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ABSTRACT 
 

Dynamic lot sizing problem is one of the significant problem in industrial units and it has 

been considered by many researchers. Considering the quantity discount in purchasing cost 

is one of the important and practical assumptions in the field of inventory control models 

and it has been less focused in terms of stochastic version of dynamic lot sizing problem. In 

this paper, stochastic dynamic lot sizing problem with considering the quantity discount is 

defined and formulated. Since the considered model is mixed integer non-linear 

programming, a piecewise linear approximation is also presented. In order to solve the 

mixed integer non-linear programming, a branch and bound algorithm are presented. Each 

node in the branch and bound algorithm is also MINLP which is solved based on dynamic 

programming framework. In each stage in this dynamic programming algorithm, there is a 

sub-problem which can be solved with lagrangian relaxation method. The numeric results 

found in this study indicate that the proposed algorithm solve the problem faster than the 

mathematical solution using the commercial software GAMS. Moreover, the proposed 

algorithm for the two discount levels are also compared with the approximate solution in 

mentioned software. The results indicate that our algorithm up to 12 periods not only can 

reach to the exact solution, it consumes less time in contrast to the approximate model. 
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1. INTRODUCTION 
 

One of the major and basic responsibilities in the industrial units is production planning and 
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inventory control. The issue of inventorying material and planning for high quality 

production with favorable volume at suitable time and reasonable price are of the major 

concerns of the managers. Economic order quantity models or lot sizing has been developed 

to achieve this goal. 

Economic order quantity determines how much and when a special product should be 

ordered so that the system costs, which often include holding, ordering and purchasing costs, 

are minimized [1]. "Dynamic lot sizing programming" refers to those issues where planning 

horizon is limited and discrete, or in better words, is assumed periodically and the demand is 

different from one period to another [1]. Many elements affect the variety of lot sizing 

models, and by definition, in the area of production planning and inventory control, different 

specifications and assumptions are considered for the model. Among these specifications 

type of demand, capacity constraints, the number of items, planning horizon and the 

purchase cost can be noted. 

Discount on good purchase has often been raised in deterministic issues. Callerman and 

Whybark [2] presented a Mixed-Integer Programming (MIP) model for ordering problem 

with quantity discount through which optimal ordering policy is obtained by binary decision 

variables. On the issue of determining deterministic lot sizing and considering discount, 

Chung et al. [3] proved that there is an optimal policy that order quantity between any two 

consecutive re-ordering points, except for that last order, is equal to one of the discount 

levels. Using this feature, an algorithm based on dynamic programming algorithm was 

presented that solve the problem more efficiently than Callerman and Whybark's algorithm. 

Mirmohammadi et al. [4] presented a branch and bound algorithm for determining the 

quantity of orders, in deterministic single item cases while considering discount that is more 

efficient in solving large-scale problems (many periods and high discount levels) compared 

to previous methods. Goossens et al. [5] demonstrated that there is no polynomial algorithm 

to solve multi item lot sizing problem considering total quantity discount. In other words, 

this problem known as TQD is in NP-hard class. 

There are two approaches to control unfilled demand in stochastic lot sizing models. 

Standard approach is introducing the penalty cost for backlogged sales in the objective 

function. In some cases, calculating this parameter, if not impossible, is too difficult that 

leads to the use of technical performance standards. The second approach is using service 

level constraints. The decision makers determine the level of satisfaction with these 

standards. In the literature of the issue, various performance standards are considered which 

the most important of them are α, β, γ service levels [6]. 

The first studies in the field of random demand and considering it in lot-sizing problems 

was carried out by Silver in 1978 [7]. Silver offered a heuristic three-stage method to 

determine lot-size with random demand. Bookbinder and Tan [8] modeled the stochastic lot 

sizing problem in a single-stage state with regard to α service level constraint. In order to 

control the randomness of demand over time, according to the conditions of inventory and 

production systems, three strategies have been identified: dynamic uncertainty strategy, 

static-dynamic uncertainty strategy, static uncertainty strategy. They showed that the 

mathematical structure of stochastic problem with α service level and static uncertainty 

strategy is the equivalent to a deterministic lot-size model and deterministic lot sizing 

problem solving methods can be used to solve the stochastic version. Vargas [9] presented 

an optimal algorithm for solving the stochastic un-capacitated lot sizing problem. This is 
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called as stochastic version of Wagner–Whitin problem. Sox in [10] dealt with optimal 

solving of stochastic dynamic lot sizing problem by considering non-stationary purchase 

cost. Tempelmeier [11] has reviewed the mathematical models of stochastic lot sizing 

problems and developed a model with static-dynamic strategy considering fill rate β in 

whose solution inventory on hand is used instead of net inventory. Vargas and Mitters [12] 

developed the heuristic PDLA algorithm to solve the stochastic single item un-capacitated 

lot sizing problem in single-stage state by considering penalty cost for unfilled demand in a 

rolling planning horizon. This algorithm is an extension of optimal algorithm of shortest 

path problem in static uncertainty strategy. 

Quantity discount has newly been studied in stochastic dynamic lot sizing models and 

few articles have been published in this regard. Hajji et al. studied the quantity discount in 

single-period model (the newsboy problem) in 2007 with the random initial inventory. For 

this problem, the optimum quantity of order is determined to maximize profit and the 

problem is rewritten with random demand and inventory variables in normal mode. In Kang 

and Lee [14], single item dynamic lot sizing problem with random demand by considering 

the total quantity discount in supplier selection field has been investigated, a heuristic 

method based on Dynamic Programming (HDP) has also been developed to solve the 

problem. 

