
 

INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING  

Int. J. Optim. Civil Eng., 2016; 6(3):385-403 

 
 

 

AN OPTIMIZED NEURO-FUZZY GROUP METHOD OF DATA 

HANDLING SYSTEM BASED ON GRAVITATIONAL SEARCH 

ALGORITHM FOR EVALUATION OF LATERAL GROUND 

DISPLACEMENTS 
 
 

M. Goharriz and S.M. Marandi*, † 
Department of Civil Engineering, Shahid Bahonar University of kerman, Kerman, Iran 

 

ABSTRACT 
 

During an earthquake, significant damage can result due to instability of the soil in the area 

affected by internal seismic waves. A liquefaction-induced lateral ground displacement has 

been a very damaging type of ground failure during past strong earthquakes. In this study, 

neuro-fuzzy group method of data handling (NF-GMDH) is utilized for assessment of lateral 

displacement in both ground slope and free face conditions. The NF-GMDH approach is 

improved using gravitational search algorithm (GSA). Estimation of the lateral ground 

displacements requires characterization of the field conditions, principally seismological, 

topographical and geotechnical parameters. The comprehensive database was used for 

development of the model obtained from different earthquakes. Contributions of the 

variables influencing the lateral ground displacement are evaluated through a sensitivity 

analysis. Performance of the NF-GMDH-GSA models are compared with those obtained 

from gene-expression programming (GEP) approach, and empirical equations in terms of 

error indicators parameters and the advantages of the proposed models over the conventional 

method are discussed. The results showed that the models presented in this research may 

serve as reliable tools to predict lateral ground displacement. It is clear that a precise 

correlation is easier to be used in the routine geotechnical projects compared with the field 

measurement techniques. 
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1. INTRODUCTION 
 

Liquefaction is known as one of the major causes of ground failure due to earthquake. 

Assessment of liquefaction potential and determination of liquefaction induced lateral 

spreading are complex geotechnical engineering problems and have attracted considerable 

attention of geotechnical researchers in the past three decades [1]. 

During strong earthquakes (1964 Niigata, 1964 Alaska, 1971 San Fernando, 1983 

Nihonkai Chubu, 1989 Loma Prieta, 1990 Luzon, 1995 Hyogoken-Nambu, 1999 Izmit, etc.), 

liquefaction-induced lateral spreads caused heavy and tremendous damages to civil 

engineering structures and facilities such as buried pipeline networks, pile foundations and 

quay walls. 

Due to a large number of factors, the determination of liquefaction-induced lateral 

displacement is a complex geotechnical engineering problem. Several methods have been 

developed to predict lateral ground displacements using analytical [2], laboratory [3, 4], and 

finite element methods [5]. However, these methods have not been able to estimate lateral 

ground displacements caused by liquefaction with a good accuracy. 

Assessment of liquefaction potential and determination of liquefaction induced lateral 

ground displacements have been considered by many researchers [1, 6, 7, and 8]. Empirical 

models based on case histories have remained the more popular methods [8, 9, 10, 11, 12, 

13, and 14]. For assessment of liquefaction induced lateral ground displacements, empirical 

correlations and multi-linear regression models were introduced [15]. With eight major 

earthquakes database, which happened between 1906 and 1987 in the Japan and U.S.A., and 

using multiple linear regression analyses (MLR), three regression equations were developed 

for free-face, ground slope, and combination of these two models [6]. On a different note, 

Zhang et al. introduced a “Lateral Displacement Index (LDI)” calculated by integration of 

maximum shear strain over potentially liquefiable layers based on empirical correlation on a 

cumulative shear strain model, and then used it in a couple of simple correlations for free-

face and sloping ground cases [16]. In other researches, a different cumulative strain model 

used to arrive at LDI [17, 18]. 

The progress of advanced computational methods for problems analysis has necessitated 

the accurate determination and estimation of lateral ground displacement. In recent years, 

new aspects of modeling, optimization, and problem solving have been evolved in light of 

the pervasive development in computational software and hardware. These aspects of 

software engineering are referred to as soft computing based methods such as artificial 

intelligence, which is a powerful tool for multivariate and nonlinear modeling. In case of 

complicated problems, experimentalists prefer these trial approaches rather than analytical 

optimization. A large number of researchers applied artificial intelligence (AI) models in 

various fields of geotechnical engineering such as stress-strain modeling of soil [19], slope 

stability [20], shallow foundations [21], and liquefaction [22].  

