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ABSTRACT 
 

In this paper the piecewise level set method is combined with phase field method to solve 

the shape and topology optimization problem. First, the optimization problem is formed 

based on piecewise constant level set method then is updated using the energy term of phase 

field equations. The resulting diffusion equation which updates the level set function and 

optimization problem is solved through finite element method. The proposed method 

enhances the convergence rate and solution efficiency. Various two-dimensional examples 

are solved to verify the performance of proposed method. 
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1. INTRODUCTION 
 

The shape and topology optimization of structures is one of the most important issues in 

various engineering applications. Significant development in shape and topology 

optimization methods is achieved by researchers in recent decades [1-5].  

Level set method introduced by Osher and Sethian [6-8], has been successfully used in 

shape and topology optimization of structures. In level set method the inner and outer 

boundaries are considered as design variables and the structural boundaries are defined by 

zero level of level set function. By this approach the domain boundaries can be easily 

combined or separated from each other. If one uses the explicit methods for solution of 

Hamilton-Jacobi equation, some restrictions will arise, like time consuming process of 
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initialization, satisfaction of Courant-Friedrichs-Lewy (CFL) condition and dependence of 

final topology to initial guess.  

Piecewise Constant Level Set (PCLS) method was first introduced by Lie et al. [9], for 

interface problems such as image processing. In piecewise constant level set method unlike 

discrete level set method, there is no need to solve the Hamilton-Jacobi equation, thus it is 

free of the CFL condition and the reinitialization scheme. This feature will result in 

significant reduction of time cost. In the PCLS method the interface is determined by forcing 

the value of the LSF at each mesh point to be one of the piecewise constant values.  

Therefore it enables this method to create holes during the evolution of the LSF without 

using topology derivatives. 

 Recently the PCLS method is used with Lagrange multiplier method in constraint 

minimization problem [10], however in Lagrange multiplier method the iterations number 

for convergence is relatively high. 

Shojaee and Mohammadian [11] combined PCLS with Merriman-Bence-Osher (MBO) 

scheme for topology optimization problems which resulted in increase of convergence rate. 

In present study the phase field method is applied for increase of convergence rate and 

reducing the consumed time of optimization process.  

The phase field method and its concepts were developed by Cahn and Hilliard [12] and 

Allen and Cahn [13]. Bourdin and Chambolle [14] proposed the idea of implementation of 

phase field method in structural optimization. Takezawa et al. [15] adopted the phase field 

method and sensitivity analysis in solution of topology optimization problems. 
In this study the PCLS method is combined with phase field method to solve the topology 

optimization problems. In details, PCLS is used to form the optimization problem which is 

updated using the energy term of phase field equations. The resulting diffusion equation 

which updates the level set function and optimization problem is solved through finite 

element method. The comparison of proposed method with references confirms its 

convergence superiority and solution efficiency.  

This paper is organized as follows: in Sec. 2 PCLS basics are briefly reviewed. Sec. 3 

deals with PCLS in optimization platform. The concepts of pahse field are described in Sec. 

4. In Sec. 5 PCLS and phase field are combined and consequently the solution of resulting 

differential equiation using finite element method is described in Sec 6. The proposed 

method is verified with refrence methods in Sec. 7 through solving some 2D optimization 

problems. 

 

 

2. A PIECEWISE CONSTANT LEVEL SET METHOD 
 

In this section the piecewise constant level set (PCLS) method is briefly reviewed [11]. 

Consider partitioning the domain   into n sub domains  
1

n

i
 as follows: 

 

1

n

i

i

   

 
)1( 

 

where   is the union of the boundaries of the sub regions., 
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A piece-wise constant function, : R  , can be defined on the open and bounded 

domain which takes the following values: 

 

( ) , , 1,2,...,ix i x i n     )2( 
 

Thus, for any given partition  
1

n

i
  of the domain   we just need one PCLS function   

which takes the values of 1,2,...,n  .  