The remainder of the paper has been organized as follows. In Section 2, the problem is 

defined and beside two mathematical non-linear models of the problem, a piecewise linear 

model of the problem is presented. Section 3 presents the solution approach of the problem 

which is based on decomposing the problem in four levels. In each level, a proper approach 

is applied to handle the sub-problem of the level. In Section 4 some test problems randomly 

generated are solved by two approaches to evaluate their efficiency relatively. Concluding 

remarks and results are appeared in Section 5. 

 

 

2. PROBLEM DEFFINITION AND FORMULATION 
 

In basic models of stochastic dynamic lot sizing problem, it is assumed that the unit price of 

the ordered items will not change by the quantity of each order. In this paper, a model is 

investigated in which unit item price depends on the quantity of each order. This means that 

retailers and product suppliers of commodity offer that if the order quantity x reaches a 

certain value q, they are willing to sell total value of x to a price lower than c to the buyer. 

At this point, the newly announced price includes the total value of order x. This price 

structure is called All-unit discount. This discount cost structure can be defined as non-

stationary for the case that the purchase price is non-stationary. In other words, discounts 

policy is different at any period compared with the others (both in term of price and discount 

levels). In this study, it is assumed that the number of discount levels K is the same for all 

periods, but without this assumption the presented model will still be valid. In the intended 

problem, the demand is considered for one item, and the time horizon is finite. Ordering cost 

in each period is considered only in case of ordering and resources are unlimited. Demand is 

assumed to be random and continuous. Shortage is allowed in form of backlogging and the 

amount of shortage is controlled as shortage penalty cost in the objective function. Demand 

is random and its density function is known and in any period is independent of other 
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periods. Shortage, holding and ordering costs can vary from one period to another. The goal 

is to minimize the expected cost of holding cost, shortage cost, ordering cost and purchase 

cost in total planning horizon. At the beginning of the planning horizon, time and amount of 

ordering is determined for the entire planning horizon. In this study, the issue Stochastic 

Single item Discounted Lot Sizing Problem is expressed as with the abbreviation SSDLSP. 

 

2.1. Mixed integer nonlinear modes 

In this section we formulated the problem in two different ways which lead to two different 

mixed integer nonlinear models. The following notation is used in the mathematical 

formulation of the problem:  

 

T Number of periods in planning horizen 

K  Number or discount level 

 

and for period t , Tt ,...,2,1 , 

 

tA  Ordering cost 
th  Holding cost  

t  Backorder penalty cost  

M  A sufficeintly large nublmer 

tD  Demand  

tx  Ordering quantity  

tX  Cumulative order quantity through periods 0 to t )(

1






t

j

jt xX  

tY  Cumulative demand through period0 to t ( 




t

j

jt DY

1

) 

)( tY yf
t

 p.d.f of tY  
)( tY yF

t
 c.d.f of tY  

)( tt XL  Total expected holding and penalty costs incurred at the end of period t 
ts  A binary variable which is 1 if an ordering occuredin period t, 0 otherwise 
tkq  The minimum acceptable quantity to deserve for discount level k in period t  

tkc  Unit Purchasing cost in period t and in discount level k 

tku  
A binary variable which is 1 if an order performed in period t in discount level k , 

0 otherwise 
 

The problem can be formulated as follows. 

 

)()(}{ 1

1





 tttttt

T

t

t XXcXLsAcEMin  (1) 
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s.t 

tt XX 1   , Tt ,...,1  (2) 

ttt sMXX  1   , Tt ,...,1  (3) 

 


K

k
tku

1
1

 
, Tt ,...,1  (4) 

 


K

k
ttktk ccu

1   
, Tt ,...,1  (5) 

)1()1( 1,1 tkkttt uMqXX     
, Tt ,...,1 , Kk ,...,1  (6) 

1, )1(  tttkkt XXuMq
  

, Tt ,...,1 ,  Kk ,...,1  (7) 

}1,0{, ttk su   , Tt ,...,1 , Kk ,...,1  (8) 

0, tt Xc   , 
Tt ,...,1

 (9) 

 

This model is an extension of Sox [10] model. Because of existence of quantity discount, 

in this model the unit purchase price in period t ( tc ) is considered as a decision variable and 

the expression of the equation (1) is considered as a non-linear expression. This equation 

represents the expected holding, shortage, ordering, and purchase costs in the total planning 

horizon. Constraint (2) states that the order amount in period t must at least be equal to 

cumulative order value in the previous period. Constraint (3) is presented to set correct 

amount to ordering variable ( ts ). In this equation, the value of ordering can only be greater 

than zero when ordering variable gets value one and its cost is considered in the objective 

function. Constraint (4) shows that the order quantity in each period belongs only to one of 

the levels. Constraint (5) specifies purchase cost in each period according to the level set for 

the order. Constraints (6) and (7) fulfil the quantity discount limits in ordering in each 

period. In these constraints, if an order is given at discount level k and in period t, the order 

quantity is limited between ktq ,  and 1, ktq .Otherwise, the constraint for period t and level 

discount k is relaxed using the large number M. Generally, 0
1
tq  and 1tkq  is 

assumed in the models and discounts. In the presented model,
 

)( tt XL  is as the total function 

of expected shortage and holding costs in accordance with [10] is defined as follows: 

 

(10) 











 



0])[(

0)()()(])[(
)(

tttt

tt
X

tttttt
tt

XifYEX

XifdyyfXyhYEXh
XL t




 

 

If the initial inventory is negative and until period t the amount of inventory has not 

become positive then tX  is negative. In this case, period t does not incur any holding cost 

while the shortage cost is equal to the shortage cost of the amount backlogged till period t 

])[( tt YEX  .  

