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ABSTRACT 
 

In this study, a two-echelon supplier-manufacturer system with finite production rate and 

lead time is proposed. It is assumed that shortage is not permitted and the lot size of 

manufacturer (second echelon) is m-factors of the lot size of supplier (first echelon) and 

supplier can supply the manufacturer’s lot size in several shipments in each cycle. So, the 

production rate of supplier is greater than manufacturer’s. The proposed model aims to 

determine the optimal lot-size of each echelon such that the total cost of system is 

minimized. First, the problem is studied regardless of lead time and the optimal value of the 

lot sizes and the number of shipments is determined through analytical relations. Then, an 

exact solution algorithm for the problem is presented for the case with non-zero lead time. 

Finally, the performance of the proposed algorithm is reviewed by solving some numerical 

instances of the problem. 
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1. INTRODUCTION 
 

In today's competitive business environment, most of the companies outsource their 

processes which does not relate to their main production scope in order to concentrate on 

their specialized area. Moreover, these processes have low added value and expert 

companies can produce them with lower cost. In most industries, 60 percentages of activities 
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are outsourced, approximately [1]. This shows the importance of interaction between the 

components of a supply chain. Interaction, planning an inventory program and joint 

production between the components of supply chain can enhance the customer service and 

leads to the component's profit in long term. Goyal [2] considered a ''single vendor- single 

buyer'' model in which the vendor's production rate is infinite. The model minimizes total 

cost of the system. Banerjee [3] developed the model of Goyal by assuming finite 

production rate and Lot-for-Lot policy for the vendor. Goyal [4] developed the model of 

Banerjee more comprehensive by relaxing the assumption of Lot-for-Lot policy. Monahan 

[5] presented a ''single supplier-single retailer'' model in which the supplier supplies the 

retailer's demand bye Lot-for-Lot policy. He showed that the supplier can increase his 

revenue by offering a discounted price to the retailer and encouraging him to raise his lot 

size. Monahan studied the values of decision variables from the retailer's and supplier's 

viewpoint separately, in place of the viewpoint of an integrated supply chain system. 

Beullens and Janssens [6] studied the model of Monahan by net present value approach. Lu 

[7] presented a ''single vendor-multiple buyer'' system in which total cost of vendor is 

minimized by considering budget contraints for each of the buyers. He assumed that the size 

of the sub shipments shiped in a cycle are equal and presented a heuristic algorithm for 

determining the optimal value of lot size. Goyal [8] developed the model of Lu by 

considering that the size of sub shipments in a cycle increases by the ratio of '' vendor's 

production rate divided by buyer's demand rate'', successively and the goal is to determine 

the lot size of first sub shipments. Hill [9] studied the model of Lu in a more comprehensive 

condition by assuming the size of consecutive shipped sub shipments increase by a constant 

ration. Goyal and Nebebe [10] presented an alternative solution method for the model of 

Hill. Hill [11] developed an algorithm by combining the equal shipments policy (Lu [7]) and 

consecutive increase of shipment size (Goyal [8]) in order to find the optimal solution. In all 

these researches, the holding cost per unit for the buyer is greater than the vendor's. Hill and 

Omar [12] studied the model of Hill under the assumption that holding cost of the vendor is 

greater. Ha and Kim [13] studied a ''single buyer-single vendor'' system in lean production 

environment in order to minimize the total cost of the supply chain system. Munson and 

Rosenblatt [14] presented a three echelon supply chain (supplier, manufacturer and retailer) 

in which the retailer supplies the demand with a constant rate. In this model, production rate 

of supplier and manufacturer is finite. They studied the model as an integrated supply chain 

system and presented an algorithm to minimize the total cost of the system. Ben-Daya and 

Al-Nassar [15] studied a three echelon supply chain '' supplier, manufacturer and retailer'' 

and presented an algorithm in order to minimize the total cost of supply chain. They showed 

that if the sub shipments are shipped quickly after production, a significant saving occurs in 

costs in comparison with the case which shipping the sub shipments is subjected to the 

completion of production process of the whole lot size. Wu and Ouyang [16] presented a 

''single buyer-single vendor'' system by considering the shortage. They developed an 

algebraic procedure to minimize the total cost of system, determining economic order 

quantity, number of shipments in each cycle and the optimal size of the shortage. Chung 

[17] found that the conditions provided by Wu and Ouyang is incomplete for the optimality. 

