

 
Figure 3. Architecture of the SVR-PSO model 

 

Furthermore, as shown in section 2.1, the generalization ability of SVR is highly 

dependent upon its learning parameters, i.e., , ,C   . Consequently, the PSO was used to 

manipulate these parameters and to form hybrid SVR– PSO. 10-fold cross-validation 

performance measure was applied to training dataset along with SVR– PSO to achieve 

reliable results. Related to the purpose, the PSO algorithm with number of population 

(swarm size) =100, personal learning coefficient=1.4962, global learning 

coefficient=1.4962, inertia weights =0.73 and the algorithm was executed for 100 iterations 

for selecting optimal parameters. The adjusted parameters  , ,C   with maximal accuracy 

are selected as the most appropriate parameters. Then, the optimal parameters are used to 

train the SVR model. The accuracy and optimal parameters of the SVR estimated by the 

PSO are presented in Table 2. 

 
Table 2: The accuracy and optimal parameters of the SVR estimated by the PSO 

 
Optimal value of σ 

parameter 

Optimal value of 

C parameter 

Optimal value of ε 

parameter 

SVR-PSO 

model 
1.8164 1844.808 0.029 

 

The obtained RMSE, MSE, VAF, R2 and MAPE values for training datasets indicate the 

ability of learning the structure of data samples, while the results of testing dataset reveal the 

generalization potential and the robustness of the system modeling methods. The learning 

capacity of a model is considerably contingent upon the built-in system complexity, which 

implies the number of free parameters available for learning from the particularities of the 
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training dataset. This learning potential, alone, could not assure a promising generalization 

capability for a model. It is clear that as the complexity of system increases, the model errors 

for training samples (empirical risks) decrease despite the fact that the over-fitting risk 

multiplies rapidly. Thus, based on structure risk minimization theorem, empirical risks and 

complexity risks must be minimized simultaneously for designing reliable, efficient, and 

robust models.  

A comparison between predicted values of displacement by the SVR-PSO model and 

measured values for 45 data sets at training and testing phases is shown in Figs. 4 and 5. As 

shown in Figs. 4 and 5, the results of the SVR-PSO modeling compared with actual data 

show a good precision of the SVR-PSO model (see Table 3). 

Performance analysis of the SVR-PSO model for predicting displacement is shown in 

Table 3. 

 

 
Figure 4. Comparison between measured and predicted displacement for training data points 

 

 
Figure 5. Comparison between measured and predicted displacement for testing data points 
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Table 3: Performance of the model for predicting displacement 

Description R2 MSE RMSE VAF MAPE 

Training 0.9959 0.00068 0.026 99.58 3.4537 

Testing 0.9333 0.0146 0.1209 83.53 82.663 

 

The performance indices obtained in Table 3 indicate the high performance of the SVR-

PSO model that can be used successfully to prediction of the EIDS. Furthermore, the 

correlation between measured and predicted values of displacement for training and testing 

phases are shown in Figs. 6 and 7. 

 

 
Figure 6. Correlation between measured and predicted values of displacement for training data 

points 

 

 
Figure 7. Correlation between measured and predicted values of displacement for testing data 

points 
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Eventually, relative error (error percentage) for data point (training and testing samples) 

is assessed and revealed in Fig. 8. Relative error for most data points is located in range of [-

10% 10%], which is an acceptable value. 

 

 
Figure 8. Relative error (error percentage) of SVR-PSO model in prediction of displacement 

 

 

5. CONCLUSION 
 

Displacements induced by earthquake are important, because displacements can be very 

large and result in severe damage to earth and earth supported structures. In this paper, a 

new approach namely support vector regression optimized by PSO is proposed for 

predicting the EIDS. In our methodology, PSO is applied as optimization tool for 

determining the optimal value of user defined parameters existing in formulation of SVR. 

The optimization implementation increases the performance of SVR model. 

Also, examination of the error analysis shows that the presented strategy produces results 

with satisfactory accuracy. This study offers that SVR combined with PSO can be applied as 

a powerful tool for modeling of non-linear regression problems involved in civil and mining 

engineering. 
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