Since the number of zero-one variables has an important effect on computational time, 

we try to increase the efficiency of the model via reducing the number of zero-one variables 

in the second model. Furthermore, the purchase cost in objective function has rewritten in 

linear form. 
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




K

k

tku

1

1

 

Tt ,...,1  (13) 

tktktk luq 
 

Tt ,...,1  Kk ,...,1  (14) 

tktktk uql )1( 1    
Tt ,...,1

 Kk ,...,1  (15) 

}1,0{tku
 

Tt ,...,1  Kk ,...,1  (16) 

0tX
  

Tt ,...,1  (17) 

0tkl
 

Tt ,...,1  Kk ,...,1  (18) 

 

In this model, ordering cost is determined based on the variable determining level of 

discount ( tku ), and variables ts , Tt ,...,1  are omitted from the model. In this model variable 

tkl  is the amount ordered in discount level k at period t. In constraint (12), the order size of 

period t is calculated via sum of tkl  on all discount levels. Constraint (13) forces ordering to 

be occurred at most from one of discount levels. Constraints (14) and (15) are set to 

determine the allowed limits of valuing to tkl .  

The first model is more representative than the second one because of simplicity but, in 

our experimental computations, we adopted the second model due to its time efficiency. 

 

2.2 Piecewise linear approximation model 

In the objective function of the previously presented models, the term )( tt XL  is nonlinear 

and makes the whole models nonlinear. To reach a solution with a controllable error, we 

estimate )( tt XL  by linear approximation and present a linear but approximate model. 

)( tt XL  can be written as follows: 

 

(19) ][][)(   tttttt IEIEhXL  

 

In equation (19), 
tI  is positive inventory at period t and 

tI
 
is negative inventory or 

backlog in period t, i.e.    ttt YXI and    ttt XYI . Therefore, we have 




 

t

t

X

Ytt yfXyIE )()(][  and  
t

t

X

Ytt yfyXIE

0

)()(][ . ][ 
tIE  is named the first order loss 

function and ][ 
tIE  as its the complementary function in the litrature and they can be written 

on tX  as follows. 

 

(20) )(][ 1
tYt XGIE

t
 
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(21) )(][ 1
tYttt XGXIE

t
  

 

In equations (20) and (21), )(1
tY XG

t
 is considered as nonlinear function for each period t, 

and for the particular case of normal distribution is defined as follows based on reference [15]: 
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In equation (22), tY  is the random variable of cumulative demand until period t with 

normal distribution with mean t  and standard deviation t  and )(z  is the cumulative 

distribution function of the standard normal distribution. 

Consider B  points on the tX - axis in period t named bte  , Bb ...,,1 , that is the value of 

tX  in bth point in period t. Approximation function with B linear pieces presenting total 

expected holding and shortage costs, is as follows (see [6]): 

 

(23) 

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
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
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
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In equation (23) the slope of each piece is defined as follows: 
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Figure 1. The piecewise approximation of average on-hand inventory 

 
0


tI

 and 0

tI  

are the average inventory and average shortage at the primary point te0 , 
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respectively. btw  is the decision variable defined as the cumulative order amount through 

the bth interval such that tbbtbt eew ,1 . Fig. 1 represent the linear approximation of ][ 
tIE  in 

which 10t and 10t . In this figure ][ 
tIE  has been approximated via 5 linear pieces 

(B=5). Since the expected functions are convex, the slopes b

I t
  and b

I t
  are increasing on b,

 

Bb ...,,1 . Therefore, due to the minimizing the objective function of the model, btw  become 

positive only when the previous variable, tbw ,1  reaches its maximum value, i.e. 

tbtbtb eew ,2,1,1   . Therefore, we can set bt

B

b

t wX 




1

 in the mathematical model without 

adding any axillary constraints. So piecewise linear approximation mathematical model of 

SSDLSP is as follows: 
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T

t

K

k

tktkbt

B

b

b

IItbt

B

b

b

IIt

K

k

tkt clwwhuAcEMin
tttt

1 11

0

1

0

1

])()([}{   (26) 

s.t.  

 
 







B

b

B

b

tbbt

K

k

tk wwl

1 1

1,

1  
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1
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


K

k

tku

  

Tt ,...,1  (28) 

tktktk luq 
 

Tt ,...,1  Kk ,...,1  (29) 

tktktk uql )1( 1    
Tt ,...,1  Kk ,...,1  (30) 

tbbtbt eew ,1
 

Tt ,...,1  Bb ,...,1  (31) 

}1,0{tku Tt ,...,1   Kk ,...,1  (32) 

0btw
 

Tt ,...,1  Bb ,...,1  (33) 

0tkl
 

Tt ,...,1 Kk ,...,1
 (34) 

 

 

3. SOLUTION APPROACH 
 

If Sox’s model [10] is considered as a base model with specific solution, the proposed model 

SSDLSP is more complex than the basic model in two ways. They are determining the 

optimal discount levels in each period (determining the optimal amount of variables tku ) and 

determining the optimal order quantity considering upper and lower limits of permitted 

ordering. Our strategy to solve the problem is based on decomposition techniques. In this 

paper, the problem SSDLSP is solved by branch and bound method. In each node of this 

algorithm a sub-problem called P1, is solved by dynamic programming approach. At each 

stage of this algorithm a sub-problem called P2 is raised which is solved by a branch and 

bound method. In each node of the second branch and bound algorithm, sub-problem P3 is 

solved by Lagrange relaxation method. In the remainder of this section, the solution 
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approach is presented at four levels. In the first level, sub-problem P1 is presented and 

branch and bound algorithm is described. In the second level, sub-problem P2 is defined and 

solution of the sub-problem P1 is presented. In the third level, the solution to sub-problem P2 

with the definition of P3 is discussed and at the last level, the solution to sub-problem P3 is 

described. 