He modified the developed algorithm by Wu and Ouyang. Giri and Bardhan [18] developed 

a two echelon supply chain ''supplier-manufacturer'' with finite production rate for 

manufacturer and considering time value of money and inflation rate. Jauhari [19] presented 
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a buyer-vendor supply chain system by considering discount and stochastic demand 

following normal distribution. Kaya et al. [20] studied a retailer-supplier supply chain 

system in which production rate of supplier is infinite. Also, retailer does not hold inventory 

and supplies the constant rate demand with back order. Glock and Kim [21] studied a ''single 

buyer-multi vendor'' supply chain system. In this single commodity system, the buyer 

supplies the constant rate demand without shortage and provides the required commodities 

from several vendors. But it is possible that the vendors be classified in categories and 

shipped lot size of each category receives to the buyer simultaneously. Sadjadi et al. [22] 

developed a vendor-buyer supply chain system by assuming finite production rate for the 

vendor and budget constraints. For a more comprehensive review of lot size determination in 

multi echelon supply chain models see Glock [23]. 

The remainder of the paper is as follow. The problem and its related assumptions are 

defined in Section 2. 
 

 

2. PROBLEM DEFINITION 
 

Consider two echelon production system consisted of a supplier, as the first echelon, and a 

manufacturer as the second echelon where their production rate is finite. Manufacturer 

receives raw material from the supplier and produces finished products with consumption 

rate 1 to satisfy the external demand without shortage, therefore, production rate of the 

supplier is greater than the manufacturer's which is greater than the external demand rate. In 

the proposed problem, it has been assumed that the lot size of the manufacturer is m-factors 

of the supplier's lot size. In other words, the manufacturer receives semi-finished products 

(e.g. raw materials) for m-times from the supplier in each production cycle. Transportation 

cost of each shipment is considered fixed and independent of the size of the shipment. The 

problem is to find the optimal lot size of the manufacturer and supplier in an infinite 

planning horizon both with and without lead time. 

The symbols used in this remainder of the paper are defined as follows: 

D  : The annual rate of external demand 

1P  : Production rate of supplier 

2P  : Production rate of manufacturer 

1A  : Fixed setup cost of the supplier 

trC : Fixed transportation cost of each shipment from the supplier to the manufacturer 

m  : The number of shipments in each cycle 

iQ1  : Quantity of ith shipment in each cycle 

2Q  : Lot size of manufacturer in each cycle 

L  : Lead time of each shipment 

1h  : Annual holding cost per unit for the supplier 

bh  : Annual holding cost of semi-finished product per unit in manufacturer's warehouse 

of raw materials 

2h  : Annual holding cost of finished product per unit for the manufacturer 

2T  : Cycle time of manufacturer 
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iT1
 : Required time for producing the ith shipment by the supplier 

biT  : Required time for consuming the ith shipment in manufacturer's warehouse of raw 

materials 

Fig. 1 depicts the inventory level both for manufacturer and supplier. In this figure, the 

number of shipments is 3. In general, the system cycle is equal to the manufacturer's cycle 

due to its smaller production rate assumption. In each cycle, supplier ships the lot size of the 

manufacturer ( 2Q ) in m shipments by the quantity of ),...,1(1 miQ i   for each one. Due to 

this end, the equations below holds true: 
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For the purpose that the machines in second echelon does not cease the production 

operations, the shipment i+1 should receive to the manufacturer before the shipment i had 

been consumed. In other words 1,1,,1,1  miTT ibi . So, the following conditions must 

hold true for the size of shipments. 
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Figure 1. Inventory Level of system 

3. SOLUTION APPROACH 
 

In this section we first show an essential property of the order sizes and then we consider the 

problem in two cases. In the first case the lead time, the time between ordering and receiving 

the ordered items, is assumed to be zero and in second case the positive lead time in problem 

is investigated. 

Before we state the property of the optimal order sizes, we need to calculate the average 

inventories in different echelons. Average inventory of supplier, raw material warehouse of 

manufacturer and the manufacturer's machine is as follows, respectively: 
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Theorem 1. In optimal solution, the size of shipments is equal.  