A characteristic function, ( )i x , for each subdomain, i , can be defined as follows: 

 

1,

1
( )

n

i

j j ii

j 
  

 
 

)3( 

1,

( )
n

i

k k i

i k
 

 
 

(4) 

 

Therefore, ( ) 1i x   for  ix  , and ( ) 0i x 
 
wherever Eq. (2) holds. To represent 

the different properties in each sub domain, ic   in i  , we define a piecewise density 

function as follow, 

 

1

( ) ( )
n

i i

i

c   

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)5( 

 

Where 

 

1

( ) ( 1)( 2)...( ) ( )
n

i

K n i    


     
 

)6( 

 

A piecwise constant constraint is defined to avoid vacuum or overlap between the 

different phases: 

 

( ) 0K    )7( 
 

finally one can calculate the volume and the perimeter of individual subdomains in the 

following form: 

 

i idx


  
 

)8( 

,i i dx


  
 

(9) 
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3. PIECEWISE CONSTANT LEVEL SET FRAMEWORK FOR TOPOLOGY 

OPTIMIZATION PROBLEM 
 

Here a simple framework of PCLS for topology optimization is reviewed [16].  

With respect to phase field, PCLS is implemented in two phases: 0 and 1. The constant 

piecewise density function is defined in two phases as follows: 

 
2

1 2( ) ( 1) cc        )10( 

 

Where 1c  and 2c  are prescribed values respectively for hollow and solid parts. Now if 

one considers 1 0c   for hollow phase and 2 1c   for solid phase, the density function will 

have the following relationship with PCLS function. 

 

1

2

c 0
( )

1c


 




 

  
)11( 

 

A piecewise constant constraint should be defined to guarantee the convergence of level 

set function,  , to a unique value: 

 
2( ) 0, ( ) ( 1)k k       )12( 

 

This indicates that every point in the design domain must belong to one and only one 

phase and there is no overlap and vacuum between different phases. 
 In this paper the optimization objective is to minimize the compliance over the structural 

domain for general loading condition and various boundary conditions. In other words the 

optimization problem is defined as follows: 
 

1 0

2

min (u, ) ( ) (u)d d

. ( )dx 0
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where   is the structural domain and its boundary is represented by   . Also in the 
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linear elastic equilibrium equation, u  denotes the displacement field, 0u  is the prescribed 

displacement on ,D ijklE  is the elasticity tensor, 
ij  is the strain tensor. f and p are body 

force and surface load respectively. In the objective function J(u) , the first term is the mean 

compliance where functional (u)F  is the strain energy density and   is the material 

density ratio. The second term in the objective function is the regularization term.   is a 

non-negative value to control the effect of second term. Indeed, this term controls both the 

length of interfaces and the jump of   , because the value of   may  not be continuous in 

the PCLS. 1H  defines the material fraction for different phases and 0V  is the maximum 

allowable volume of the design domain. 2H  is the piecewise constant constraint to guarantee 

that the level set function belongs to only one phase. If we use the augmented Lagrangian 

method to convert Eq. (13) into an unconstrained one, the following form is obtained: 

 

2

1 1

2 2

1 2 2

1 2

( , ) ( ) (u, , ) l( , )

1 1

2 2

L J a H

H H d H d

       


 

 

   

    
 

)14( 

 

where 1 R   and 2

2 ( )L    are Lagrange multipliers and 
1 2, 0    are penalty 

parameters. Now, we need to find a saddle point of the augmented Lagrangian functional L  

. To find the saddle point of this function where there is no body force, f  , we have the 

following equation as suggested by Wei and Wang [17]: 

 

1 2(u, , , ). 0d    

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)15( 
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(20) 

 

the steepest descent method can be applied to satisfy Eq. (13) [12]: 
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0

0,
d

dt


    

 
)21( 

 

Thus, the optimization problem is transformed into an ordinary differential problem of 

initial value 0 . The simplest approach for solving the Eq. (21) is to use an explicit scheme. 

However, here the phase field method is combined with PCLS method as described in 

section 5. In proposed method the piecewise constant term is substituted by energy term in 

phase field method. Therefore the 
2

H constraint in Eq. (13) is omitted and there is no need 

to update 2  and 2  anymore. 

 

 

4. PHASE FIELD METHOD 
 

In this section the concepts of phase field method are discussed [15]. The phase field 

function (x)  is defined on whole analysis domain to represent the phase of all local points 

within the domain. From the physical aspect; the phase field alters the mean phase of local 

points. Consider a system composed of two phases,    and   The boundary of each phase 

is represented like a norm function which is extrapolated among different values. This term 

is called the diffuse interface. The free energy of Van Der Waals system is given by [15]: 

 

2 1( ) ( f( ))
2

F dx


   



  
 

)22( 

 

where 0   is a coefficient which checks influence of each term. The first term of Eq. 