In the past years, the GMDH networks provided successful evaluations in various field of 

geotechnical engineering sciences such as prediction of the scour depth around hydraulic 

structures and estimation of the Su-NSPT correlation [23]. Application of the GMDH networks 

yielded relatively precise estimations than those obtained using empirical equations based on 

regressive models. The main concern of the GMDH network is to present analytical solutions 

for various problems within a feed forward network in the form of quadratic polynomial 
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whose weighting coefficients are obtained using regression method [23].  

Structure of the GMDH network has been improved based on multi-stage fuzzy decision 

rule as neuro-fuzzy GMDH to obtain physical insights of problems with high degree of 

complexity. The NF-GMDH networks have been successfully applied to the different 

problems such as grinding characteristics, forecasting the unreliable mobile communication, 

prediction of longitudinal dispersion in water networks, prediction of discharge flow in 

compound channels, local scour depth at group pier under waves and current flow, and 

maximum scour depth at downstream of sluice gates and grade-control structures. The 

neuro-fuzzy GMDH has higher flexibility and lower complexity compared to the GMDH 

network. The other advantages of the NF-GMDH models were presented in literatures [24]. 

In cases of practical contributions, the NF-GMDH model in the field of geotechnical 

engineering has not been applied yet. In this study, a computer program is coded for the NF-

GMDH network with MATLAB. Also, the GSA model is applied in topology design of the 

NF-GMDH model for prediction of the lateral ground spread. Results of the proposed NF-

GMDH-GSA are compared with those obtained using the best formulation of the gene-

expression programming (GEP) model. The performance of the proposed NF-GMDH-GSA 

is also evaluated with empirical equations based on regression models. The results showed 

that the GMDH models are able to learn, with a very high accuracy, the complex 

relationship between lateral ground displacement and its contributing factors; and generalize 

the learning to provide, predictions for new cases that are not used in the construction of the 

model, however the new contribution dictates that a precise correlation can be an easier 

method to be used in the routine geotechnical projects in comparison with the field 

measurement techniques. 

 

 

2. INFLUENTIAL PARAMETERS AND DATABASE DEVELOPMENT 

 

A thorough understanding of the factors affecting lateral ground displacement is needed in 

order to obtain accurate lateral displacement estimations. Based on previous researches [e.g., 

25 and 26], the most important factors that affect the lateral ground displacement due to 

liquefaction can be categorized as moment magnitude of the earthquake (M), the nearest 

distance to the seismic energy source (R), the cumulative thickness of saturated granular 

layers with corrected blow counts of SPT less than 15 (T15), the average fines content for 

granular materials included within T15 (F15), the average mean size of granular materials 

within T15 (D5015), the ground slope (S) and the free-face ratio (W). In this research the same 

factors are presented for the NF-GMDH-GSA and GEP models as input variables. Lateral 

ground displacement (Dh) is the single output variable. 

A wide-range database was compiled from previously different earthquakes (1906 San 

Francisco, 1964 Anchorage, 1964 Niigata, 1971 San Fernando, 1979 Imperial Valley, 1983 

Nihonkai-Chubu, 1983 Borah Peak, 1987 Superstition Hills, 1989 Loma Prieta, and 1995 

Hyogo-Ken Nanbu). 

It is common practice to divide the available data into two subsets; a training set to 

construct the soft computing model, and an independent validation set to estimate the 

performance of the trained model. In this study 80% of the data set was used for training and 

20% for validation of the model. The data division process was performed so that the main 
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statistical parameters of the training and testing subsets (i.e., maximum, minimum, mean, 

and standard deviation) become close to each other. For this purpose, a trial selection 

procedure was carried out and the most possible consistent division was determined [27]. 

The case histories involving the lateral displacement towards a free face and those 

corresponding to gently sloping ground, have been analyzed separately. The lateral ground 

displacement database includes 426 case histories gathered from the literature. In the 

collected database, 219 cases are related to sloping ground condition and the 207 cases 

involve free face ground. Descriptive statistics of these two groups variables used in the 

model development for both sloping ground and free face conditions are presented in Table 

1 and Table 2, respectively. 

