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ABSTRACT

During an earthquake, significant damage can result due to instability of the soil in the area
affected by internal seismic waves. A liquefaction-induced lateral ground displacement has
been a very damaging type of ground failure during past strong earthquakes. In this study,
neuro-fuzzy group method of data handling (NF-GMDH) is utilized for assessment of lateral
displacement in both ground slope and free face conditions. The NF-GMDH approach is
improved using gravitational search algorithm (GSA). Estimation of the lateral ground
displacements requires characterization of the field conditions, principally seismological,
topographical and geotechnical parameters. The comprehensive database was used for
development of the model obtained from different earthquakes. Contributions of the
variables influencing the lateral ground displacement are evaluated through a sensitivity
analysis. Performance of the NF-GMDH-GSA models are compared with those obtained
from gene-expression programming (GEP) approach, and empirical equations in terms of
error indicators parameters and the advantages of the proposed models over the conventional
method are discussed. The results showed that the models presented in this research may
serve as reliable tools to predict lateral ground displacement. It is clear that a precise
correlation is easier to be used in the routine geotechnical projects compared with the field
measurement techniques.
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1. INTRODUCTION

Liquefaction is known as one of the major causes of ground failure due to earthquake.
Assessment of liquefaction potential and determination of liquefaction induced lateral
spreading are complex geotechnical engineering problems and have attracted considerable
attention of geotechnical researchers in the past three decades [1].

During strong earthquakes (1964 Niigata, 1964 Alaska, 1971 San Fernando, 1983
Nihonkai Chubu, 1989 Loma Prieta, 1990 Luzon, 1995 Hyogoken-Nambu, 1999 Izmit, etc.),
liquefaction-induced lateral spreads caused heavy and tremendous damages to civil
engineering structures and facilities such as buried pipeline networks, pile foundations and
quay walls.

Due to a large number of factors, the determination of liquefaction-induced lateral
displacement is a complex geotechnical engineering problem. Several methods have been
developed to predict lateral ground displacements using analytical [2], laboratory [3, 4], and
finite element methods [5]. However, these methods have not been able to estimate lateral
ground displacements caused by liquefaction with a good accuracy.

Assessment of liquefaction potential and determination of liquefaction induced lateral
ground displacements have been considered by many researchers [1, 6, 7, and 8]. Empirical
models based on case histories have remained the more popular methods [8, 9, 10, 11, 12,
13, and 14]. For assessment of liquefaction induced lateral ground displacements, empirical
correlations and multi-linear regression models were introduced [15]. With eight major
earthquakes database, which happened between 1906 and 1987 in the Japan and U.S.A., and
using multiple linear regression analyses (MLR), three regression equations were developed
for free-face, ground slope, and combination of these two models [6]. On a different note,
Zhang et al. introduced a “Lateral Displacement Index (LDI)” calculated by integration of
maximum shear strain over potentially liquefiable layers based on empirical correlation on a
cumulative shear strain model, and then used it in a couple of simple correlations for free-
face and sloping ground cases [16]. In other researches, a different cumulative strain model
used to arrive at LDI [17, 18].

The progress of advanced computational methods for problems analysis has necessitated
the accurate determination and estimation of lateral ground displacement. In recent years,
new aspects of modeling, optimization, and problem solving have been evolved in light of
the pervasive development in computational software and hardware. These aspects of
software engineering are referred to as soft computing based methods such as artificial
intelligence, which is a powerful tool for multivariate and nonlinear modeling. In case of
complicated problems, experimentalists prefer these trial approaches rather than analytical
optimization. A large number of researchers applied artificial intelligence (Al) models in
various fields of geotechnical engineering such as stress-strain modeling of soil [19], slope
stability [20], shallow foundations [21], and liquefaction [22].

