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ABSTRACT 
 

The main object of this research is to optimize an end-filled castellated beam. In order to 

support high shear forces close to the connections, sometimes it becomes necessary to fill 

certain holes in web opening beam. This is done by inserting steel plates and welding from 

both sides. Optimization of these beams is carried out using three meta-heuristic methods 

involves CSS, CBO, and CBO-PSO algorithms. To compare the performance of these 

algorithms, the minimum cost of the beam is taken as the design objective function. Also, in 

this study, two common types of laterally supported castellated beams are considered as 

design problems: beams with hexagonal openings and beams with circular openings. A 

number of design examples are considered to solve in this case. Comparison of the optimal 

solution of these methods demonstrates that the hexagonal beams have less cost than cellular 

beams. It is observed that optimization results obtained by the CBO-PSO for more design 

examples have less cost in comparison to the results of the other methods. 
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1. INTRODUCTION 
 

Since the 1940’s, the production of structural beams with higher strength and lower cost has 

been an asset to engineers in their efforts to design more efficient steel structures. Due to the 

limitations on maximum allowable deflections, using of section with heavy weight and high 

                                                   
*
Corresponding author: Centre of Excellence for Fundamental Studies in Structural Engineering, Iran 

University of Science and Technology, Narmak, Tehran-16, Iran 
†
E-mail address: alikaveh@iust.ac.ir (A. Kaveh) 



A. Kaveh and F. Shokohi 

 

334 

capacity in the design problem cannot always be utilized to the best advantage. As a result, 

several new methods have been created for increasing the stiffness of steel beams without 

increase in the weight of steel required. Castellated beam is one of them that become basic 

structural elements within the design of building, like a wide-flange beam [1]. 

Castellated beams are varieties of girders that are manufactured by cutting a hot rolled 

beam lengthwise using computer control plasma arc torches, often in half-circle or half-

hexagon patterns Fig. 1. The split halves are then offset and welded back together to form a 

deeper beam with full circular or hexagonal shaped web openings. Cellular beams, which 

contain circular openings, are currently the most widely used perforated beams due to their 

beneficial weight-to-stiffness ratio, and the ability to pass services. The resulting holes in the 

webs permit mechanical ducts, plumbing, and electrical lines to pass through the beam 

rather than beneath the beam. Web-openings have been used for many years in structural 

steel beams in a great variety of applications because of the necessity and economic 

advantage. The principle advantage of the steel beam castellation process is that designer 

can increase the depth of a beam to raise its strength without adding steel. The resulting 

castellated beam is approximately 50% deeper and much stronger than the original unaltered 

beam [2-6]. 

 

 
(a)              (b) 

Figure 1. (a) A castellated beam with hexagonal opening; (b) A castellated beam with circular 

opening 

 

In practice, in order to support high shear forces close to the connection or for reasons of 

fire safety, sometimes it becomes necessary to fill certain openings. In cellular beams, this is 

done by inserting discs made of steel plates and welding from both sides Fig. 2.  

There are different meta-heuristic optimization methods; Genetic Algorithms (GA) [7], 

Ant Colony Optimization (ACO) [8], Harmony Search algorithm (HS) [9], Particle Swarm 

Optimizer (PSO) [10], Charged System Search method (CSS) [11], Bat algorithm [12], Ray 

optimization algorithm (RO) [13], Krill-herd algorithm [14], Dolphin Echolocation 

algorithm (DE) [15], Colliding Bodies Optimization (CBO) [16] are some of such meta-
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heuristic algorithms, see also Kaveh [17]. The CSS algorithm is developed by Kaveh and 

Talatahari [11] and has been successfully utilized in many optimization problems. Charged 

System Search is a population-based search method, where each agent (CP) is considered as 

a charged sphere with radius a, having a uniform volume charge density which can produce 

an electric force on the other CPs. 

The colliding bodies optimization method (CBO) is one of the recently developed meta-

heuristic algorithms that utilizes simple formulation and it requires no parameter tuning. 

This algorithm is based on one-dimensional collisions between two bodies, where each 

agent solution is modeled as a body [16, 17]. 

One of the recently hybrid meta-heuristics is the CBO-PSO algorithm, presented by the 

authors [18]. This algorithm is made by combining the PSO and the CBO methods, where 

the positive features of PSO are added to CBO algorithms to enhance the efficiency of the 

approach. 

The main objective of the present study is to optimize the cost of castellated beams with 

end-filled openings. Thus, three above mentioned approaches are used to design of beams 

with circular and hexagonal holes. 

The present paper is organized as follows: In the next section, the design of castellated 

beam is introduced. In section 3, statement of the optimization design problem is 

formulated, based on the Steel Construction Institute Publication Number 100 and Euro 

code3. In Section 4, the algorithms are briefly introduced. In Section 5, the cost of end- 

filled castellated beam as the design objective function is minimized, and finally Section 6 

concludes the paper. 