 

 

3. DESCRIPTIONS OF THE NF-GMDH MODEL 
 

The GMDH network is a learning machine based on the principle of heuristic self-

organizing. Also, it is a series of operations of seeding, rearing, crossbreeding, selection and 

rejection of seeds correspond to the determination of the input variables, and structure and 

parameters of model, and selection of model by principle of termination. The other 

descriptions of the GMDH network were presented in literatures [28]. 

In this research a neuro-fuzzy GMDH model based on PSO algorithm has been proposed 

for the lateral ground spread prediction. The structure of neuro-fuzzy GMDH is constructed 

automatically using heuristic self-organized algorithm. The neuro-fuzzy GMDH network is 

a very flexible algorithm, and it can be hybridized easily by other iterative and evolutionary 

algorithms. Furthermore, a simplified fuzzy reasoning rule is utilized to improve the GMDH 

network as follows [29]: 

 
Table 1: Descriptive statistical analysis of parameters used for development of free face model 

Output Inputs subset 
Statistical 

parameters 

Dh 

(m) 

D5015 

(mm) 

F15 

(%) 

T15 

(m) 

W 

(%) 

R 

(km) 
M  

10.16 1.98 70 16 56.8 100 9.2 Training Max. 

8.39 1.98 47 16.7 41.38 95 9.2 Validation  

0.01 0.04 1 0.2 1.64 0.5 6.4 Training Min. 

0.01 0.07 3 0.5 2.27 0.5 6.4 Validation  

2.61 0.37 18.13 8.2 11.31 17.38 7.17 Training Mean 

2.1 0.33 16.78 9.02 10.83 21.13 7.27 Validation  

2.36 0.44 13.92 4.87 9.38 15.5 0.55 Training S.D. 

1.95 0.33 11.94 4.86 8.45 19.1 0.53 Validation  
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Table 2: Descriptive statistical analysis of parameters used for development of sloping ground 

model 

Output Inputs subset 
Statistical 

parameters 

Dh 

(m) 

D5015 

(mm) 

F15 

(%) 

T15 

(m) 

W 

(%) 

R 

(km) 
M   

3.36 10 59 19.7 11 100 9.2 Training Max. 

3.55 12 68 11.6 11 65 7.7 Validation  

0.01 0.06 0 0.01 0.05 0.2 6.4 Training Min. 

0.01 0.06 0 0.7 0.21 0.2 6.4 Validation  

1.92 0.38 9 6.63 0.92 24.91 7.55 Training Mean 

1.77 0.7 11.66 5.95 1.54 21.69 7.43 Validation  

1.03 0.74 10.41 3.94 1.2 13.1 0.33 Training S.D. 

1.01 1.84 15.16 3.95 2.68 10.35 0.34 Validation  

 

If 1x is 1kF  and 2x  is 2kF , then, output of y  is kw .Gaussian membership function is used 

in term of kjF which is related to the kth fuzzy rules in the domain of the jth input values jx : 

 

)/)(exp()( 2

kjkjjjkj baxxF   (1) 

 

which kja  and kjb  are constant values for each rules. Also, the y  parameter is defined as 

output that is expressed as follows: 

 


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)( jkjjk xFu   (3) 

 

which, kw  is a real value for kth fuzzy rules [31]. 

The NF-GMDH model is one of the adaptive learning networks that have hierarchical 

structure. In this model, each neuron has two input variables and one output. General 

configuration of the neuro-fuzzy GMDH with two fuzzy rules for each partial description 

(PD) is presented in Fig. 1.  

Through Fig. 1, output of each neuron in a layer is considered as the input variable in the 

next layer. The final output is calculated using the average of the outputs from the last layer. 

Fig. 1 indicates that the inputs from the mth model and pth layer are the output variables of 

the (m-1)th and mth model in the (p-1)th layer. The mathematical function for calculating 
pmy  is: 
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Figure 1. General structure of the NF-GMDH 

 

which, pm

k  and pm

kw are the kth Gaussian function and its corresponding weight parameter, 

respectively, and are related to the mth model in the pth layer. In addition, pm

ka and pm

kb are 

the Gaussian parameters that are utilized for the ith input variable from the mth model and 

pth layer. Also, the final output is expressed using the following function: 
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Neuro-fuzzy GMDH network is known as an iterative method to solve the complicated 

systems. In iteration, the error parameter for the network can be obtained as follows: 

 

2)(
2

1
yyE    (7) 

 

which, 
y is the predicted value. 