 

3.1. First level 

In this section, we first define the sub-problem P1 and then the solution of the problem with 

branch and bound method is provided. 

 

3.1.1 Definition of sub-problem P1 

In this sub-problems, it is assumed that the discounting is permitted only for a set of periods, 

call D, and for other periods, call R, purchase price is fixed to cheapest case (highest 

discounts level) with no limit in ordering. Thus, the periods are considered in two sets R and 

D. The collection of these two sets includes the complete planning horizon. In other words, 

the constraints (4) to (8) are applied only for the periods of D. In each node of the branch 

and bound algorithm the discount level for each period of D is specified, i.e. the variable tku  

in period t, Dt , is 1 only for a specific discount level, say tm , and for other discount 

levels, tmk  , it is zero. Consequently, constraints (6) and (7) change into 

1,1 
  tmttt

t
tm qXXq .  

For simplicity in model P1, the allowed upper and lower limits for ordering in period t are 

shown by tu
 and tl , respectively. The unit purchase cost tc is defined as follows: 

 

(35) 









Rtc

Dtc
c

tK

tm
t

t 

 

The mathematical model of the sub-problem P1 is as follows: 

 

     1

1

P1
cEMin 



 ttt

T

t

tttt XXcXLsA  (36) 

s.t t1-tt uXX  Dt  (37) 

t1-tt lXX 
  

Dt  (38) 

t1-t XX 
 

Tt ,...,1  (39) 

t1-tt sXX M
 

Tt ,...,1  (40) 

 1,0ts  
Tt ,...,1  (41) 

0tX
 

Tt ,...,1  (42) 

 

In this model, the objective function is defined as in [10] and can be rewritten as follows: 
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(43)       ttt

T

t

tttt XccXLsA 1

1

P1
cEMin 



 

 

Property 1: If we set D as an empty set, the optimal solution of the problem P1 is a lower 

bound for the problem SSDLSP. 

Emptiness of set D means that the problem has no limits for ordering with regard to the 

discount policies. Thus, by reducing the number of constraints, the solution space will get 

greater. On the other hand, the best purchase price is considered for all periods. So the 

obtained solution will be the best possible solution for the expected total cost. 

Property 2: The optimal solution of sub-problem P1 is an upper bound for the problem 

SSDLSP. 
The discounted cost structure and related constraints are incorporated only for the periods 

of D and the purchase cost of other periods is set to the lowest case. Hence, it is obvious that 

in this circumstance the obtained solution is a lower bound for the more restricted general 

case of SSDLSP. 

The main benefit of applying a B&B algorithm for solving SSDLSP is that it enumerates 

all possible circumstances of variable tku , Tt ,...,1 , Kk ,...,1 , and solving the related sub-

problem. Therefore, the optimal solution to the problem SSDLSP is obtained by this 

approach. In a complete enumeration, there is K quantities for discount level in each period 

t, Tt ,...,1 . Hence, there are TK  possible quantities for tku variable. The presented B&B 

approach enumerate these cases implicitly.  

 

3.1.1 The first level branch and bound algorithm 

In this section, the steps of the branch and bound algorithm which breaks down SSDLSP to 

P1 are presented. 

To obtain an initial solution for the problem and use it as an lower bound from the 

beginning of the B&B algorithm at the initial level, it is assumed that there are no ordering 

constraints and the unit purchase price in all periods is the lowest possible value (maximum 

discount). The solution space with this assumption is much larger than the original problem 

and its objective function value is a lower bound for the problem. The problem with the 

mentioned assumption is in fact, the problem introduced by Sox [10]. 

In Branching step of the algorithm, a period is selected and it is inserted to set D. The 

strategy of selecting the period depends on the value of orders in the initial solution which is 

in the root node. In other words, the periods with positive ordering value in the initial 

solution are in priority of branching. More precisely, at the root node, a list of prioritizing 

with the mentioned criterion is determined for branching and branching happens according 

to this list for different periods. For each node, as a parent node, K nodes , as children node, 

are generated by adding the related constraints for each discount level k , Kk ,...,1 . More 

precisely, a period, say period t, is selected from the mentioned list and for each discount 

level k , Kk ,...,1 , K nodes in period t is generating such that in each node a sub problem P1 

with the upper and lower limit constraints , corresponding to the discount level k , is added 

for the ordering value on period t. Branching continues from the active node that has the best 
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lower bound. If two nodes with equal lower bound found, branching is done in the node that 

has more depth in the search tree. 
After obtaining lower bound of each node by solving P1, the values of ordering are 

calculated with their related prices I accordance with the discount cost structure to satisfy the 

discount level constraints of that period. In this way, an upper bound is obtained for the 

problem. 

In this algorithm, nodes are fathomed with the following rules: 
1. If the upper and lower bounds are equal in a node, it means that the resulting solution is 

feasible and branching will not better the answer 

2. If the lower bound of a node is greater than the best so far upper bound.  

It should be noted that if the node is at the lowest level of the tree, the first rule is true about 

it and the node is fathomed. 