In the past years, the GMDH networks provided successful evaluations in various field of
geotechnical engineering sciences such as prediction of the scour depth around hydraulic
structures and estimation of the S;-Nspr correlation [23]. Application of the GMDH networks
yielded relatively precise estimations than those obtained using empirical equations based on
regressive models. The main concern of the GMDH network is to present analytical solutions
for various problems within a feed forward network in the form of quadratic polynomial
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whose weighting coefficients are obtained using regression method [23].

Structure of the GMDH network has been improved based on multi-stage fuzzy decision
rule as neuro-fuzzy GMDH to obtain physical insights of problems with high degree of
complexity. The NF-GMDH networks have been successfully applied to the different
problems such as grinding characteristics, forecasting the unreliable mobile communication,
prediction of longitudinal dispersion in water networks, prediction of discharge flow in
compound channels, local scour depth at group pier under waves and current flow, and
maximum scour depth at downstream of sluice gates and grade-control structures. The
neuro-fuzzy GMDH has higher flexibility and lower complexity compared to the GMDH
network. The other advantages of the NF-GMDH models were presented in literatures [24].

In cases of practical contributions, the NF-GMDH model in the field of geotechnical
engineering has not been applied yet. In this study, a computer program is coded for the NF-
GMDH network with MATLAB. Also, the GSA model is applied in topology design of the
NF-GMDH model for prediction of the lateral ground spread. Results of the proposed NF-
GMDH-GSA are compared with those obtained using the best formulation of the gene-
expression programming (GEP) model. The performance of the proposed NF-GMDH-GSA
is also evaluated with empirical equations based on regression models. The results showed
that the GMDH models are able to learn, with a very high accuracy, the complex
relationship between lateral ground displacement and its contributing factors; and generalize
the learning to provide, predictions for new cases that are not used in the construction of the
model, however the new contribution dictates that a precise correlation can be an easier
method to be used in the routine geotechnical projects in comparison with the field
measurement techniques.

2. INFLUENTIAL PARAMETERS AND DATABASE DEVELOPMENT

A thorough understanding of the factors affecting lateral ground displacement is needed in
order to obtain accurate lateral displacement estimations. Based on previous researches [e.g.,
25 and 26], the most important factors that affect the lateral ground displacement due to
liquefaction can be categorized as moment magnitude of the earthquake (M), the nearest
distance to the seismic energy source (R), the cumulative thickness of saturated granular
layers with corrected blow counts of SPT less than 15 (Tis), the average fines content for
granular materials included within Ti5 (Fis), the average mean size of granular materials
within T,5 (D50;5), the ground slope (S) and the free-face ratio (W). In this research the same
factors are presented for the NF-GMDH-GSA and GEP models as input variables. Lateral
ground displacement (Dy,) is the single output variable.

A wide-range database was compiled from previously different earthquakes (1906 San
Francisco, 1964 Anchorage, 1964 Niigata, 1971 San Fernando, 1979 Imperial Valley, 1983
Nihonkai-Chubu, 1983 Borah Peak, 1987 Superstition Hills, 1989 Loma Prieta, and 1995
Hyogo-Ken Nanbu).

It is common practice to divide the available data into two subsets; a training set to
construct the soft computing model, and an independent validation set to estimate the
performance of the trained model. In this study 80% of the data set was used for training and
20% for validation of the model. The data division process was performed so that the main
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statistical parameters of the training and testing subsets (i.e., maximum, minimum, mean,
and standard deviation) become close to each other. For this purpose, a trial selection
procedure was carried out and the most possible consistent division was determined [27].

The case histories involving the lateral displacement towards a free face and those
corresponding to gently sloping ground, have been analyzed separately. The lateral ground
displacement database includes 426 case histories gathered from the literature. In the
collected database, 219 cases are related to sloping ground condition and the 207 cases
involve free face ground. Descriptive statistics of these two groups variables used in the
model development for both sloping ground and free face conditions are presented in Table
1 and Table 2, respectively.