 

 
Figure 2. Example of beam with filled opening 

 

 

2. DESIGN OF CASTELLATED BEAMS 

 

The theory behind the castellated beam is to reduce the weight of the beam and improved 

stiffness by increased moment of inertia resulting from increased depth without adding 

additional material. Due to the presence of holes in the web, the structural behavior of 

castellated steel beam is different from that of the standard beams. At present, there is not a 

prescribed design method due to the complexity of the behavior of castellated beams and 

their associated modes of failure [2]. The strength of a beam with various web opening is 

determined by considering the interaction of the flexure and shear at the openings. There are 

many failure modes to be considered in the design of a beam with web opening consisting of 

lateral- torsional buckling, Vierendeel mechanism, flexural mechanism, rupture of welded 
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joints and web post buckling. Lateral- torsional buckling may occur in an unrestrained beam. 

A beam is considered to be unrestrained when its compression flange is free to displace 

laterally and rotate. In this paper it is assumed the compression flange of the castellated 

beam is restrained by the floor system. Therefore, the overall buckling strength of the 

castellated beam is omitted from the design consideration. These modes are closely 

associated with beam geometry, shape parameters, type of loading, and provision of lateral 

supports. In the design of castellated beams, these criteria should be considered [19-25]: 

 

2.1. Overall beam flexural capacity 

This mode of failure can occur when a section is subjected to pure bending. In the span 

subjected to pure bending moment, the tee-sections above and below the openings yields in 

a manner similar to that of a standard webbed beam. Therefore, the maximum moment under 

applied external loading, should not exceed the plastic moment capacity of the castellated 

beam [2, 21]. 

 

UYLTPU HPAMM   (1) 

 

where LTA  is the area of lower tee, YP is the design strength of steel, and UH  is distance 

between center of gravities of upper and lower tees. 

 

2.2. Beam shear capacity 

In the design of castellated beams, it is necessary to control two modes of shear failures. The 

first one is the vertical shear capacity and the upper and lower tees should undergo that. Sum 

of the shear capacity of the upper and lower tees are checked using the following equations: 

 

 0.6 0.9VY Y WULP P A                  circular opening 

(2) 

  
 WULYVY APP

3

3
                         hexagonal opening 

 

 

The second one is the horizontal shear capacity. It is developed in the web post due to the 

change in axial forces in the tee-section as shown in Fig. 3. Web post with too short mid-

depth welded joints may fail prematurely when horizontal shear exceed the yield strength. 

The horizontal shear capacity is checked using the following equations [2, 21]: 

 

 0.6 0.9VH Y WPP P A                  circular opening 

(3) 

    
 WPYVH APP

3

3
                       hexagonal opening 

 

where WULA is the total area of the webs of the tees and WPA  is the minimum area of web 

post. 
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(a)             (b) 

Figure 3. Horizontal shear in the web post of castellated beams, (a) hexagonal opening, (b) 

circular opening 

 

2.3. Flexural and buckling strength of web post 

As above mentioned, it is assumed that the compression flange of the castellated beam 

restrained by the floor system. Thus the overall buckling of the castellated beam is omitted 

from the design consideration. The web post flexural and buckling of capacity in castellated 

beam is given by [2, 21]: 

 

]..[ 3

2

21 CCC
M

M

E

MAX    (4) 

 

where MAXM  is the maximum allowable web post moment and EM is the web post 

capacity at critical section A-A shown in Fig. 3. 1C , 2C  and 3C  are constants obtained by 

following expressions: 

 

   21 00174.01464.0097.5  C  (5) 

   
2

2 1.441 0.0625 0.000683C      (6) 

   2

3 00108.00853.0645.3  C  (7) 

 

where 
d

S

2
  for hexagonal openings, and 

0D

S
  for circular openings, also 

wt

d2
  for 

hexagonal openings, and 
wt

D0  for circular openings, S is the spacing between the centers 

of holes, d is the cutting depth of hexagonal opening, 0D  is the holes diameter and wt  is the 

web thickness. 
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2.4. Vierendeel bending of upper and lower tees 

Vierendeel mechanism is always critical in steel beams with web openings, where global 

shear force is transferred across the opening length, and the Vierendeel moment is resisted 

by the local moment resistances of the tee-sections above and below the web openings. 

Vierendeel bending results in the formation of four plastic hinges above and below the 

web opening. The overall Vierendeel bending resistance depends on the local bending 

resistance of the web-flange sections. This mode of failure is associated with high shear 

forces acting on the beam. The Vierendeel bending stresses in the circular opening obtained 

by using the Olander’s approach Fig. 4. The interaction between Vierendeel bending 

moment and axial force for the critical section in the tee should be checked as follows [21]: 

 

0.10 
PU M

M

P

P
 (8) 

 

where 0P  and M  are the force and the bending moment on the section, respectively. UP  

is equal to area of critical section YP , MP is calculated as the plastic modulus of critical 

section YP in plastic section or elastic section modulus of critical section YP for other 

sections. 