At the end of the algorithm, all nodes are fathomed and the node with the lowest 

objective function whose is upper and lower limits are equal is the optimal solution. 

 

3.2. Second level 

To be an optimal algorithm, the B&B algorithm must solve the sub problem P1 in each node 

optimally. For this purpose, a dynamic programming algorithm is applied that in each stage 

a sub-problem, named P2, is raised. 

 

3.2.1 Definition of sub problem P2 (s, t) 

Consider a sub problem P1 raised in a node of B&B algorithm. Solving this sub problem by 

our dynamic programming approach lead to be raised a sub problem ),(2 tsP  in each stage 

of the DP algorithm. In ),(2 tsP  the goal is to find the minimum expected cost of holding, 

ordering, purchasing and shortage from period s to the end of period t, assuming that the 

ordering occurs only in the period s and if there are any discount constraints, in the period 
1t  

to mt  
with following conditions: 

1. Period s and t+1 are two periods of sub problem P1 which do not have any ordering 

constraint. (i.e. Rts 1, ) 

2. },...{ 1 mttM   ( stm  ) is the set of all the periods between s and t that have constraints in 

ordering. ( DMttttts mm   ,1,..., 110 ) 

Mathematical model of sub problem ),(2 tsP  is as follows: 

 

)(

0

1,

1
1 iiiii t

m

i

ttt

m

i

tsst XgsAAPMin 







  (44) 

s.t 
iiii tttt suXX  1  

mi ,...,1  (45) 

iii ttt lXX  1  
mi ,...,1  (46) 

}1,0{
it

s
 

mi ,...,1  (47) 

0
it

X
 

mi ,...,0  (48) 

 

In equation (44), function )(, iji Xg
 
expresses the expected total holding, shortage and 
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purchase costs from period i to the end of period j when cumulative order from period i to 

the end of period j is equal to the fixed amount iX . So )(, iji Xg is as follows. 

 

(49) 
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In addition, total ordering cost is equal to the sum of ordering cost in period s and if any, 

the ordering costs in 1t  and mt . Equation (45) is a combination of the two constraints (37), 

(40) and states that in the middle periods, if there is an order, its amount should not exceed 

the upper limit of related discount level value of that period. It is notable that for the periods 

that lower limit of discount level for them (
it

l ) is greater than zero, the related variable 
it

s  

will be one. Thus, that part of ordering cost which is variable is only considered for a subset 

of MDz   whose lower permissible limit of the discount level for them is zero since for 

periods whose ordering amount are located on the first discount level we have 0
it

l . Base 

on what is stated above, we can rewrite the objective function of the model as equation (50). 

 

(50) )(
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3.2.2 Dynamic programming algorithm 

In this section, a forward dynamic programming is presented which solves the sub problem 

P1 and in each its stage a sub problem ),(2 tsP  must be solved. As mentioned earlier, a sub-

problem ),(2 tsP  determines the optimal ordering policy from period s to the end of period t 

named by opt
stX . In fact, opt

stX  is a vector of optimal orders amount from period s to period t, 

i.e. ),,...,( **
1

*
tss

opt
st XXXX  , which minimizes the expected total cost during mentioned periods 

under the mentioned assumption for sub problem ),(2 tsP . Let the minimum expected cost, 

mentioned above, is denoted by )( opt
st

opt
st XP  and suppose wt , Ww ,,...1 , be the periods of set R 

where we have 1
wt

s . In this case, the objective function of the sub problem can be 

rewritten as the sum of several objective functions of the sub-problem ),(2 tsP : 

 

(51) 








W

w

opt
ttttp
wwww

XPcE

1

1,1, )(}{
111

 

 

In equation (51) )(
1,1,

11

opt

tttt
wwww

XP



shows the optimal value of objective function of sub-

problem P2 from period wt  to period 11 wt , when the optimal order quantity is equal to 
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opt

tt ww
X

1, 1
. In this equation 11  Ttw . This equation indicates that sub problem P1 is separable 

to sub problems )1,( 12 ww ttP . 

The proposed dynamic programming algorithm has the following elements: 

Stage: calculation of the minimum cost to period t ( Rt ). 

State: Period s ( Rs ) as the last ordering period before the period t. 

Recursive relationship: stf is the minimum cost associated with the ordering policy 

form period s to t when the last order is occurred among the periods of R in period s and next 

order in this set occurs at period 1t , we have  

 

(52) )}()1(:{min)( 1,1,
,

sXsXfXPf opt
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opt
sksk

Rksk

opt
ststst  


 

 

If  }|{ 1,1,
opt
st

opt
sk

opt
sk XXX

 
then stf . This situation means that in the optimal policy 

there is no policy by which it is possible to reach s, and then go to 1t , because this path 

violates Constraint (39). 

The pseudo code for the proposed algorithm is as follows 

For t = 0,…,T and Rt 1  
For s = 0,…t and Rs  
Solve ),(2 tsP and compute 

opt

stX and )( opt

stst XP  

If s = 0 , 0MIN  
Else 

If   )}()1(:,|{ 1, sXsXRkskk opt
st

opt
sk , MIN  

Else  

)}()1(:{min 1,1,
,

sXsXfMIN opt
st

opt
sksk

Rksk
 

  
MINXPf opt

ststst  )(  

Tt   

While 1t  

if }{min
,

kt
Rktk

jt ff


 js   

for j = s,…t, )( jXX opt
stj   

)1(  st  

 

3.3 Third level 

If the optimal values of binary ordering variables are determined in sub problem ),(2 tsP , 

then the problem will become a non-linear non-integer programming that convex 

optimization methods can be used for optimal solving of the model. 