3. DESCRIPTIONS OF THE NF-GMDH MODEL

The GMDH network is a learning machine based on the principle of heuristic self-
organizing. Also, it is a series of operations of seeding, rearing, crossbreeding, selection and
rejection of seeds correspond to the determination of the input variables, and structure and
parameters of model, and selection of model by principle of termination. The other
descriptions of the GMDH network were presented in literatures [28].

In this research a neuro-fuzzy GMDH model based on PSO algorithm has been proposed
for the lateral ground spread prediction. The structure of neuro-fuzzy GMDH is constructed
automatically using heuristic self-organized algorithm. The neuro-fuzzy GMDH network is
a very flexible algorithm, and it can be hybridized easily by other iterative and evolutionary
algorithms. Furthermore, a simplified fuzzy reasoning rule is utilized to improve the GMDH
network as follows [29]:

Table 1: Descriptive statistical analysis of parameters used for development of free face model
Statistical

subset Inputs Output
parameters
M R w Tis Fis D50;5 Dy
(km) (%) (m) (%) (mm) (m)
Max. Training 9.2 100 56.8 16 70 1.98 10.16
Validation 9.2 95 41.38 16.7 47 1.98 8.39
Min. Training 6.4 0.5 1.64 0.2 1 0.04 0.01
Validation 6.4 0.5 2.27 0.5 3 0.07 0.01
Mean Training 7.17 17.38 11.31 8.2 18.13 0.37 2.61
Validation 7.27 21.13 10.83 9.02 16.78 0.33 2.1
S.D. Training 0.55 15.5 9.38 4.87 13.92 0.44 2.36

Validation 0.53 19.1 8.45 4.86 11.94 0.33 1.95
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Table 2: Descriptive statistical analysis of parameters used for development of sloping ground

model
Statistical subset Inputs Output
parameters

M R W Tis Fis D505 Dy

(km) (%) (m) (%) (mm) (m)

Max. Training 9.2 100 11 19.7 59 10 3.36
Validation 7.7 65 11 11.6 68 12 3.55

Min. Training 6.4 0.2 0.05 0.01 0 0.06 0.01
Validation 6.4 0.2 0.21 0.7 0 0.06 0.01

Mean Training 7.55 2491 0.92 6.63 9 0.38 1.92
Validation 7.43 21.69 1.54 5.95 11.66 0.7 1.77

S.D. Training 0.33 13.1 1.2 3.94 10.41 0.74 1.03
Validation 0.34 10.35 2.68 3.95 15.16 1.84 1.01

If xis F, andX, isF,,, then, output of y isw, .Gaussian membership function is used
in term of F;which is related to the kth fuzzy rules in the domain of the jth input values x;:

Fg (%) = exp(=(x; _akj)zlbkj) 1)

which a,; and b,; are constant values for each rules. Also, the y parameter is defined as
output that is expressed as follows:

U W, )
1

u, =1I1; Ry (x;) (3)

y:

K
k=

which, w, is a real value for kth fuzzy rules [31].

The NF-GMDH model is one of the adaptive learning networks that have hierarchical
structure. In this model, each neuron has two input variables and one output. General
configuration of the neuro-fuzzy GMDH with two fuzzy rules for each partial description
(PD) is presented in Fig. 1.

Through Fig. 1, output of each neuron in a layer is considered as the input variable in the
next layer. The final output is calculated using the average of the outputs from the last layer.
Fig. 1 indicates that the inputs from the mth model and pth layer are the output variables of
the (m-1)th and mth model in the (p-1)th layer. The mathematical function for calculating

yP" is:

K
Y= F(YPEIE YR = D W (@)
k=1
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Figure 1. General structure of the NF-GMDH

which, ™ and w™are the kth Gaussian function and its corresponding weight parameter,

respectively, and are related to the mth model in the pth layer. In addition, a/""and b/™are

the Gaussian parameters that are utilized for the ith input variable from the mth model and
pth layer. Also, the final output is expressed using the following function:

. (y**"-aff)? (yP"-al] 2}
ﬂ pm _ eXp — P ! — - ! (5)
‘ { by by
1M
y= M Z y’ (6)
m=1

Neuro-fuzzy GMDH network is known as an iterative method to solve the complicated
systems. In iteration, the error parameter for the network can be obtained as follows:

1, . 9
E=§(y -Y) (7

which, y~is the predicted value.