 

 
Figure 4. Olander's curved beam approach 

 

The plastic moment capacity of the tee-sections in castellated beams with hexagonal 

opening are calculated independently. The total of the plastic moment is equal to the sum of 

the Vierendeel resistances of the above and below tee-sections [2]. The interaction between 

Vierendeel moment and shear forces should be checked by the following expression: 

 

04.  TPOMAX MeV  (9) 

 

where OMAXV and TPM  are the maximum shear force and the moment capacity of tee-

section, respectively.  
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2.5. Deflection of castellated beam 

Serviceability checks are high importance in the design, especially in beams with web 

opening where the deflection due to shear forces is significant. The deflection of a 

castellated beam under applied load combinations should not exceed span/360. In castellated 

beams with circular opening, the deflection at each point is calculated by following 

expression:  

 

SWPSTATWPMTTOT YYYYYY   (10) 

 

where 
MTY ,

WPY ,
ATY ,

STY and 
SWPY are deflection due to bending moment in tee , 

deflection due to bending moment in web post of beam, deflection due to axial force in tee, 

deflection due to shear in tee and deflection due to shear in web post, respectively. These 

equations are provided in Ref. [21]. 

For a castellated beam with hexagonal opening and length L subjected to transverse 

loading, the total deflection is composed by two terms: the first term corresponds to pure 

moment action
bf , and the second one corresponds to shear action

sf . Thus, the total 

deflection can be calculated by the following expression:  

 
3

1 2b sf f f c L c L   
 

(11) 

 

1c  and 
2c are determined by means of a curve fitting technique [23]. 

 

 

3. OPTIMIZATION OF END-FILLED CASTELLATED BEAM 
 

The main initiative for producing and using castellated beam is to suppress the cost of 

material by applying more efficient cross sectional shapes made from standard profiles in 

combination with aesthetic and architectural design considerations. In a castellated beam, 

there are many factors that require special considerations when estimating the cost of beam, 

such as man-hours of fabrication, weight, price of web cutting and welding process. At this 

study, it is assumed that the costs associated with man-hours of fabrication for hexagonal 

and circular opening are identical. Thus, the objective function includes three parts: The 

beam weight, price of the cutting and price of the welding. In the end-filled case, the price of 

plates is added to the total cost. Therefore, the objective function can be expressed as: 

 

cost initail 0 1 2 3 F  ( ( ) 2 . ). . ( ).hole w cut weldA L A t p L p L p     (12) 

 

where p1, p2 and p3 are the price of the weight of the beam per unit weight, length of 

cutting and welding for per unit length, 0L  is the initial length of the beam before 

castellation process,  is the density of steel, initailA  is the area of the selected universal 

beam section, holeA  is the area of a hole, holeP  is the perimeter of a hole, cutL  and weldL  are 
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the cutting length and welding length, respectively. The length of cutting is different for 

hexagonal and circular web-openings. The dimension of the cutting length is described by 

following equations: 

For circular opening, 

 

0
cut 0. 2 ( 1) 2.

2
hole

D
L D NH e NH e P


       (13) 

 

For hexagonal opening, 

 

2 ( ) 2 2.
sin( ) sin( )

cut hole

d d
L NH e e P

 
      (14) 

 

where NH is the total number of holes, e is the length of horizontal cutting of web, 
0D

is the diameter of holes, d is the cutting depth,   is the cutting angle, and holeP  is the 

perimeter of hole related to filled opening. 

Also, the welding length for both of circular and hexagonal openings is determined by 

Eq. (15). 

 

( 1) 4.weld holeL e NH P    (15) 

 

cutL is shown for both of circular and hexagonal openings in Fig. 1.  

 

3.1. Design of castellated beam with circular opening 

Design process of a cellular beam consists of three phases: The selection of a rolled beam, 

the selection of a diameter, and the spacing between the center of holes or total number of 

holes in the beam as shown in Fig. 1 [21, 22]. Hence, the sequence number of the rolled 

beam section in the standard steel sections tables, the circular holes diameter and the total 

number of holes are taken as design variables in the optimum design problem. The optimum 

design problem formulated by considering the constraints explained in the previous sections 

can be expressed as the following: 

Find an integer design vector    T
xxxX 321 ,,  where 1x  is the sequence number of the 

rolled steel profile in the standard steel section list, 2x is the sequence number for the hole 

diameter which contains various diameter values, and 3x  is the total number of holes for the 

cellular beam [21]. Hence the design problem can be expressed as:  

Minimize Eq. (12) 

Subjected to 

 

008.1 01  SDg  (16) 

060.1 02  DSg  (17) 
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025.1 03  SHDg  (18) 

075.1 04  DHg S  (19) 

05  PU MMg  (20) 

06  VMAXSUP PVg  (21) 

07  VYOMAX PVg  (22) 

08  VHHMAX PVg  (23) 

09   WMAXAMAXA MMg  (24) 

050.010  VYTEE PVg  (25) 

00.10

11 
PU M

M

P

P
g  (26) 

0
36012  LYg MAX  (27) 

 

where Wt  is the web thickness, SH  and L  are the overall depth and the span of the 

cellular beam, and S  is the distance between centers of holes. UM  is the maximum 

moment under the applied loading, PM  is the plastic moment capacity of the cellular beam,  

MAXSAPV  is the maximum shear at support, OMAXV is the maximum shear at the opening,  

HMAXV is the maximum horizontal shear,  AMAXAM  is the maximum moment at A-A section 

shown in Fig. 3. WMAXM  is the maximum allowable web post moment, TEEV  represent the 

vertical shear on the tee at  0  of web opening, 0P  and  M  are the internal forces on the 

web section as shown in Fig. 4, and  MAXY  denotes the maximum deflection of the cellular 

beam [21,25]. 