 

3.3.1 Definition of sub problem P3 

As previously mentioned, the collection zD  is a series of periods between s and t where the 

lower limit of order is zero. So in these periods ordering may be issued or not. A sub-
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problem P3 is the same as sub-problem P2 where it is decided beforehand for ordering in the 

periods relating to set zD . In this case; periods of zD  are divided into three categories. The 

first set is AD  where the cost of ordering for its member periods is determined accordance 

with the terms defined in the sub-problem P2 and considered in the objective function of the 

problem (whether there is an order in those periods or not), in other words 1
it

s  . The 

second set is BD  where the cost of ordering for its periods is considered as zero, and the 

order is considered free in those periods. In other words )(0 Bit Dts
i

 . The third set is CD

that is assumed not to perform any orders in those periods, in other words )(0 ciit
Dts  . 

Community of these three sets composes zD  set. 

Then for ease in model 3P  the cost tA  is defined as follows: 

 

(53) 
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With this division for periods of zD  the sub problem P2 changes into a problem where 

there are no zero-one variables of ordering. Moreover, ordering occurs only in the period s 

and in the periods of the series },...{ 1 nttN  . This collection is a subset of M where ordering 

variable for all its periods in the model P2 is equal to one ( 1
it

s ). In other words, the period 

of CD set has been removed from the collection of 1t to mt  ( CDMN  ). 

Mathematical programming model of the problem 3P is as follows: 

 

)(1,
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1 iii ttt
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tst XgAPRMin 
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s.t 
iii ttt uXX  1 ni ,...,1  (55) 

iii ttt lXX  1  
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it

X
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In this model, periods are assumed as follows: ),...,,1,...,( 1110 Nttttttts nnn    

Property 3: In P3, if all periods of zD
 are placed in set BD  , the optimal solution for sub 

problem P3 would be a lower bound for sub problem ),(2 tsP . 

Property 4: From any optimal solution of the sub problem P3, it is possible to reach an 

upper bound for the sub problem 2P  by modifying the order costs with regard to the solution 

obtained. 

Property 5: By complete enumeration of different values of variable
it

s  ( zi Dt  ) and 

solving the related sub problems, the optimal solution of P2 will be determined. 

 

3.3.2 The third level branch and bound algorithm 

In this section, in an algorithm similar to the mentioned branch and bound algorithm, a tree 
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search based on the branch and bound approach is presented by which the 
it

s 's are 

determined are determined in sub problem 2P  and optimal value of ordering are obtained. 

The initial solution for the root node of the branch and bound algorithm is considered as 

follows. In 2P , variable
it

s has appeared as a complicating variable. If we assume that in 

each period, one can freely order and there is no charge for ordering, then the lower bound 

of the problem is specified. Therefore, at the root node, ordering cost will be considered for 

none of the periods of ZD  and all the periods of ZD  are placed in BD . 

At the branching step of the algorithm, parent node is branched for a period from among 

the periods of ZD . This branching generates two child nodes for a parent node where in one 

the ordering cost is incurred and ordering is occurred in the mentioned period (the 

mentioned period is placed in AD ) and the other one, the ordering cost is set to zero and no 

ordering is occurred in the mentioned period. (the mentioned period is placed in CD ). 

The strategy of node selection for branching is as follows. In this algorithm, among the 

active nodes, the node with the best lower bound is selected for branching. If two nodes have 

equal lower bounds, branching is done on the node with larger depth in the search tree.  

In this algorithm, nodes are fathomed with the following fathoming rules:  

If the upper and lower bounds are equal in a node, it means that the resulting solution is 

feasible and branching would not lead to better solution. 

If the lower bound of a node is greater than the upper bound obtained so far. 

If for all periods of ZD  the decision of ordering is determined. It means the node is 

inactive and no further branching is needed.  

The optimal solution of the sub problem will be obtained at the end of the algorithm. 

Among the fathomed nodes, the node with the lowest objective function whose upper and 

lower limits are equal is the optimal solution. 

 

3.4 Fourth level 
The Lagrange relaxation method is used in cases whereby relaxing a number of constraints 

of the problem leads to a more simple problem. In sub problem 3P , if the permissible lower 

and upper limits of the order in equation (55) and (56) are relaxed, then the solution of the 

relaxed problem can easily be obtained by derivative of the objective function. In this 

section, the Lagrange relaxation method (LR) is presented to solving the sub problem 3P  in 

three main steps. 

 

3.4.1 Step 1: Solving the relaxed version of 3P (RPP) 

The Lagrange relaxed version of the sub problem 3P can be stated as follows: 
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Lagrange multipliers associated with the upper and lower limits of the ordering 

constraints are 
iut  and

 ilt , respectively. We assume that 0
1100


 nn utltltut  . 

Therefore, for each period like it , there are three variable 
it

X , 
ilt
 
and iut . The objective 

function of RPP can be rewritten as follows. 
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where  
itit

Xf
 
is defined as follows. 
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Thus, the relaxed version of the sub problem 3P is an unconstrained non-linear 

mathematical programming where its objective function is concave. Hence, its optimal 

solution can easily be obtained by derivative. The partial derivative of the objective function 

relative to 
it

X  variable is as follows. 

 

(63) 
       

111

1 1

))(1)((














iiiiii

i

i

ij

i

i
ltuttltutt

t

tj

tyjjj
t

tst
ccXFhh

X

XRPP
  

 

To find the roots of this function a combination of bisection method and false position 

iteration methods are used. 