 

 

4. DEVELOPMENT OF THE NEURO-FUZZY GMDH MODEL USING GSA 
 

In this section, the NF-GMDH model is developed using GSA approach. The basic structure 

of NF-GMDH is consisted of partial descriptions (neurons). As mentioned in previous 

section, the grouped parameters in the form of Gaussian variables and weights related to the 

fuzzy rule are unknown in each partial description (PD). GSA algorithm has been applied to 

optimized grouped-unknown parameters in PDs.  

Recently, a novel heuristic search algorithm which is called gravitational search 

algorithm (GSA) has been proposed motivated by gravitational law and laws of motion. 

Application of the GSA model indicated efficient performance for different optimization 

problems such as filter modeling, identification of hydraulic turbine governing system, scour 

process at group piles under waves, [30, and 31]. 

In GSA, a set of agents called masses are introduced to find the optimum solution by 
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simulation of Newtonian laws of gravity and motion [25]. To describe the GSA consider a 

system with s  masses in which the position of the ith mass is defined as follows: 

 

sixxxX n

i

d

iii ,...,2,1,     ),...,,...,( 1   (8) 

 

where, d

ix
 
is the position of 

thi  mass in the 
thd  dimension and n  is dimension of the search 

space. The mass of each agent is calculated after computing current population's fitness as 

follows: 
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where, )(tM i  
and )(tfiti  represent the mass and the fitness value of the agent i  at t , and, 

)(tworst  and )(tbest  are defined as follows (for a minimization problem): 
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To compute the acceleration of an agent, total forces from a set of heavier masses should 

be considered based on gravity law (Eq. 13). Also, it is followed by calculation of agent 

acceleration using motion law (Eq. 14). 
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Afterward, the next velocity of an agent is calculated as a fraction of its current velocity 

added to its acceleration (Eq. 15). Then, its position could be calculated using Eq. (16). 
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where, irand  and jrand are two uniform random in the interval [0, 1],   is a small value, 

and )(tRij  is the Euclidian distance between two agents i  and j  that were defined as
 



M. Goharriz and S.M. Marandi 

 

392 

2
)(),()( tXtXtR jiij  . kbest  is the set of first K  agents with the best fitness value and 

biggest mass. kbest  is a function of time, initialized to 0K  at the beginning and decreasing 

with time. Here, 
0K  is set to s  (total number of agents) and is decreased linearly to 1. In 

GSA, the gravitational constant, G  will take an initial value of 0G , and it will be reduced by 

time: 

 

),()( 0 tGGtG   (17) 

 

In present study, Eq. (28) used for the gravitational constant: 

 

T

t

eGtG


 0)(  
(18) 

 

Performing the NF-GMDH and GSA models is a parallel action in each PD. Also, two 

fuzzy rules were used to model the neuro-fuzzy in each PD.  

The value of the control parameters of the GSA algorithm such as , 0G , number of 

agents, and maximum number are presented in Table 3. In case of free space status, the NF-

GMDH-GSA network is modeled with three layers, 45 PDs, and 90 fuzzy rules generated 

through an optimization process. In addition, for ground status, the proposed NF-GMDH-

GSA model has three layers with 30 PDs and 60 fuzzy rules.  

Through modeling the NF-GMDH-GSA model for the lateral spread in free face, 45 

partial descriptions (PDs) are produced in the first layer. Then, the second layer is generated 

using 45 PDs from the first layer. This process could be continued until minimum error of 

training network is obtained. In conclusion, the NF-GMDH-GSA network is modeled with 

three layers, 45 PDs, and 90 fuzzy rules generated through an optimization process. In 

addition, for sloping ground, the proposed NF-GMDH-GSA model has three layers with 30 

PDs and 60 fuzzy rules. Table 3 demonstrates the values of the GSA properties for 

predicting the lateral displacements in both conditions. 