(22) depicts the interaction energy of domain in main theory, and the second term depicts 

the double well potential with value of ( ) ( ) 0f f    . Double well potential implies the 

existence of lower values of free energy with minimum response to each phase. The time-

dependent evolutionary equations are introduced in the following. The variation of field 

phase function is assumed linearly dependent to the direction that the free energy function is 

minimized:  

 

( )
( )

F
M

t

  





 

  
)23( 

 

By replacing Eq. (22) in Eq. (23): 

 

2 1( )( f ( ))M
t


    

  
  

)24( 

 

Eq. (24) is known as Allen-Cahn Equation [15]. 
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4.1 Domain defined by phase field function 

Here the optimization domain, D, is divided into two phases, 0  and 1 , and the boundary 

between phases is denoted by   which is called diffuse interface region. The domain 

1 (x D | (x) 1)   is related to the optimal shape   and 0 (x D | (x) 0)   is related to

\D  .   is represented by an interpolation function between two phases. The domain of 

optimizer, D, includes all acceptable shapes of  . 

 

D  )25( 
 

Where: 

 

1( )  
 )26( 

0\ ( )D   
 

(27) 

 

Therefore the phase field domain function    is defined as follows: 

 

1

0

1

0 1

0
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
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

  


   
   

 )28( 

 

 
(b) The domain represented by phase field function 

 
(a) The main domain 

Figure 1. Phase field function domain [15] 

 
  is the domain that the changes are applied on it during optimization process. A 

number of partial differential equations define this domain. The D  boundary of   domain 

is divided into two boundaries, DD with Diritchlet boundary condition and ND with 

Neumann boundary conditions. The solid phase of 1  is depicted by martials of density 
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2c  and the hollow phase is depicted by the density of 1c  where for ( )  : 

 
2

1 2( ) ( 1) cc        )29( 

 

The main domain   is presented in the form of a union of 1 and . The location of 

  boundary is unknown unless when it is located on the . When  is small enough, the 

diffuse interface region become extensively thin and this approximates the representation of 

 .  

 
 

5. COMBINATION OF PIECEWISE CONSTANT LEVEL SET METHOD 

WITH PHASE FIELD METHOD 
 

Now consider the solution of Eq. (13). In order to increase the convergence rate and 

generation of smooth and thin boundaries, the energy term of phase field equation is 

combined with Eq. (13). The obtained equation is a partial second order differential equation 

from Allen-Cahn equation [15]. Several methods are proposed to solve this differential 

equation. In this paper, the finite element method is applied to solve this equation, which 

results in accurate solutions and better generation of boundaries. Now we can define the 

minimization problem of strain energy using the energy term stated in phase field: 
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By adding this term to the above equation 2H  is omitted form spiecewise constant term 

which results in significant increase of convergence rate. Here the Lagrange method is used 

to convert the constrained optimization problem to an unconstrained one. 
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To update the level set function    the following explicit form is used: 
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finally by substituting Eq. (35) in Eq. (36) the following equations are obtained: 
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6. SOLUTION OF DIFFERENTIAL EQUATION USING FEM 
 

Using FEM, the weak form of Eq. (38) can be written as follows: 
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where: 

 

 1( ) | (x) ( ) 1x H D with on      
 )40( 

 

Using FEM Eq. (39) can be rewritten as follows: 
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where N is the shape function and   controls the stability of results. The appropriate 

selection of   may result in suitable shapes. Four-node square elements of size1 1  are 

used. 

 

 

7. NUMERICAL EXAMPLES 
 

In this section some important issues about implementation of the proposed PCLS method 

with phase field method are discussed. These implementations are developed in order to 

improve the performance of the proposed method. The finite element analysis is based on 

‘ersatz material’ scheme [11], which fills the void areas with one weak material. All 

numerical examples have the following data: Young’s modulus of real material is assumed 1 

and ersatz material 
310
. This also means 2 1c   and 1 .001c  . Poisson’ ratio for two 

materials is assumed 0.3  and the thickness is 1t   . 