 

3.4.2 Step 2: Updating the Lagrange multipliers 

The main step in Lagrange relaxation is updating Lagrange multipliers for which in the 

related literature, various methods have been developed. In these methods, the goal is to 

maximize the dual problem of the original relaxed model via changing some coefficients of 

Lagrange multiplier which subsequently leads to minimize original problem the original 

variables. One of the main and general methods of updating Lagrange multipliers is using 

sub-gradient method. For the sub-problem of 3P , Lagrange multipliers are updated as 

follows: 
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(66) 
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In these equations )(
1

)()( 
 ttut XXG  and )(

1
)()( 

 tttlt XXlG . Usually, in the 

literature we found that 2)0(   and for better convergence )(  is reduced during iterations 

of the algorithm. bestUB  is the best upper bound obtained from the primary problem 3P that 

are obtained in a heuristic way by making the solution feasible from the relaxed problem by 

changing order amount to meet the feasible limits values of constraints. )(
stRPP  is the value 

of the objective function of the relaxed problem in vth step. 

 

3.4.3 Step 3: Stopping criteria  

At this step, the predetermined convergence criteria are check to ensure that the obtained 

solution is sufficiently close to the optimal solution to stop algorithm. Following criteria are 

the main conditions stated in the literature. 

If the difference of the best lower bound ( bestRPP ) with the best upper bound ( bestUB ) in 

the algorithm is less than an error  , the algorithm is terminated and the solution is reported 

as  -optimal solution. 

If the number of occurrences is greater than a specified limit, the algorithm will stop. 

If the vector of Lagrange multipliers are sufficiently close in the last iterations 

(     )()1()1( ), the algorithm will stop. 

Overall Lagrange algorithm descried in this section is summarized in form of following 

pseudo code.  

Step 0: Initialization. 

Set 1 , 

Initialize dual variables   )(  

Set 



 )1(

down  

Step 1: Solution of the relaxed primal problem. 

Solve the relaxed primal problem and obtain optimal value of )(x  and its associated 

objective function )(  

Update the lower bound for the objective function of the primal problem, 

If )()1(   


down  set )()(   down  
 

Step 2: Multiplier updating. 

Update multipliers using sub-gradient method. If possible, update also the objective 

function upper bound. 

Step 3: Convergence checking. 

If the stopping criterion is met, the  -optimal solution is *)( xx   and stop. Otherwise set 

1  and go to Step 1. 
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4. COMPUTATIONAL EXPERIENCE 
 

Numerical experiments were carried out with the programming the proposed algorithm in C 

# in Microsoft Visual Studio 2010. The results of solving the test problems are analyzed for 

evaluating the performance of the algorithm. Also the results are compared with the results 

obtained with the results obtained from solving the mixed-integer nonlinear model of 

SSDLSP and mixed-integer linear approximation model which have been run in in 

commercial optimization software GAMS. This comparison is performed based on 

computational time and accuracy of solution by solving a set of random problems. Among 

solver in GAMS only solvers BONMIN, KNITRO, ALPHAECP and LINDOGLOBAL are 

available for MINLP models in which the first-order normal loss function is definable. The 

only one of them which is able to announce the optimal solution on a small scale is 

LINDOGLOBAL. Other solvers, even if they have reached the global optimum solution, 

report it as a local optimal solution. So the basis of comparison of solution methods is to 

solve the problem in GAMS with the solver LINDOGLOBAL. This solver can also be used 

in LINGO software.  

 

4.1 Experimental design 

In generating test problems, each of the input data is a controlling factor. Among these 

factors, the impact of two factors T and K are of more importance than other factors in 

solving the problem. Other inputs have been adjusted experimentally and they have fixed 

through all test problems. Ordering, holding, and shortage costs and initial inventory have 

been set in accordance with reference [10]. The expected value of demand, )( tdE , for each 

period is determined randomly. The standard deviation of demand for each period is 

assumed as )(*2.0)( tt dEd   like what has been done by [10]. Therefore, the expected value 

and standard deviation of cumulative demand till period t, is equal to 




t

j

jt dE

1

)(  and 






t

j

jt d

1

2 )( , respectively. The first level unit price of the unit purchasing price in 

discounted cost structure in each period ( 1tc ) is determined randomly as shown in Table 1. 

Also, Table 1 shows the adjusted values of other input parameters which have been 

randomly generated. 

 
Table 1: Adjusted values of the input parameters 

tA  th  t  0I  )( tdE  1tc  Parameters 

48 0.5 12 98 [20,120] [0,8] adjusted value 

 

In setting the discount policy parameters, two factors are have great importance 

generating test problems. The first one is k , the proportion of discount level to the average 

demand by which the minimum ordering amount in kth level in the tth period, tkq , is 
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determined i.e. tktkq  . . The second important parameter is γ, the interest rate of discount, 

which is an indicator to measure the purchase cost saving based on which the purchase cost 

is obtained with the equation 1).1( tktk cc  . 

These two factors, similar to the Mirmohammadi et al. [4], have been set in deterministic 

the lot sizing problem with quantity discount. Their value have been listed in Table 2 for 

five discount levels. 

 
Table 2: Adjusted value of parameters for discounting policy 

5 4 3 2 K 

5 4 3 2 k  

0.125 0.1 0.075 0.05 k  

 

To consider the cases for more than two random parameters t and 1tc , random generation 

of data for each problem with T & K is repeated five times and the time to solve problems is 

obtained from the average of five problems. 