 

3.2. Design of castellated beam with hexagonal opening 

In design of castellated beams with hexagonal openings, the design vector includes four 

design variables: The selection of a rolled beam, the selection of a cutting depth, the spacing 

between the center of holes or total number of holes in the beam and the cutting angle as 

shown in Fig. 3. Hence the optimum design problem formulated by the following 

expression: 

Find an integer design vector    T
xxxxX 4321 ,,,  where 1x  is the sequence number of 

the rolled steel profile in the standard steel section list, 2x is the sequence number for the 

cutting depth which contains various values, 3x  is the total number of holes for the 

castellated beam and 4x  is the cutting angle. So, the design problem turns out to be as 

follows: 

Minimize Eq. (12) 
Subjected to 
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0)2.(
8

3
1  fS tHdg  (28) 

0)(10)2(2  fTfS tdtHg
 

(29) 

0cot..
3

2
3  edg 

 
(30) 

0cot.24  deg
 

(31) 

02cot.25  dedg 
 

(32) 

0456  g
 

(33) 

0647  g  (34) 

08  PU MMg
 

(35) 

09  VMAXSUP PVg
 

(36) 

010  VYOMAX PVg
 

(37) 

011  VHHMAX PVg
 

(38) 

012   WMAXAMAXA MMg
 (39) 

050.013  VYTEE PVg
 (40) 

04.14  TPOMAX MeVg
 (41) 

0
36015  LYg MAX  (42) 

 

where ft is the flange thickness, Td  is the depth of the tee-section, PM is the plastic 

moment capacity of the castellated beam, AMAXAM  is the maximum moment at A-A section 

shown in Fig. 3, WMAXM  is the maximum allowable web post moment,  TEEV  represent the 

vertical shear on the tee, TPM  is the moment capacity of tee-section and MAXY  denotes the 

maximum deflection of the castellated beam with hexagonal opening [2]. 

 

 

4. OPTIMIZATION ALGORITHMS 
 

In this paper, three algorithms are considered that all of them are meta-heuristic methods. 

These algorithms start with a set of randomly selected candidate solutions of the 

optimization problem and attempt to improve the quality of the set based on a cost function. 

A summary of these methods are described in the following subsections. 

 

4.1. Charged system search  

Charged System Search (CSS), proposed by Kaveh and Talatahari [11], has its governing 

rules inspired from electrostatics and Newtonian mechanics. It is a population-based search 

approach, where each agent (CP) is considered as a charged sphere with radius a, having a 

uniform volume charge density which can produce an electric force on the other CPs. The 
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force magnitude for a CP located in the inside of the sphere is proportional to the separation 

distance between the CPs, while for a CP located outside the sphere it is inversely 

proportional to the square of the separation distance between the particles. The resultant 

forces or acceleration and the motion laws determine the new location of the CPs. The pseudo-

code for the CSS algorithm can be summarized as follows: 

Step 1: Initialization. The initial positions of CPs are determined randomly in the search 

space and the initial velocities of charged particles are assumed to be zero. The values of the 

fitness function for the CPs are determined and the CPs are sorted in an increasing order. A 

number of the first CPs and their related values of the fitness function are saved in a 

memory, so called charged memory (CM). 

Step 2: Determination of forces on CPs. The force vector is calculated for each CP as 

 

 
Nj

arii

arii

XXPari
r

q
ir

a

q
F ji

ji

jii

jijiji

ji

i
ji

i
J

,...,2,1

1,0

0,1

... ,21

,21

,

,,22
,

1,3

























 (43) 

 

where JF is the resultant force acting on the j th CP; N  is the number of CPs. The 

magnitude of charge for each CP ( iq ) is defined considering the quality of its solution as  

 

 
Ni

fitworstfitbest

fitworstifit
qi ,...,2,1, 




  (44) 

 

where fitbest  and fitworst are the best and the worst fitness of all particles, respectively; 

 ifit represents the fitness of the agent i ; and N is the total number of CPs. The 

separation distance jir , between two charged particles is defined as follows: 

 

  




bestji

ji

ji
XXX

XX
r

2
,  (45) 

 

where iX  and jX  are respectively the positions of the i th and j th CPs, bestX  is the position 

of the best current CP, and  is a small positive number. Here, jiP,  is the probability of moving 

each CP towards the others and is obtained using the following function: 

 

 
   

   















else

ifitjfitrand
ifitjfit

fitbestifit

P ji

0

1
,  (46) 

 

In Eq. (43), jiar,  indicates the kind of force and is defined as 
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

 


else

rand
ar ji

0

80.01
,  (47) 

where rand  represents a random number. 