 
Table 3: Values of controlling parameters for GSA model 

Parameter Range 

Alpha 20 

G0 100 

Number of Variables 6 

Maximum Iteration 100 

Error 0.00001 

Number of Agents 50 

Weighting Coefficients 0.1-1.5 

 

Furthermore, three of partial descriptions (PDs) generated in the first layer of the 

proposed NF-GMDH-GSA networks are expressed as follows: 

For free face conditions: 

http://en.wikipedia.org/wiki/Gravitational_constant
http://en.wikipedia.org/wiki/Gravitational_constant
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And, for sloping ground: 
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The superscript and subscript of each parameter present the number of pertaining layer 

and partial description, respectively. 

 

 

5. DEVELOPMENT OF THE GENE-EXPRESSION PROGRAMMING 
 

Most recently a new technique called gene-expression programming (GEP) was developed 

which is an extension of the GP approach. The GEP is a search model that evolves computer 

programming in the forms of mathematical expressions, decision trees, and logical 

expressions [32, 33, 34, and 35]. In addition, the GEP model has attracted the attention of 

investigators in prediction of characterizations in hydraulic problems. This research 

represents GEP models for evaluation of scour hole geometry at downstream of stilling 

basins. The GEP approach is coded in the forms of linear chromosomes, which are 

expressed into Expression Trees (ETs). 

In fact, the ETs are sophisticated computer programming which are usually evolved to 
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solve a practical problem, and are selected accordingly to their fitness at solving that 

problem. The corresponding empirical expressions can be obtained from these trees 

structures. A population of the ETs will discover traits, and therefore will adapt to the 

particular problem they are employed to solve [32, 33, 34, and 35].  

Development of the GEP approach includes five steps. The first step is the selection of 

the fitness function, fi, of an individual program (i). This item is evaluated as follows: 
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jjii TCMf
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which, M , ),( jiC , and jT  are the selection range, value returned by the individual 

chromosome i for fitness case j, and the largest value for fitness case j. 

In second stage, the set of terminals T and the set of function F are selected to generate 

the chromosomes. In this research, for free space conditions, the terminal includes six 

independent parameters in the form of T (Dh) = S, M, R, D5015, F15, and T15 and T (Dh) = W, 

M, R, D5015, F15, and T15 also is considered for sloping ground status. To find the 

appropriate function set, it is necessary to peer review previous investigations made on 

liquefaction-induced lateral ground displacements in this area. In this way, four basic 

operators (+, -, *, /) and basic mathematical functions (√, power, sin, cos, exp) are applied to 

lateral displacements modeling. The third step is to configure the chromosomal architecture. 

The fourth step is selection of liking function. Finally, for the fifth stage, the sets of genetic 

operators and their rates are selected. The other details related to the architecture of the GEP 

modeling are expressed in the literature [32]. In this study, lateral ground displacements are 

predicted using the GEP model for different conditions of the free space and the sloping 

ground. The best explicit form of the GEP approach for lateral ground displacements in the 

free face and the ground sloping conditions are given as follows, respectively: 
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Furthermore, the functional set and the operational parameters applied in the proposed 

GEP models are presented in Table 4.  
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Table 4: Functional set and the operational parameters used for proposed GEP models 

Value Parameters 

Population size 100 

Number of generations 500 

Tournament size 5 

Max. gene 4 

Max. tree depth 4 

Operators and Functions (√, +, -, *, /, power, sin, cos, exp) 

 

 

6. RESULTS 
 

The results of the NF-GMDH-GSA networks and GEP models are presented in this section. 

In this way, correlation coefficient (R), mean absolute percentage of error (MAPE), root 

mean square error (RMSE), BIAS, and scatter index (SI) are defined to evaluate error 

indicators in the training and validation stages according to the following equations: 

 

  
∑ [            ̅        ][           ̅       ]

 
   

√∑              ̅         
  

    ∑             ̅        
  

   

 
(28) 

     
 

 
 
∑ |                    |

 
   

∑           
 
   

      (29) 

      
∑                       

  
   

 
     (30) 

     ∑ [
                    

 
]

 

   
 (31) 

   
    

     ∑           
 
 

 (32) 

 

where Yi(Model) is the predicted values (network output), Yi(Actual) is the observed values 

(target), and M is the total of events. 