4. DEVELOPMENT OF THE NEURO-FUZZY GMDH MODEL USING GSA

In this section, the NF-GMDH model is developed using GSA approach. The basic structure
of NF-GMDH is consisted of partial descriptions (neurons). As mentioned in previous
section, the grouped parameters in the form of Gaussian variables and weights related to the
fuzzy rule are unknown in each partial description (PD). GSA algorithm has been applied to
optimized grouped-unknown parameters in PDs.

Recently, a novel heuristic search algorithm which is called gravitational search
algorithm (GSA) has been proposed motivated by gravitational law and laws of motion.
Application of the GSA model indicated efficient performance for different optimization
problems such as filter modeling, identification of hydraulic turbine governing system, scour
process at group piles under waves, [30, and 31].

In GSA, a set of agents called masses are introduced to find the optimum solution by
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simulation of Newtonian laws of gravity and motion [25]. To describe the GSA consider a
system with S masses in which the position of the i mass is defined as follows:

X, =, x0 0 x") L i=12,..,8 (8)

where, x¢ is the position of i" mass in the d" dimension and n is dimension of the search

space. The mass of each agent is calculated after computing current population's fitness as
follows:

fit, (t) —worst(t)

%)= best (t) — worst(t) ®
M. (t) = AVN -
Zq i(®)

where, M;(t) and fit;(t) represent the mass and the fitness value of the agent i at t, and,
worst(t) and best(t) are defined as follows (for a minimization problem):

worst(t) = Jrer{laé} fit, (t) (11)

best(t) = jerpl’lps} fit; (t) (12)

To compute the acceleration of an agent, total forces from a set of heavier masses should

be considered based on gravity law (Eg. 13). Also, it is followed by calculation of agent
acceleration using motion law (Eq. 14).

9 (1) = MEOMI® gy o
R (t)_,-ekbezs;,-rinde(t) R0 +c CHORRAO)) (13)
F'(t) M;(t)
.(t)—M() Jekéfind Gt)—1—— R0 +0 (x (1) —x’ (t)) (14)

Afterward, the next velocity of an agent is calculated as a fraction of its current velocity
added to its acceleration (Eq. 15). Then, its position could be calculated using Eq. (16).

v (t+1) =rand, x Vv’ (t) +a’ (t) (15)
x4 (t+1) = x4 (t) + Vv (t+2) (16)

where, rand; and rand; are two uniform random in the interval [0, 1], ¢ is a small value,
and R;(t) is the Euclidian distance between two agents i and J that were defined as
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Rij (t) :‘
biggest mass. kbest is a function of time, initialized to K, at the beginning and decreasing
with time. Here, K, is set to s (total number of agents) and is decreased linearly to 1. In

GSA, the gravitational constant,G will take an initial value of Gy, and it will be reduced by
time:

xi(t),xj(t)Hz. kbest is the set of first K agents with the best fitness value and

G(t) = G(G, 1) 17)

In present study, Eq. (28) used for the gravitational constant:

ot (18)
G(t)=G,e T

Performing the NF-GMDH and GSA models is a parallel action in each PD. Also, two
fuzzy rules were used to model the neuro-fuzzy in each PD.

The value of the control parameters of the GSA algorithm such asa ,G,, number of

agents, and maximum number are presented in Table 3. In case of free space status, the NF-
GMDH-GSA network is modeled with three layers, 45 PDs, and 90 fuzzy rules generated
through an optimization process. In addition, for ground status, the proposed NF-GMDH-
GSA model has three layers with 30 PDs and 60 fuzzy rules.