Proof. We prove that shipments with equal size have the minimum average cost for a 

certain lot size 2Q  and a specific number of shipments m. If 2Q  and m are specified, average 

setup cost of the supplier and manufacturer and average  in-process inventory holding cost in 

manufacturer machines will be constant and they need not to be considered. The sum of 

holding cost in supplier and manufacturer sections is as follows. 
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In Equation (9), K is constant which does not depend on the size of shipments. Here, we 

study the associated cost of the condition that all the shipment sizes are equal. In this case, 

the size of each shipment is mQmQQ i // 121  . 
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We show that h

b

h

b CC ,1,1  . Since we have   0
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Therefore, we have  
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According to (13), as far as in the best case, the size of shipments is equal for each 2Q  

and m, therefore, they will be either equal in optimal solution for 
*

2Q  and *m , so: 
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3.1 The problem with zero lead time 

In Fig. 2, inventory level both for manufacturer and supplier is presented. In this figure, the 

number of shipments is 2. Average amount of inventory of supplier per time unit, raw 

materials' warehouse of manufacturer and in-process inventory of manufacturer's machine 

are determined as follows, respectively: 
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Average annual setup and transportation cost of the system are determined as follows: 
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By using equations (15) to (18), average annual cost of the system would be: 
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Due to the convexity of ),( 2 mQTC  with respect to 2Q , economic order quantity of 

manufacturer for a specified m is obtained via derivative of ),( 2 mQTC with respect to 2Q . 
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By equations (19) to (20), we have: 
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Figure 2. Inventory level of system with zero lead time 
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)(* mTC is not convex with respect to m, but its first derivative is descending for *mm  

and ascending for *mm . Thus, )(* mTC is unimodal and has global minimum in *mm  . 

If the obtained *m  from Equation (20) is not an integer, Nm   is optimal where m  is the 

round up or round down of  *m . We have Theorem 2 in this regard in which the decimal 

part of *m  is shown by   
  ** mm   

Theorem 2. If *m  is not an integer, the optimal m   is obtained as follows: 
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Proof. Equation (21) can be written as follows. 
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In Equation (23) we have 
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Also 
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However, 1*m
 and *m  are a round up and a round down for *m , respectively. 

Currently, the condition in which the round down of *m  is optimal, is discussed. Since  
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we have  
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If 5.0 , Inequality (29) never holds true. As a result, the round up of *m  is optimal. 

Also If 5.0 , Inequality (29) will be: 
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If Inequality (30) holds true, the round down of *m  is optimal. Otherwise ( 5.0 ), the 

round up will be optimal. Moreover, if     21/1* m , both the round up and round 
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3.2 The problem with non-zero lead time 

In this section, it is assumed that the produced shipment of semi-finished product in the first 

echelon is received by the raw materials’ warehouse of second echelon with a delay of L 

units of time. In Fig. 3, the related inventory level for each part of system is presented. in 

this figure number of shipments is 3. 

The average of inventory in first and second echelon's machines and raw materials’ 

warehouse of second echelon are as the case without considering lead time. The average of 

inventory during the lead time is: 
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The average cost of the system is obtained by Equation (33): 
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By Equation (33), it is clear that lead time does not affect the optimal values of decision 

variable. According to Fig. 3, it is obvious that Inequality (34) must be held to make 2Q  and 

m feasible. 
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If Inequality (35) holds true for the obtained m   from Theorem 2 and resulted 
*

2Q  from 

Equation (31), the optimal solution is reached. Also, the minimum average total cost is: 
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Figure 3. Inventory level of system considering lead time 
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Here, the condition which Inequality (35) does not hold true is studied.  
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If the number of shipments is m, the obtained )(mQL  from Equation (37) is a lower 

bound for 2Q . Therefore, the feasible policy mm   and )(2 mQQ L
  has the minimum 

total cost due to the convexity of ),( 2 mQTC  with respect to 2Q . In Equation (37) by 

increasing m, )(mQL  increases. By choosing 1m  and m , lower and upper bound of

)(mQL  can be achieved, respectively as follows. 
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According to Equation (20), by increasing m the value of )(*

2 mQ  increases infinitely. 

Since )(*

2 mQ  is bounded, if Inequality (35) does not hold true for mm   , there is a m   

which Inequality (35) holds true for mm   and does not hold true for mm  . Clearly, m   
is greater than m  . 
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In Equation (41), m   is round up of Rm  . If )),(()(* mmQTCmTC L
 , the policy of 

mm   and )(*

22 mQQ   is optimal. Otherwise, mm   and )(2 mQQ L
  is the optimal 

policy.  

Efforts to find m   as a parametric form leads to a complex cubic inequality. But, upper 

and lower bound of m   simply can be determined. 
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(46)  max

max LQMm   

(47)  )(min mQMm L
  

 

Equation (46) has been written based on the fact that upper bound of )(mQL  is equal to 
max

LQ . In addition, Equation (47) has been written due to the fact that m   is a lower of m   

and does not holds true in Inequality (35). According to lower and upper bound of m  , an 

exact algorithm is presented for determining the optimal policy which is described as 

follows: 

 

Algorithm 1. 