Numerous runs were performed with various initial settings and the performance of the 

developed model was analyzed for each run. Consequently, the best model selected 

according to statistical criteria such as R, MAPE, RMSE, Bias, and SI. In addition, a 

comprehensive parametric study was performed to monitor the behavior of each model 

versus variations of input variables. The Proposed NF-GMDH-GSA model that selected as 

the most appropriate model, was constituted by six input parameters (M, R, W or S, T15, F15, 

D5015) and one output (Dh). 

Precision of the proposed model examined by comparison of the actual and NF-GMDH-

GSA predicted values of lateral displacements (Dh) for the free face (Figs. 2 and 3) and the 

sloping ground (Figs. 4 and 5) conditions. For the free face cases, the values of R, MAPE, 

RMSE, Bias, and SI are equal to 0.951, 0.483, 0.672, 0.302, and 0.242, respectively, for 

training set (Fig. 2) and 0.939, 0.587, 0.814, 0.331, and 0.257, respectively, for validation 
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set (Fig. 3). Also for the sloping ground cases, the values of R, MAPE, RMSE, Bias, and SI 

are equal to 0.940, 0.357, 0.409, 0.319, and 0.361, respectively, for training set (Fig. 4) and 

0.927, 0.396, 0.469, 0.344, and 0.377, respectively, for validation set (Fig. 5). 

The results shown in Figs. 2–5 indicate reasonable good performance of NF-GMDH-

GSA model for assessment of the lateral displacement for both free face and sloping ground 

cases. 

Figs. 6 and 7 illustrate the precision of the proposed GEP model of free face (R= 0.653, 

MAPE=1.014, RMSE=1.483, Bias=0.856, SI=1.198) and sloping ground (R=0.614, 

MAPE=1.110, RMSE=1.582, Bias=1.268, SI=1.657) conditions, respectively. These figures 

are plotted for all data. 

The results indicate that NF-GMDH-GSA model obtains the better performance than the 

GEP model in prediction of liquefaction induced lateral displacements (Dh). This can be 

inferred from the performance parameters presented in Table 5, showing the values of 

statistical parameters of NF-GMDH-GSA and GEP models for training, validation, and all 

datasets. In fact, the evolved NF-GMDH-GSA model has obtained enough accuracy for both 

testing and validation sets. 

 

 
Figure 2. Measured versus NF-GMDH-GSA predicted values of Dh for free face cases - training 

dataset 

 

 
Figure 3. Measured versus NF-GMDH-GSA predicted values of Dh for free face cases - 

validation dataset 
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Figure 4. Measured versus NF-GMDH-GSA predicted values of Dh for sloping ground cases - 

training dataset 

 

 
Figure 5. Measured versus NF-GMDH-GSA predicted values of Dh for sloping ground cases - 

validation dataset 
 

 
Figure 6. Measured versus GEP predicted values of Dh for free face cases – all data 
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Figure 7. Measured versus GEP predicted values of Dh for sloping ground cases - all data 

 

 

7. MODEL ACCURACY 
 

Presentation of the model accuracy is relied on the NF-GMDH-GSA model because of high 

precision of this model in comparison with the GEP model. For all element tests data, values 

of relative errors for free face and sloping ground conditions are shown in Figs. 8 and 9, 

respectively. Relative error is the difference between the actual and predicted Dh. It is 

observed that the developed NF-GMDH-GSA models can predict the lateral displacements 

(Dh) with reasonable accuracy because the relative error is satisfactorily less than 1m for 

majority of data in both the free face and the sloping ground conditions. 

 
Table 5: Target error parameters of proposed NF-GMDH-GSA and GEP models 
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R 0.951 0.939 0.944 0.940 0.927 0.931 0.667 0.6379 0.653 0.623 0.601 0.614 

MAPE 0.483 0.587 0.533 0.357 0.396 0.374 0.856 1.157 1.014 0.981 1.307 1.11 

RMSE 0.672 0.814 0.772 0.409 0.469 0.428 1.325 1.512 1.483 1.424 1.816 1.582 

Bias 0.302 0.331 0.312 0.319 0.344 0.330 0.821 0.902 0.856 1.209 1.413 1.268 

SI 0.242 0.257 0.249 0.361 0.377 0.368 1.154 1.312 1.198 1.558 1.813 1.657 

 

 

8. COMPARISON BETWEEN NEW RESULTS AND PREVIOUS STUDIES 
 

Predictions of some previously published empirical relationships for evaluation of 

liquefaction induced lateral ground displacements are compared with what is found in this 

study. Table 6 presents the models. Due to the complexities exist in the liquefaction induced 
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simplified analytical methods have failed to capture the full effect, and thus empirical 

models based on case histories have remained as a popular method in the past decades. [8, 

11, and 15]. 