 

4.2. Analysis of test results 

The average time to solve the problems are recorded from the implementation of the 

program on the machine with specs Intel (R) core (TM) i7-2600 CPU@3.40 GHz and they 

have listed in Table 3. In this table, the mean of LG is the solver LINDOGLOBAL and B&B 

refers to the proposed Branch and bound algorithm. Rt shows the average computational 

time for every five test problems solved with various values of T and K in seconds. As 

shown in Table 3, LG solver is unable to solve problems with more than 9 periods in the 

specified time limit. N shows the number of instances of problems (from five instances) 

which are solved optimally in a time less than 7200 seconds. 

 
Table 3: Run time comparison of B&B and LG 

LG B&B  Num 

       4        3        2 4 3 2 K  

N Rt N Rt N Rt Rt Rt Rt T  

5 4.978 5 3.793 5 3.178 0.319 0.298 0.118 3 1 

5 13.813 5 9.783 5 7.972 0.599 0.375 0.290 4 2 

5 43.965 5 36.115 5 33.860 0.698 0.698 0.417 5 3 

4 260 5 203 5 203 1.895 0.694 0.520 6 4 

3 4049 5 1368 5 956 3.712 1.358 0.608 7 5 

0 7200 1 7081 3 6194 3.710 2.846 0.939 9 6 

0 7200 0 7200 0 7200 7.969 2.556 1.412 10 7 

0 7200 0 7200 0 7200 8.996 5.201 2.432 11 8 

 

Fig. 2 shows the computational time of B&B in comparison with solver LG with two 

discount levels. As it is shown in this figure, the computational time of the B&B algorithm 

is drastically less than the what is obtained from solver LG. This solver is not able to 
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announce the optimal solution in 9 and 10 periods in a time less than 7200 sec.. This is while 

the longest computational time of the proposed algorithm is for the case in which K=2 and 

T=2 with time 2.432 seconds. This indicates the high performance of proposed algorithms. 

 

 
Figure 2. Run time comparison of the solver B&B and LG with two discount level 

 
Since in Fig. 2 changing the values relatively is not tangible, the bottom part of this graph 

is magnified in Fig. 3. 
 

 
Figure 3. Partial magnified of Figure 1 

 

Two levels discount problem has more practical aspect than other variant of this problem. 

Then the behavior of the proposed algorithm for two levels of discounts up to 30 periods is 

compared. One of the main issues in the analysis of the behavior of nonlinear algorithms is 

comparing them with their linear approximation version. In this respect, the approximation 

model of the problem was encoded in GAMS software by considering 1000 approximation 

points in each shortage function in the objective function. The computational results are 

shown in Table 4. In this table, Rt is the average run time for all five instances. APP stands 

for linear approximation model that runs on GAMS software. E means the relative error of 

solution of approximation model to B & B algorithm. Num shows the problem number. 
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Table 4: Run time comparison of B&B and APP 

Num T B&B Rt APP Rt E 

1 4 0.26 0.495 1.1 

2 6 0.556 1.016 1.43 

3 8 0.736 1.513 0.82 

4 10 1.385 2.147 0.88 

5 12 2.232 2.918 0.99 

6 14 3.833 3.768 0.83 

7 16 7.882 4.794 1.36 

8 18 17.801 5.936 1.29 

9 20 25.24 7.175 1.17 

10 22 30.629 10.1 1.2 

11 24 31.279 10.905 1 

12 26 69.001 13.521 1.44 

13 28 71.811 14.43 1.34 

14 30 281.79 15.42 1.4 

 

As shown in Fig. 4, the B&B algorithm gets the optimal solution faster than the 

approximate model (APP). From this point of intersection of the curves in Fig. 4, the priority 

of user should be specified, if the accuracy of the solution has higher priority, the proposed 

B&B algorithm should be applied, and if the solution time is important, ignoring the relative 

error, the approximation model is better. 

 

 
Figure 4. Run time comparison of B&B and APP 

 

 

5. RESULTS AND CONCLUSIONS 
 

Adding the assumption of possibility of discount in material purchasing to the Sox’s model 

[10] and deffining the stochastic single item lot sizing problem under quantity discount in 

purchasing (SSDLSP) make the problem much more complex from two points of view. 

Adding several binary variables to the model is the first aspect and the second one is the 

extra constraints added to the base model. Thus, although the base model has been solved 
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with a dynamic programming algorithm, the developed model of the algorithm has a more 

complex solution approach. The proposed solution approach is presented at four levels based 

on a branch and bound algorithm hybridized with a dynamic programming algorithm to 

obtain the optimal solution of the problem. This approach can be used for any arbitrary 

distribution of demand, and is faster than LINDOGLOBAL solver in GAMS. Furthermore, 

to have a more precise evaluation of the presented algorithm in large scale problems, we 

presented the linear approximate model of the model and we compared the presented 

algorithm with it. The presented algorithm solves the problem with 30 periods (T=30) 

optimally in a reasonable time, but, slower than approximate model. The approximate model 

performs more efficient than B&B algorithm but with a bit of error to the optimal solution. 

In our experiments, the maximum error of the approximate model is 1.44 percent which 

seems tolerable regarding the speed of this approach. 

In this paper we contained the shortage of product by charging the shortage cost to the 

objective function of the problem. Since evaluating the shortage cost parameters may be 

hard in practice, handling the shortage of products via defining the proper customer service 

level may me more practical and it is left as a future development of the current work. 
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