Step 3: Solution construction. Each CP moves to the new position and the new velocity is 

calculated by:  

 

oldjoldjVjjajnewj XVKrandFKrandX ,,2,1,, ....   (48) 

oldjnewjnewj XXV ,,,   (49) 

 

where aK  is the acceleration coefficient; vK  is the velocity coefficient to control the 

influence of the previous velocity;  and 1,jrand and 2,jrand  are two random numbers 

uniformly distributed in the rang (0,1); and aK and vK  are taken as 

 
























maxmax

15.0,15.0
iter

iter
K

iter

iter
K va  (50) 

 

where iter  is the iteration number and maxiter  is the maximum number of iterations. 

Step 4: Updating process. If a new CP exits from the allowable search space, a harmony  

search-based handling approach is used to correct its position. In addition, if some new  

CP vectors are better than the worst ones in the CM; these are replaced by the worst ones in  

the CM. 

Step 5: Termination criterion control. Steps 2-4 are repeated until a termination criterion is 

satisfied. 

 

4.2 Colliding bodies optimization algorithm 

The Colliding bodies optimization algorithm is one of the meta-heuristic search methods 

that recently developed. It is a population-based search approach, where each agent is 

considered as a colliding body (CB) with mass m. The idea of the CBO algorithm is based 

on observation of a collision between two objects in one dimension; in which one object 

collides with another object and they move toward minimum energy level [16, 17]. 

In the CBO algorithm, each solution candidate iX is considered as a colliding body 

(CB). The massed objects are composed of two main equal groups; i.e. stationary and 

moving objects, where the moving objects move to follow stationary objects and a collision 

occurs between pairs of objects. This is done for two purposes: (i) to improve the positions 

of moving objects; (ii) to push stationary objects towards better positions. After the 

collision, the new positions of the colliding bodies are updated based on their new velocities. 

The pseudo-code for the CBO algorithm can be summarized as follows: 

Step 1: Initialization. The initial positions of CBs are determined randomly in the search 

space: 

 
0

min max min.( ) 1,2,...,ix x rand x x i n   
 

(51) 
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where 
0

ix determines the initial value vector of the ith CB. 
minx and 

maxx are the minimum 

and the maximum allowable values vectors of variables, respectively; rand is a random 

number in the interval [0,1]; and n is the number of CBs. 

Step 2: Determination of the body mass for each CB. The magnitude of the body mass for 

each CB is defined as: 

 

1

1

( )
, 1,2,...,

1

( )

k n

i

fit k
m k n

fit i

 


 (52) 

 

where ( )fit i  represents the objective function value of the agent i ; n is the population 

size. Obviously a CB with good values exerts a larger mass than the bad ones. Also, for 

maximizing the objective function the term 
1

( )fit i
 is replaced by ( )fit i . 

Step 3: Arrangement of the CBs. The arrangement of the CBs objective function values is 

performed in ascending order (Fig. 5a). The sorted CBs are equally divided into two groups: 

The lower half of CBs (stationary CBs); These CBs are good agents which are stationary 

and the velocity of these bodies before collision is zero. Thus: 

 

0 1, 2,...,
2

i

n
v i   (53) 

 

The upper half of CBs (moving CBs): These CBs move toward the lower half. Then, 

according to Fig. 5b, the better and worse CBs, i.e. agents with upper fitness value of each 

group will collide together. The change of the body position represents the velocity of these 

bodies before collision as: 

 

2

1,...,
2

i i n
i

n
v x x i n


     (54) 

 

where 
iv and ix are the velocity and position vector of the ith CB in this group, 

respectively; 
2

n
i

x


 is the ith CB pair position of ix  in the previous group. 

Step 4: Calculation of the new position of the CBs. After the collision, the velocity of 

bodies in each group is evaluated using collision laws and the velocities before collision. The 

velocity of each moving CB after the collision is: 

 

2

2

( )

' 1,...,
2

i n i
i

i

i n
i

m m v
n

v i n
m m








  


 (55) 
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where 
iv and 'iv are the velocity of the ith moving CB before and after the collision, 

respectively; 
im  is the mass of the ith CB; 

2

n
i

m


is mass of the ith CB pair. Also, the velocity 

of each stationary CB after the collision is: 

 

2 2 2

2

( )

' 1,...,
2

n n n
i i i

i

i n
i

m m v
n

v i
m m


  





 


 (56) 

 

where 
2

n
i

v


 and 
iv are the velocity of the ith moving CB pair before and the ith stationary 

CB after the collision, respectively; 
im  is mass of the ith CB; 

2

n
i

m


is mass of the ith moving 

CB pair. As mentioned previously,   is the coefficient of restitution (COR) and for most of 

the real objects, its value is between 0 and 1. It defined as the ratio of the separation velocity of 

two agents after collision to the approach velocity of two agents before collision. In the CBO 

algorithm, this index is used to control of the exploration and exploitation rate. For this goal, 

the COR is decreases linearly from unit to zero. Thus,   is defined as: 

 

max

1
iter

iter
    (57) 

 

where iter  is the actual iteration number and 
maxiter  is the maximum number of iterations, 

with COR being equal to unit and zero representing the global and local search, respectively. 

New positions of CBs are obtained using the generated velocities after the collision in 

position of stationary CBs. 