Through modeling the NF-GMDH-GSA model for the lateral spread in free face, 45
partial descriptions (PDs) are produced in the first layer. Then, the second layer is generated
using 45 PDs from the first layer. This process could be continued until minimum error of
training network is obtained. In conclusion, the NF-GMDH-GSA network is modeled with
three layers, 45 PDs, and 90 fuzzy rules generated through an optimization process. In
addition, for sloping ground, the proposed NF-GMDH-GSA model has three layers with 30
PDs and 60 fuzzy rules. Table 3 demonstrates the values of the GSA properties for
predicting the lateral displacements in both conditions.

Table 3: Values of controlling parameters for GSA model

Parameter Range
Alpha 20
Go 100
Number of Variables 6
Maximum lteration 100
Error 0.00001
Number of Agents 50
Weighting Coefficients 0.1-15

Furthermore, three of partial descriptions (PDs) generated in the first layer of the
proposed NF-GMDH-GSA networks are expressed as follows:
For free face conditions:


http://en.wikipedia.org/wiki/Gravitational_constant
http://en.wikipedia.org/wiki/Gravitational_constant
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(M -0.617° (R—0.617)2]+0 32exp[—(M -142° (R-142°
0.918 0.918 ' 0.383 0.383
R-0.3186) —0.3186)°
§=0.8188exp[—( 9" W 9 1+
0.2255 0.2255
oL (R-1.0749° W —1.074)2]
0.27 0.27

(D)} = 0_30989Xp[_(w -1.0474° (T —1.0474)2]+

n’s 1.0364 1.0364
0.4731exp[ W -1.157)* (T, —1.157)2]

1.082 1.082

] (19)

(D,)i = 0.282exp[-

(Dn)
(20)

0.3536ex

(21)

And, for sloping ground:

[_ (R —0.265)2 3 (S _0.265)2 ] .
0.968 0.968
[_ (R —0.577)2 3 (S _0.577)2]
0.816 0.816
— 2 _ 2
(D,,); =0.5417exp[- (5-0.60789° (T,5—0.6079 1+
0.3966 0.3966
(S _0596)2 3 (T15 _0596)2]
0.618 0.618
— 2 _ 2
(D)} =0.562expl- {1 =048 _ (Fis—0.548",
0548 0.548
0.896exp[— (T15 — 08573)2 _ (F15 _08573)2]
0.3399 0.3399

(D,); = 0.149exp
(22)
0.7711exp

(23)
0.2644exp[-

(24)

The superscript and subscript of each parameter present the number of pertaining layer
and partial description, respectively.

5. DEVELOPMENT OF THE GENE-EXPRESSION PROGRAMMING

Most recently a new technique called gene-expression programming (GEP) was developed
which is an extension of the GP approach. The GEP is a search model that evolves computer
programming in the forms of mathematical expressions, decision trees, and logical
expressions [32, 33, 34, and 35]. In addition, the GEP model has attracted the attention of
investigators in prediction of characterizations in hydraulic problems. This research
represents GEP models for evaluation of scour hole geometry at downstream of stilling
basins. The GEP approach is coded in the forms of linear chromosomes, which are
expressed into Expression Trees (ETSs).

In fact, the ETs are sophisticated computer programming which are usually evolved to
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solve a practical problem, and are selected accordingly to their fitness at solving that
problem. The corresponding empirical expressions can be obtained from these trees
structures. A population of the ETs will discover traits, and therefore will adapt to the
particular problem they are employed to solve [32, 33, 34, and 35].

Development of the GEP approach includes five steps. The first step is the selection of
the fitness function, f;, of an individual program (i). This item is evaluated as follows:

]

t

fi =2 (M ~-|Can-Ti) (25)

—
Il
i

which, M C;; , and T; are the selection range, value returned by the individual

chromosome i for fitness case j, and the largest value for fitness case j.