 

 
Figure 2: A cantilever beam 

 

7.1 The cantilever beam 1 

Fig. 2 shows the design domain of a cantilever beam. The boundary of the left side is fixed, 

and a vertical concentrated force 1F N   is loaded at the bottom of its right free side. The 

size of the design domain is 80 40  with a squared mesh of size 1 1  and the volume 



PEIECWISE CONSTANT LEVEL SET METHOD BASED FINITE ELEMENT ANALYSIS… 

 

399 

fraction is 50% . This example is solved by PCLS-PFM scheme. For this method the size of 

time step is 46   and the other parameters are considered as 1 5e   , 1 0.01  , 

1 700  . The difficult part is to find these parameters that can be chosen after testing 

different values for these parameters. Therefore, different values may lead to different 

optimal topologies. The evolution process of the optimal topology and the binary level set 

surface are shown in Fig. 3. Fig. 4 shows the convergence rate of the objective function and 

the volume ratio for the short cantilever beam. It can be seen that the compliance of the 

optimal solution is considerably better than that of the initial design and the compliance 

converges in a fast and stable way because of the present phase field method (PFM). The 

piecewise constant constraint is satisfied in each iteration and the PCLS takes the value 0 or 

1 everywhere in the design domain. Therefore, there is no overlap and vacuum between the 

subdomains of different phases. In the conventional PCLS this constraint can be applied 

with the penalization method or augmented Lagrangian method. The penalty method is more 

stable and can be used easily, but to satisfy the constraint exactly, one has to set it very 

small. However, this may cause the instability of the numerical process. By using the 

augmented Lagrangian method, we do not need to use a small value for penalty parameter 

but the iteration process is high at convergence. Thus, by coupling the PCLS and the PFM 

scheme, we can release this constraint. It should be noted there is no need to use the penalty 

method or the augmented Lagrangian method for this constraint. 
 

 

 
(a) Initial design 

 

 
(b) Step 10 



S. Shojaee, A. Mohaghegh and A. Haeri 

 

400 

 

 
(c) Step 15 

 

 
(d) Step 23 

 

 

(e) Final design 
Figure 3. The evolution process of optimal design and the level set function with Phase field 

method 
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Figure 4. The evolution process of the compliance and the volume ratio 

 

The evolution process of topology optimization is illustrated in Fig. 3. Fig. 4 depicts the 

history of convergence rate and the volume ratio for cantilever beam problem. The 

convergence rate and stability of strain energy verifies the efficiency of proposed method. 

Moreover, coupling phase field method with FEM results in smoother and thinner 

boundaries in comparison with other methods. The proposed method converges with fewer 

iterations comparing to AOS-MBO and MOS-MBO methods. 

 

7.2 The cantilever beam 2 

Fig. 5 shows the design domain of a cantilever beam. The boundary of the left side is fixed, 

and a vertical concentrated force 1F N  is loaded in the middle of its right free side. The 

size of design domain is  80 40  with a squared mesh of size 1 1  and the volume fraction 

is 50%  . This example is solved by PCLS-PFM scheme. 

 

 
Figure 5. A cantilever beam 
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(a) Initial design 

 

 
(b) Step 14 

 

 
(c) Step 18 
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(d) Step 21 

 

 
(e) Final design 

Figure 6. The evolution process of optimal design and the level set function with Phase field 

method 

 

  
Figure 7. The evolution process of the compliance and the volume ratio 

 
7.3 The Messerschmitt–Bölkow–Blom beam 
In the next example, we consider Messerschmitt–Bölkow–Blom (MBB) beam. The design 



S. Shojaee, A. Mohaghegh and A. Haeri 

 

404 

domain and the boundary condition of this type of structure are represented in Fig. 8. In this 

example the design domain is discretized with 30 120  squared elements of size 1 1  . The 

volume fraction of the solid material is 50% . To find the optimal topology of this example, 

we apply the PCLS-PFM Scheme. Fig. 9 displays the evolution of an optimal topology of 

the MBB beam.  

 

 
Figure 8. An MBB beam 

 

 

 
(b) Step 13 

 

 
(c) Step 16 
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(d) Step 27 

 

 
(e) Final design 

Figure 9. The evolution process of optimal design and the level set function with Phase field 

method 

 

  
Figure 10. The evolution process of the compliance and the volume ratio 
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8. CONCLUSIONS 
 

In this study the improvement of piecewise constant level set method is investigated. The 

piecewise constant constraint is used to prevent the overlap or vacuum between two phases. 

The penalization method or Lagrange multiplier method can be used to apply the piecewise 

constant constraint. The penalization method is a stable method and feasible to use, however 

for accurate satisfaction of this constraint a small penalty coefficient should be considered. 

This will lead to instability of numerical solution process. In augmented Lagrange method 

there is no need to use a small value, but the number of iterations will increase. In the 

proposed method by omitting the piecewise constant constraint and addition of energy term 

based on phase field the convergence rate is increased. Moreover inner and outer boundaries 

are formed smoother and thinner. The resulting diffusion equation is solved through FEM 

which results in accurate solutions and better shapes. 
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