The new positions of each moving CB is: 

 

2

' 1,...,
2

new

i n i
i

n
x x rand v i n


     (58) 

 

where 
new

ix and 'iv are the new position and the velocity after the collision of the ith 

moving CB, respectively; 
2

n
i

x


is the old position of the ith stationary CB pair. Also, the new 

positions of stationary CBs are obtained by: 

 

' 1,...,
2

new

i i i

n
x x rand v i    (59) 

 

where 
new

ix , ix  and 'iv are the new position, old position and the velocity after the 

collision of the ith stationary CB, respectively. rand is a random vector uniformly distributed 
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in the range (-1,1) and the sign ‘‘ ’’ denotes an element-by-element multiplication. 

Step 5: Termination criterion control. Steps 2-4 are repeated until a termination criterion is 

satisfied.  

 

 
Figure 5. (a) The sorted CBs in an increasing order. (b) The pairs of objects for the collision 

 

4.3 The CBO-PSO method 

This hybrid CBO and PSO algorithm, so called CBO-PSO has been proposed by Kaveh and 

Shokohi [18] to improve the performance of the standard CBO. Both of these methods, (CBO 

and PSO) are population-based algorithms and find optimum solutions by changing the 

position of the agents. However, the movement strategies are different for the CBO and PSO. 

The PSO algorithm utilizes the local best and the global best to determine the direction of the 

movement, while the CBO approach uses the collision laws and the velocities before collision 

to determine the new positions. Using of the local best and the global best are the main reasons 

for the success of PSO. However, in spite of having the above-mentioned advantages, the 

standard PSO is infamous of premature convergence. This algorithm has some problems in 

controlling the balance between the exploration and exploitation due to ignoring the effect of 

other agents. 

Similar to the PSO method, the CBO algorithm uses the previous velocities, when the 

upper half of CBs (moving CBS) move toward the stationary CBs. As it is mentioned in the 

previous section, after the collision, the velocity of all CBs is evaluated using the velocity of 

moving CBs before the collision and the mass of the paired CBs. This will lead to the loss of 

the best position of particles which is found in previous iteration. Therefore, in the present 

hybrid algorithm, the advantages of the PSO consist of the local best, and the global best are 

added to the CBO algorithm. For this purpose, the best position of the stationary particles is 

saved in a memory called stationary bodies memory (SBM). Also, another memory is 

considered to save the better position of each particle that up to this point has been found so 

far. This memory, so- called particles memory (PM), is treated as the local best in the PSO, 
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and it is updated by following expression: 

 

1

1

1 1

( ) ( )

( ) ( )

i i i

k k ki

k i i i

k k k

PM F X F X
PM

X F X F X





 

  
 

 

 (60) 

 

in which the first term identifies that when the new position is not better that the previous 

one, the updating will not be performed, while when the new position is better than the so 

far stored good position, the new solution vector is replaced. With the above definitions, and 

considering the above- mentioned new memories, the velocity of CBs after collision are 

modified by following equations: 

For moving particles, 
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 (61) 

 

For stationary particles, 

 

2 2 2
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 (62) 

 

 

5. DESIGN EXAMPLES 
 

In this section, in order to compare fabrication cost of the end-filled castellated beams with 

circular and hexagonal holes, three beams are selected. Among the steel section list of 

British Standards 64 Universal Beam (UB) sections starting from 28102254  UB to 

388419914  UB are chosen to constitute the discrete set for steel sections from which the 

design algorithm selects the sectional designations for the castellated beams. In the design 

pool of holes diameters 421 values are arranged which varies between 180 and 600 mm with 

increment of 1 mm. Also, for cutting depth of hexagonal opening, 351 values are considered 

which varies between 50 and 400 mm with increment of 1 mm and cutting angle changes 

from 45 to 64. Another discrete set is arranged for the number of holes. Likewise, in all the 

design problems, the modulus of elasticity is equal to205 kN/mm2  and Grade 50 is selected 

for the steel of the beam which has the design strength 355 MPa. The coefficients 1P , 2P  and 

3P  in the objective function are considered 0.85, 0.30 and 1.00, respectively [26, 27].  

 

5.1 Castellated beam with 4-m span 

A simply supported beam with 4m span shown in Fig. 6 is selected as the first design 

example. The beam is subjected to 5 kN/m dead load including its own weight. A 
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concentrated live load of 50 kN also acts at mid-span of the beam and the allowable 

displacement of the beam is limited to 12 mm. The number of CBs is taken as 50 and 

maximum number of iterations is considered 200. 