Step 1: Calculate *m  by Equation (22) and determine m   according to Theorem 2. Then, 

calculate 
*

2Q  by Equation (31). 

Step 2: If Inequality (35) holds true for m   and
*

2Q , the optimal solution has been reached 

and  stop the algorithm. Otherwise, go to step 3. 

Step 3: Calculate minm   and maxm   from the equations (46) and  

(47) and set minmk  .  

Step 4: Calculate )(kQL  and )(*

2 kQ  by equations (37) and (20), respectively. If 

Inequality (35) holds true for m=k and )(*

2 kQ  then, go to step 6. Otherwise, set k=k+1 and 

go to step 5. 

Step 5: If maxmk   , go to step 4; otherwise go to step 6. 

Step 6: Calculate )),(( mmQTC L
  and )(* kTC  by equations (33) and (36), respectively. If

)),(()(* mmQTCkTC L
 , the policy of m=k and )(*

22 kQQ   is optimal; Otherwise, mm   

and )(2 mQQ L
  is the optimal policy and stop the algorithm.  
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Note that for maxmk   Inequality (35) holds true. Thus, if maxmk   in step 5, we go to 

step 6 directly without testing Inequality (35). 

 

4. NUMERICAL RESULTS 
 

In this section,  4 instances with zero lead time and 4 instances with non zero lead time are 

generated and solved. Table 1 and Table 2 show the parameters and experimental results 

relating to each category of instances, respectively. To show how the presented algorithm 

performs, we explained the way that example 6 has been solved in detailed. By Equation 

(22) *m  is obtained 2.5981, and then according to Theorem 2, m  is obtained as 3. 

Inequality (35) does not hold true for )3(*

2Q and )3(LQ  obtained by equations (31) and (37), 

respectively. ( 6335.328)3(*

2 Q , 360)3(08.0 Q ). Therefore, in the next step minm   and maxm   

are calculated by equations (46) and (47) as 4 and 6 , respectively. Then, for k=4, )(*

2 kQ  

and )(kQL  calculated by equations (31) and (37), respectively ( 0737.394)4(*

2 Q ,

384)4(08.0 Q ). Inequality (35) holds true. At last, )),(( mmQTC L
  and )(* kTC  are 

obtained by equations (33) and (36), respectively: 

3550)360,3( 2  QmTC  
1.3594)4(* mTC  

It is clear that the policy of m=3, 3602 Q  and 1201 Q  is optimal. 

 
Table 1: Parameters and experimental results of 4 examples with zero lead time 

Pr. 1A  trC  2A  1h  bh  2h  1P  1P  D  *m  m  
*

2Q  *

1Q  *TC  

1 90 10 150 10 10 20 1500 1200 1000 2.598 3 328.634 109.545 2738.6 

2 90 10 120 10 10 20 1500 1200 1000 2.323 2 243.057 121.529 2633.1 

3 90 10 135 10 10 20 1500 1200 1000 2.464 3 323.110 107.703 2692.6 

4 90 10 140/3 10 10 20 1500 1200 1000 3  
2 

3 

248.069 

322.490 

124.035 

107.497 

2687.4 

2687.4 

 
Table 2: Parameters and experimental results of 4 examples with non-zoro lead time 

Pr. 1A  trC  2A  1h  bh  2h  1P  2P  D  L  
*

2Q  *

1Q  *TC  

5 90 10 150 10 10 20 1500 1200 1000 0.06 328.634 109.545 3338.6 

6 90 10 150 10 10 20 1500 1200 1000 0.08 360 120 3550 

7 90 10 150 10 10 20 1500 1200 1000 0.1 450 150 3875 

8 120 20 150 18 18 20 1210 1200 1000 0.06 362.565 91.641 4996.9 

 

 

5. CONCLUSION 
 

In this paper, calculating of Joint economic Lot-Sizes for a two-echelon supplier-

manufacturer system was studied. In this problem, the supplier can ship the lot size of the 

manufacturer in several shipments. It was proved that the size of the shipments in optimal 
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solution is equal. First, the problem was studied with zero lead time and the optimal value of 

lot sizes and the number of shipments were found through analytical relations. Then, an 

exact algorithm was presented for the non-zero lead time case. In addition, some numerical 

instances were generated in order to show how the proposed algorithm performs. For the 

future studies, considering transportation cost depended to the shipment size (e.g. stair 

function) and considering multi suppliers or multi manufacturers are suggested. 
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