In present research, the empirical correlations and multi-linear regression (MLR) models 

for estimation of lateral ground displacements (Dh) are introduced. Table 7 presents the 

values of R, MAPE, RMSE, Bias, and SI for proposed neuro-fuzzy group method of data 

handling (NF-GMDH) gravitational search algorithm (GSA) models, and the values 

estimated by empirical relationships (Table 6) for lateral displacements (Dh) for free face 

and the sloping ground conditions. The results indicate higher precision of proposed NF-

GMDH-GSA model with respect to the previously published empirical equations. However, 

the developed NF-GMDH model proposed can be an applicable and more reliable tool for 

predicting liquefaction induced lateral ground displacement.  

 
Table 6: Empirical relationships for estimation of the lateral ground displacement 

Condition Equation Proposer 

Free face 

                                                 
                                   

                      

Kanibir [15] 

                              (                )

                             

                                 

        

Youd et al. [8] 

                                             
                                      
            

Bardet et al. [11] 

Sloping 

ground 

                                                   
                                      

Kanibir [15] 

                              (                )

                             

                                 

        

Youd et al. [8] 

                                             
                                   
                 

Bardet et al. [11] 

 

 
Figure 8. Variation of absolute relative error between the actual and NF-GMDH-GSA predicted 
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values of Dh – free face cases 

Table 7: Comparison between statistical parameters for NF-GMDH model and previous models 

Model Performance 

 Free face  Sloping ground 

 R 
MAP

E 

RMS

E 
Bias SI  R 

MAP

E 

RMS

E 
Bias SI 

NF-GMDH-GSA 

based model (present 

study) 

0.944 0.533 0.772 0.312 0.249  0.931 0.374 0.428 0.330 0.368 

Kanibir [15] 0.825 0.600 0.654 0.517 0.331  0.792 0.514 0.612 0.682 0.511 

Youd et al. [8] 0.889 2.335 3.061 0.602 0.296  0.719 1.728 1.915 0.745 0.630 

Bardet et al. [11] 0.835 0.832 1.257 0.532 0.327  0.758 0.509 0.667 0.739 0.548 

 

 
Figure 9. Variation of absolute relative error between actual and NF-GMDH-GSA predicted 

values of Dh – sloping ground cases 

 

 

9. CONCLUSIONS 
 

Determination of liquefaction induced lateral ground spreading is a complex geotechnical 

engineering problem. A robust neuro-fuzzy group method of data handling (NF-GMDH) 

based on gravitational search algorithm (GSA) and gene-expression programming (GEP) 

models are developed for prediction of liquefaction induced lateral ground displacement 

using a large data. A wide-range database of case histories consisting of 426 data of 

liquefaction-induced lateral displacement for the free face and the sloping ground conditions 

obtained from ten earthquakes, and were compiled and analyzed. Based on data analysis and 

the previous researches, the following results are made: 

1. the most important factors that affect the lateral ground displacement during 

liquefaction are categorized as seismological (M, R), topographical (S, W), and geotechnical 

(T15, F15, D5015) parameters. 

2. It was shown that for both free face and sloping ground cases, the NF-GMDH-GSA 

models are able to learn with a very high accuracy,  

A. For free face conditions, R= 0.944, MAPE=0.533, RMSE=0.772, Bias=0.312, 

SI=0.249, and displacements were from 0.01 to 10.16 m. 

B. For sloping ground conditions, R= 0.931, MAPE=0.374, RMSE=0.428, 

Bias=0.330, SI=0.368, and displacements were from 0.01 to 3.36 m. 
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3. It is clearly observed that the NF-GMDH-GSA model yields a much better 

performance than GEP models and the previous equations. 

4. The results of present study confirm higher precision of proposed model in comparison 

with previous models. This accuracy shows the superiority of the proposed NF-GMDH-

GSA models over available relationships and models in literature. 

5. It is clear that a precise correlation is easier to be used in routine geotechnical projects 

compared with the field measurement techniques. 
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