 

 
Figure 6. Simply supported beam with 4m span 

 
Table 1: Optimum designs of the castellated beams with 4m span 

Method 
Optimum UB 

section 

Hole diameter or 

cutting depth 

(mm) 

Total 

number of 

holes 

Cutting 

angle 

Minimum 

cost ($) 

Type of 

the hole 

CBO-PSO 

algorithm 
UB 305×102×25 125 14 56 96.04 

Hexagona

l 

CBO 

algorithm 
UB 305×102×25 125 14 64 96.61 

CSS 

algorithm 
UB 305×102×25 125 14 60 96.45 

CBO-PSO 

algorithm 
UB 305×102×25 243 14 _ 98.58 

Circular 
CBO 

algorithm 
UB 305×102×25 243 14 _ 98.70 

CSS 

algorithm 
UB 305×102×25 244 14 _ 98.62 

 

End-filled Castellated beams with hexagonal and circular openings are separately 

designed by using of three algorithms. The best solutions obtained by these methods are 

given in Table 1. As it can be seen from the same table, the optimum cost for this case is 

equal to 96.04$ which is related to the hexagonal beam, and it is obtained by CBO-PSO 

algorithm. Fig. 7 provides the convergence rates of the best results obtained by these 

algorithms.  

 

5.2 Castellated beam with 8m span 

In the second problem the meta-heuristic algorithms are used to design a simply supported 

castellated beam with a span of 8m. The beam carries a uniform dead load 0.40 kN/m, which 

includes its own weight. In addition, it is subjected to two concentrated loads; dead load of 

70 kN and live load of 70 kN as shown in Fig. 8. The allowable displacement of the beam is 

limited to 23 mm. The number of CBs is taken as 50. The maximum number of iterations is 

considered 200. 



A. Kaveh and F. Shokohi 

 

350 

 
Figure 7. Convergence rates of the best results in design of 4m span beam 

 

 
Figure 8. A simply supported beam with 8m span 

 

The beam with 8m span is separately designed by three algorithms. Table 2 compares the 

results obtained by these methods. As it can be seen, in the optimum design of castellated 

beam with hexagonal hole, the CBO-PSO approach have been good performance in 

comparison with other methods, while in the cellular case, both CSS and CBO-PSO led to 

the same answer. The minimum cost of design is equal to 744.42$, which it is obtained for 

hexagonal opening. Similar to the previous example, the strength constraints are dominant in 

the design process. The maximum ratio of these criteria is equal to 0.99 for the Vierendeel 

mechanism. 

 
Table 2: Optimum designs of the castellated beams with 8m span 

Method 
Optimum UB 

section 

Hole diameter 

or cutting 

depth(mm) 

Total 

number 

of holes 

Cutting 

angle 

Minimum 

cost ($) 

Type of the 

hole 

CBO-PSO 

algorithm 
UB 

610×229×101 
246 14 55 744.42 

Hexagonal 
CBO 

algorithm 

UB 

610×229×101 
246 14 58 745.48 

CSS 

algorithm 

UB 

610×229×101 
246 14 56 744.65 
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CBO-PSO 

algorithm 

UB 

610×229×101 
478 14 _ 753.74 

Circular 
CBO 

algorithm 

UB 

610×229×101 
479 14 _ 754.02 

CSS 

algorithm 

UB 

610×229×101 
478 14 _ 753.74 

 

The optimum shapes of the hexagonal and circular openings are illustrated separately as 

shown in Fig. 9. 

 

 
Figure 9. Optimum profiles of the castellated beams with cellular and hexagonal openings 

 

5.3 Castellated beam with 9m span 

The beam with 9m span is considered as the last example of this study in order to compare 

the minimum cost of the castellated beams. The beam caries a uniform load of 40 kN/m 

including its own weight and two concentrated loads of 50 kN as shown in Fig. 10. The 

allowable displacement of the beam is limited to 25 mm. Similar to the two previous 

examples the number of CBs is taken as 50 and the maximum number of iterations is 

considered 200. 

 

 
Figure 10. Simply supported beam with 9m span 
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The optimum results obtained by three meta-heuristic methods are shown in Table 3. In 

design of castellated beam with hexagonal hole, CBO-PSO algorithm selects 684×254×125 

UB profile, 14 holes, and 277 mm for the cutting depth and 58 for the cutting angle. The 

cost of design is equal to 1031.92$ that it is the lowest in between all of the responses. Also, 

in the optimum design of cellular beam, all algorithms selects 684×254×125 UB profile, 14 

holes and 539 mm for the holes diameter. As it can be seen from Table 3, all three methods 

have almost the same performance in this design problem. 

 
Table 3: Optimum designs of the castellated beams with 9m span 

Method 
Optimum UB 

section 

Hole 

diameter or 

cutting 

depth(mm) 

Total 

number of 

holes 

Cutting 

angle 

Minimum 

cost ($) 

Type of 

the hole 

CBO-PSO 

algorithm 
UB 684×254×125 277 14 58 1031.92 

Hexago

nal 

CBO 

algorithm 
UB 684×254×125 277 14 60 1034.07 

CSS 

algorithm 
UB 684×254×125 277 14 61 1033.32 

CBO-PSO 

algorithm 
UB 684×254×125 539 14 _ 1041.68 

Circular 
CBO 

algorithm 
UB 684×254×125 539 14 _ 1041.79 

CSS 

algorithm 
UB 684×254×125 539 14 _ 1041.71 

 

Fig. 11 shows the convergence of the algorithms in design of the end-filled beam with 9-

m span. 