In second stage, the set of terminals T and the set of function F are selected to generate
the chromosomes. In this research, for free space conditions, the terminal includes six
independent parameters in the form of T (Dy) =S, M, R, D501, F15, and T;s and T (Dy) = W,
M, R, D50;5, Fi5, and Ti5 also is considered for sloping ground status. To find the
appropriate function set, it is necessary to peer review previous investigations made on
liquefaction-induced lateral ground displacements in this area. In this way, four basic
operators (+, -, *, /) and basic mathematical functions (Y, power, sin, cos, exp) are applied to
lateral displacements modeling. The third step is to configure the chromosomal architecture.
The fourth step is selection of liking function. Finally, for the fifth stage, the sets of genetic
operators and their rates are selected. The other details related to the architecture of the GEP
modeling are expressed in the literature [32]. In this study, lateral ground displacements are
predicted using the GEP model for different conditions of the free space and the sloping
ground. The best explicit form of the GEP approach for lateral ground displacements in the
free face and the ground sloping conditions are given as follows, respectively:

D, —15.31- 2,183 Dsuas* CoS(R)
h sin(S)+ R+ Fs

+0.003615;,,,5% —0.9099D;,,

(26)
—0.908%c0s(Fc)—1.82(S + Fy) + 0.020875F Fis~TigM
(S+Fs)
2
D, =0.6815+ 0.0001367—(N1'T15) 11 1,32(\’\’——R7r152
Dso1sFis (W +M )M o

+ 0.000778‘{M T J%)(Tls ~M +M?)+ 0.048{T1§., +%)(Sin(M )-1)

Furthermore, the functional set and the operational parameters applied in the proposed
GEP models are presented in Table 4.
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Table 4: Functional set and the operational parameters used for proposed GEP models

Value Parameters
Population size 100
Number of generations 500
Tournament size 5
Max. gene 4
Max. tree depth 4
Operators and Functions (\/, +, -, *, [, power, sin, cos, exp)
6. RESULTS

The results of the NF-GMDH-GSA networks and GEP models are presented in this section.
In this way, correlation coefficient (R), mean absolute percentage of error (MAPE), root
mean square error (RMSE), BIAS, and scatter index (SI) are defined to evaluate error
indicators in the training and validation stages according to the following equations:

Zé\il[yi(Actual) - Y(Actual)] [Yi(model) - Y(model)]

S - " - 28)
\/Zi=1[Yi(Actual) - Y(Act:ual)]2 -Zi=1[Yi(model) - Y(model)]z
1 XM v -Y;
MAPE = — [Zl—ll l(nl\}]odel) l(Actual)l x 100] (29)
M Zi:l Yi(Actual)
M 2
RMSE = {Zi=1[Yi(model) - Yi(Actual)] }1/2 (30)
Bias — zM [Yi(model) ;4Yi(Actual)] (31)
i=1
SI = RMSE (32)
(1/M) 211\/1 Yi(Actual)

where Yimodery IS the predicted values (network output), Yiacway IS the observed values
(target), and M is the total of events.

Numerous runs were performed with various initial settings and the performance of the
developed model was analyzed for each run. Consequently, the best model selected
according to statistical criteria such as R, MAPE, RMSE, Bias, and SI. In addition, a
comprehensive parametric study was performed to monitor the behavior of each model
versus variations of input variables. The Proposed NF-GMDH-GSA model that selected as
the most appropriate model, was constituted by six input parameters (M, R, W or S, Tss, Fs,
D5015) and one output (Dy).

Precision of the proposed model examined by comparison of the actual and NF-GMDH-
GSA predicted values of lateral displacements (Dy,) for the free face (Figs. 2 and 3) and the
sloping ground (Figs. 4 and 5) conditions. For the free face cases, the values of R, MAPE,
RMSE, Bias, and Sl are equal to 0.951, 0.483, 0.672, 0.302, and 0.242, respectively, for
training set (Fig. 2) and 0.939, 0.587, 0.814, 0.331, and 0.257, respectively, for validation
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set (Fig. 3). Also for the sloping ground cases, the values of R, MAPE, RMSE, Bias, and Sl
are equal to 0.940, 0.357, 0.409, 0.319, and 0.361, respectively, for training set (Fig. 4) and