 

 
Figure 11. The convergence rate of the algorithms in design of the beam with 9-m span 
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6. CONCLUDING REMARKS 
 

In this paper, three population-based meta-heuristic algorithms are used in order to design of 

end-filled castellated beams. In these beams, it is assumed that the end holes of the beam 

have been filled with steel plates. Thus, the cost of plates is added to the final cost. Three 

samples are selected from literature to design by these methods. Beams with hexagonal and 

circular openings are considered as web-opening of castellated beams. Also, the cost of the 

beam is considered as the objective function. A comparison of the optimal solution is 

performed between three methods. It is observed that the optimization results obtained from 

CBO-PSO algorithm for most of the design examples have less cost in comparison to the 

results of the other algorithms. Likewise, from the results obtained in this study, it can be 

concluded that the use of beam with hexagonal opening leads to the use of less steel material 

and it is better than cellular beam from the cost point of view. 

 

 

REFERENCES 
 

1. Tsavdaridis KD, D’Mello C. Optimization of novel elliptically-based web opening shapes of 

perforated steel beams, J Construct Steel Res 2012; 76: 1605-20. 

2. Soltani MR, Bouchair A, Mimoune M. Nonlinear FE analysis of the ultimate behavior of 

steel castellated beams, J Construct Steel Res 2012; 70: 101-14. 

3. Zaarour W, Redwood RG. Web buckling in thin webbed castellated beams, J Struct Eng, 

ASCE 1996; 122(8): 860-66.  

4. Redwood R, Demirdjian S. Castellated beam web buckling in shear, J Struct Eng, ASCE 

1998; 124(10): 1202-7.  

5. Sweedan MI, Elastic lateral stability of I-shaped cellular steel beams, J Construct Steel Res 

2011; 67(2): 151-63. 

6. Konstantinos T, D. Mello C. Web buckling study of the behavior and strength of perforated 

steel beam with different novel web opening shapes, J Construct Steel Res 2011; 67: 1605-20.  

7. Goldberg DE, Holland JH. Genetic algorithms and machine learning, Mach Learning 1988; 

3(2): 95-9. 

8. Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating 

agents, Part B: Cybernetics, IEEE Trans Syst, Man, Cybernat 1996; 26: 29-41. 

9. Geem ZW, Kim JH, Loganathan GV. A new heuristic optimization algorithm; harmony 

search, Simul 2001; 76: 60-8. 

10. Eberhart RC, Kennedy J. A new optimizer using particle swarm theory, In Proceedings of 

the Sixth International Symposium on Micro Machine and Human Science, 1995; 1: 39-43. 

11. Kaveh A, Talatahari S. A novel heuristic optimization method: charged system search, Acta 

Mech 2010; 213: 267-89. 

12. Yang XS. Bat algorithm for multi-objective optimization, Int J Bio-Inspired Comput 2011; 

3: 267-74. 

13. Kaveh A, Khayatazad M. A new meta-heuristic method: ray optimization, Comput Struct 

2012; 112: 283-94. 



A. Kaveh and F. Shokohi 

 

354 

14. Gandomi AH, Alavi AH. Krill herd: a new bio-inspired optimization algorithm, Commun 

Nonlinear Sci Numer Simul 2012; 17: 4831-45. 

15. Kaveh A, Farhoudi N. A new optimization method: Dolphin echolocation, Adv Eng Softw 

2013; 59: 53-70. 

16. Kaveh A, Mahdavi VR. Colliding bodies optimization: A novel meta-heuristic method, 

Comput Struct 2014; 139: 18–27. 

17. Kaveh A. Advances in Metheuristic Algorithms for Optimal Design of Structures, Springer, 

Switzerland, 2014. 

18. Kaveh A, Shokohi F. A hybrid optimization algorithm for the optimal design of laterally-

supported castellated beams, Scientia Iranica 2015, In print. 

19. EN 1993-1-1. Eurocode 3: Design of steel structures part 1-1: general rules and rules for 

building, CEN, 2005. 

20. Ward JK. Design of composite and non-composite cellular beams, The Steel Construction 

Institute Publication, 1990. 

21. Erdal F, Dogan E, Saka MP. Optimum design of cellular beams using harmony search and 

particle swarm optimization, J Construct Steel Res 2011; 67(2): 237-47.  

22. Saka MP. Optimum Design of Steel Skeleton Structures, Studies Comput Intell 2009; 191: 

87-112.  

23. Raftoyiannis I, Ioannidis G. Deflection of castellated I-beams under Transverse loading, J 

Steel Struct 2006; 6(1): 31-6.  

24. British Standards, BS 5950. Structural use of steel works in building. Part 1. Code of 

practice for design in simple and continuous construction, hot rolled sections. London (UK): 

British Standard Institute, 2000. 

25. LRFD-AISC. Manual of steel construction-load and resistance factor design, SA, 1986. 

26. Kaveh A, Shokohi F. Cost optimization of castellated beams using charged system search 

algorithm, Iranian J Sci Technol, Trans Civil Eng 2014; 38(C1+): 235-49.  

27. Kaveh A, Shokohi F. Optimum design of laterally-supported castellated beams using CBO 

algorithm, Steel Composite Struct 2015; 18(2): 305-24. 