0.927, 0.396, 0.469, 0.344, and 0.377, respectively, for validation set (Fig. 5).
The results shown in Figs. 2-5 indicate reasonable good performance of NF-GMDH-

GSA model for assessment of the lateral displacement for both free face and sloping ground

cases.
Figs. 6 and 7 illustrate the precision of the proposed GEP model of free face (R= 0.653,
MAPE=1.014, RMSE=1.483, Bias=0.856, SI=1.198) and sloping ground (R=0.614,
MAPE=1.110, RMSE=1.582, Bias=1.268, SI=1.657) conditions, respectively. These figures
are plotted for all data.

The results indicate that NF-GMDH-GSA model obtains the better performance than the
GEP model in prediction of liquefaction induced lateral displacements (Dy). This can be
inferred from the performance parameters presented in Table 5, showing the values of
statistical parameters of NF-GMDH-GSA and GEP models for training, validation, and all
datasets. In fact, the evolved NF-GMDH-GSA model has obtained enough accuracy for both

testing and validation sets.
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7. MODEL ACCURACY

Presentation of the model accuracy is relied on the NF-GMDH-GSA model because of high
precision of this model in comparison with the GEP model. For all element tests data, values
of relative errors for free face and sloping ground conditions are shown in Figs. 8 and 9,
respectively. Relative error is the difference between the actual and predicted Dy. It is
observed that the developed NF-GMDH-GSA models can predict the lateral displacements
(Dn) with reasonable accuracy because the relative error is satisfactorily less than 1m for
majority of data in both the free face and the sloping ground conditions.

Table 5: Target error parameters of proposed NF-GMDH-GSA and GEP models

Performance

e NF-GMDH-GSA based model GEP based model

g Free face Sloping ground Free face Sloping ground

@

8 g & £ 2 & £ 2 & == 2 & =

{58 © © 55

2 g = = § =2 = § = = & =2 =

w = N < = N < = N < = g <

R 0951 0939 0944 0940 0927 0931 0.667 0.6379 0.653 0.623 0.601 0.614
MAPE 0483 0587 0533 0357 039% 0374 085 1157 1014 0981 1307 111
RMSE 0672 0.814 0.772 0409 0469 0428 1325 1512 1483 1424 1816 1.582

Bias 0302 0331 0312 0319 0344 0330 0821 0902 0.856 1209 1413 1.268
Sl 0.242 0257 0249 0361 0377 0368 1.154 1312 1.198 1558 1.813 1.657

8. COMPARISON BETWEEN NEW RESULTS AND PREVIOUS STUDIES

Predictions of some previously published empirical relationships for evaluation of
liquefaction induced lateral ground displacements are compared with what is found in this
study. Table 6 presents the models. Due to the complexities exist in the liquefaction induced
lateral ground displacement phenomenon, the aforementioned constitutive models as well as
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simplified analytical methods have failed to capture the full effect, and thus empirical
models based on case histories have remained as a popular method in the past decades. [8,
11, and 15].

In present research, the empirical correlations and multi-linear regression (MLR) models
for estimation of lateral ground displacements (Dy) are introduced. Table 7 presents the
values of R, MAPE, RMSE, Bias, and Sl for proposed neuro-fuzzy group method of data
handling (NF-GMDH) gravitational search algorithm (GSA) models, and the values
estimated by empirical relationships (Table 6) for lateral displacements (Dy,) for free face
and the sloping ground conditions. The results indicate higher precision of proposed NF-
GMDH-GSA model with respect to the previously published empirical equations. However,
the developed NF-GMDH model proposed can be an applicable and more reliable tool for
predicting liquefaction induced lateral ground displacement.

Table 6: Empirical relationships for estimation of the lateral ground displacement

Condition Equation Proposer
Log D, = —20.71 + 25.32LogM — 1.39Log (10089564 R
— 0.009R + 1.15LogW + 0.19T;50.5 — 0.02F5 Kanibir [15]

— 0.84Log(D50,5 + 0.1mm)

Log D, = —16.713 + 1.532M — 1.406Log (10©8°M=564) 4 R)
—0.012R + 0.592LogW + 0.540LogT;5 Youd et al. [8]
+3.413Log (100 — F;5) — 0.795Log (D505
+ 0.1mm)

Log (D, +0.01) = —17.372 + 1.248M — 0.923LogR — 0.014R
+0.685LogW + 0.3LogT;s + 4.826Log(100 — F;5)  Bardetetal. [11]
—1.091D50,5

Log D, = —7.52 + 8.44LogM + 0.001(10(08°M=564) 4 R) — 0.23R Kanibir [15]
+0.11S + 0.6LogTy5 — 0.22F;5 — 0.89LogD50;5

Log D, = —16.213 + 1.532M — 1.406Log (10©8°M-564) 4 R)
— 0.012R + 0.338LogS + 0.540LogT; Youd et al. [8]
+3.413Log (100 — F;5) — 0.795Log (D50,
+ 0.1mm)

Log (D, +0.01) = —14.152 + 0.988M — 1.049LogR — 0.011R
+ 0.318LogS + 0.619LogT;s + 4.287Log (100 Bardet et al. [11]
— F;5) — 0.705D50,¢
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values of Dy, — free face cases
Table 7: Comparison between statistical parameters for NF-GMDH model and previous models

Model Performance
Free face Sloping ground
R MQP R'I\E/IS Bias SI R MéP R'I\E/IS Bias Sl

NF-GMDH-GSA
based model (present  0.944 0.533 0.772 0.312 0.249 0.931 0.374 0.428 0.330 0.368

study)

Kanibir [15] 0.825 0.600 0.654 0.517 0.331 0.792 0514 0612 0.682 0.511
Youd et al. [8] 0.889 2335 3.061 0.602 0.296 0.719 1.728 1915 0.745 0.630

Bardet et al. [11] 0.835 0.832 1257 0532 0.327 0.758 0.509 0.667 0.739 0.548
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Figure 9. Variation of absolute relative error between actual and NF-GMDH-GSA predicted
values of Dy, — sloping ground cases

9. CONCLUSIONS

Determination of liquefaction induced lateral ground spreading is a complex geotechnical
engineering problem. A robust neuro-fuzzy group method of data handling (NF-GMDH)
based on gravitational search algorithm (GSA) and gene-expression programming (GEP)
models are developed for prediction of liquefaction induced lateral ground displacement
using a large data. A wide-range database of case histories consisting of 426 data of
liquefaction-induced lateral displacement for the free face and the sloping ground conditions
obtained from ten earthquakes, and were compiled and analyzed. Based on data analysis and
the previous researches, the following results are made:

1. the most important factors that affect the lateral ground displacement during
liquefaction are categorized as seismological (M, R), topographical (S, W), and geotechnical
(T1s, F15, D5015) parameters.

2. It was shown that for both free face and sloping ground cases, the NF-GMDH-GSA
models are able to learn with a very high accuracy,

A. For free face conditions, R= 0.944, MAPE=0.533, RMSE=0.772, Bias=0.312,

S1=0.249, and displacements were from 0.01 to 10.16 m.

B. For sloping ground conditions, R= 0.931, MAPE=0.374, RMSE=0.428,

Bias=0.330, SI=0.368, and displacements were from 0.01 to 3.36 m.
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It is clearly observed that the NF-GMDH-GSA model yields a much better

performance than GEP models and the previous equations.

4. The results of present study confirm higher precision of proposed model in comparison

with previous models. This accuracy shows the superiority of the proposed NF-GMDH-
GSA models over available relationships and models in literature.

5. It is clear that a precise correlation is easier to be used in routine geotechnical projects

compared with the field measurement techniques.
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